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Decision Support for Financial Planning 
 

 
 
Abstract:  

Financial consulting is a demanding task. Due to the complexity and fuzziness of customers’ 

financial problems on the one hand and the amount of possible products that may be considered 

to configure solutions to these problems on the other hand, an adequate DSS is essential. A 

model is presented that allows for the inclusion of uncertainty and risk into the formulation of 

financial problems by the customer as well as in the solution process, i.e. intelligently bundling 

financial products to form a superior solution for a specific customer problem. As an innovation 

we introduce the transformation of probability constraints into scenario specific minimum 

payment constraints, which seems applicable far beyond the domain of financial planning. 
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1. Introduction 

The number of products that may be offered by a personal financial advisor as solution to a customer’s 

problem increased dramatically1 making it harder to find a superior solution. In addition, competition has 

intensified and customers have become more demanding [5], [7]. Thus, financial services providers 

struggle with a more difficult solution process and at the same time with shrinking margins. In recent 

years, many financial services providers have found financial planning as a strategy to gain a sustainable 

competitive advantage at least in the customer segment of high net worth individuals. 

To broaden the scope of financial planning and to offer this service to private banking and 

affluent customers, however, the process has to be much leaner in terms of time to come to 

recommendations for a specific customer. From a finance perspective the analysis and planning phase in 

the financial planning process, i.e. the phase where the recommendations are developed, is the most 

complex and demanding one. In fact, financial services providers offering financial planning services for 

high net worth individuals usually put a team of analysts and other experts at the task to optimize the 

global financial situation of a specific customer. This is a very human resources intense way of dealing 

with the problem, however, particularly in the domain of high net worth individuals the problems are 

generally of such complexity that the use of information technology may just support some tasks of these 

experts in that phase. With respect to private banking and affluent customers, the problem domain is 

simpler on average and often in a more structured form. This makes financial planning for these customer 

segments a compelling case for an appropriate decision system support. An underlying requirement to 

support this process with a decision support system (DSS) is a common language that can translate and 

represent the needs of the customer on the one hand (financial problem) and on the other hand financial 

products that are available to satisfy these needs (financial solution). In this contribution such a language 

and a suitable solution process including the possibility to include risk is proposed. Moreover, the 

proposed model allows solving modular problems, such as pension planning or mortgage lending, much 

                                                 
1  E.g. in the German retail market for financial services, as of 2005 there are far more than 6.000 open end funds as well as far 

more than 50.000 retail derivatives available that may potentially be a part of a solution to a financial problem. 
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easier compared to the status quo of models and applications in the financial services market while taking 

into account the whole financial situation of a customer.  

The remainder of the paper is organized as follows. Section 2 reports related research in the 

domain of DSS research in financial planning. Section 3 presents the proposed problem solution process. 

Section 4 presents the basic model. In Section 5 an extension of the basic model including uncertainty and 

risk is proposed. The model’s applicability and limitations are discussed in Section 6. Section 7 

summarizes the findings. 

 

2. Related research 

In literature a lot has been written about personal financial planning2 and about decision support 

[9] systems. Moreover, there are a number of contributions that deal with expert or decision support 

systems in corporate financial planning or in banks (e.g. [8], [13], [15], [24], [31]). However, concerning 

personal finance and its decision support, there is much less coverage. Locarek and Preuss present a 

prototypical decision support tool in financial planning, however, their system is just able to offer “what 

if?” and “how to achieve?” analysis, but no optimization [20]. Palm-dos-Reis and Zahedi present a DSS 

for private investors [25]. The focus in their contribution lies on the appropriate selection of a model for 

investment decisions based on a customer’s preferences. Gaul proposes an approach to formalize and 

solve a customer’s financial problem based on graph theoretical tools (stochastic flows-with-gains 

approach) [11]. Monte Carlo Simulation to solve problems in the financial planning context is suggested 

by McCabe and Boinske [23]. Another related contribution is due to Gardin et al. [10]. They propose a 

liquidity management approach including risk using the simple recourse method. Benaroch and Dhar 

propose a DSS using qualitative reasoning techniques to support the implementation of hedging strategies 

for professional traders [2]. 

                                                 
2  Whole journals have been dedicated to this task such as the Journal of Financial Planning, Journal of Accountancy, CPA 

Journal, Journal of Financial Service Professionals. However, these are mostly journals with a more practical “hands-on” view 
and without a double-blind-refereed process.  
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All these different approaches have their merits and deal with the solution of some kind of 

financial problem, but with respect to the following requisites, neither of them can fully convince: We 

expect our approach to be as traceable as possible; we want to be able to use the approach for financing, 

for investment as well as for mixed financial problems. We want to be able to benefit from already 

existing domain-specific knowledge and at the same time, we want to be able to find or configure 

financial solutions that are innovative and new. Therefore, we propose a different approach.  

The basic idea of the presented model in this contribution is based on works about enterprise 

modeling due to Hax in the 70s (see e.g. [12]). The main commonness between these approaches and the 

model presented here is that both apply linear equations and matrix algebra. However, the pretension in 

the model presented here is a much more modest one. In the abortive enterprise modeling approaches the 

pretension was to model the problem completely. In this contribution it is acknowledged that the problem 

cannot be determined exactly in the interaction between customer and the financial consultant. Moreover, 

due to the complexity of the problem as well as the solution space [25], finding a globally optimal 

solution to a customer’s problem is also not the objective here. The presented model extends contributions 

by [18], [30] with respect to the formalization and inclusion of risk. Hence, a model-driven DSS [26] is 

proposed. 

From the technical point of view, the approach presented here is particularly compatible with a 

blackboard approach proposed by Hayes-Roth [14] and applied in the financial consulting context e.g. by 

Buhl et al. [4], Sandbiller et al. [27] and Einsfeld et al. [7].  

In the following, our problem solution process is discussed as a basis for the model presented 

afterwards. 

 

3. Problem Solution Process in Financial Planning 

Once the data of a customer are gathered for a financial planning service, the real challenge is to 

come to sound recommendations with respect to the customer’s situation. In the recording phase all assets 
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and expected cash flows (salaries, dividends, consumption payouts, etc.) as well as objectives and needs 

that will result in an alteration of the financial situation of the customer are gathered. Based on these data, 

interpreting the desired cash flows as restrictions, such as a constant minimum income to cover life 

expenditures, an optimization process is triggered. The result ideally is a transformed cash flow stream 

based on the cash flow restrictions of the customer that optimizes a specified objective function. From a 

mathematical point of view it is a linear or non-linear optimization problem subject to constraints. The 

objective function in combination with these constraints – both provided by and discussed with the 

customer – are called the customer’s financial problem. 

Though the identification of the (financial) problem is a demanding task, the generation of the 

solution is characterized by at least the same level of complexity. On the one hand it is the task to 

transform vague and often qualitative needs in quantitative requirements considering cash flows; on the 

other hand it is the sheer uncountable number of products with often various parameters that can be 

included in the solution process to determine an optimal solution to the customer’s problem [25]. Talking 

about this solution process, apparently a global top-down optimization approach in form of an algorithm 

leading to a guaranteed optimal solution will hardly exist. In literature top-down approaches just exist in 

specific product domains. Examples are Markowitz’s portfolio theory (cf. [22], optimization through 

selection) or the design of the discount in a mortgage loan (cf. [32], optimization through configuration). 

Nevertheless these optimization approaches are usually still subject to a number of restrictive 

assumptions. In contrast to the availability of top-down domain specific optimization knowledge, top-

down combination knowledge is rare and generally remains on a simple and abstract level.3 

Therefore, the process to determine a good solution has to be tackled from a different and a much 

more modest side. If a globally optimal process is not available, it might be advantageous to combine two 

or more locally optimized products - or bundles of products - to form a globally superior solution. 

                                                 
3  An example might be the CAPM, which includes a risk free investment opportunity (Tobin separation). As an approximation 

for this risk free investment opportunity often Treasury bills are considered (cf. [3]). However, there are Treasury bills with 
different maturities as well as different interest rates and thus with different liquidity effects for the customer. These unique 
characteristics of each Treasury bill are not captured in the CAPM. 
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Particularly if the principle of value additivity [3] holds, locally optimized solutions can be simply 

summed to form a solution for the customer, which is from a mathematical point of view a very nice 

feature. A heuristic approach4 that enables both the search (on heuristic search in general see e.g. 

contributions in [33]) for and the integration of partial solutions in a bottom-up approach as well as the 

utilization of available top-down combination knowledge is presented in the following. But first the term 

“financial solution” has to be defined in more detail. 

A financial solution consists of a single financial product or a bundle of financial products. If a 

solution satisfies all constraints, it is called a feasible solution. In an additional step, the superior solution 

has to be identified applying the objective function to the set of feasible solutions that were generated 

during the solution process. Thus, a superior solution is defined as the optimal solution with respect to the 

(incomplete) feasible set and the objective function.  

If no global optimum can be easily determined top-down, at least knowledge about a local 

optimum within a specific product domain can be incorporated bottom-up in a (global) solution. In these 

cases it can be advantageous to include partial solutions intentionally even if they are not feasible. The 

residual problem that generally remains if such locally optimized solutions are integrated in the overall 

solution can be solved in another solution step. Two or more combined partial solutions may solve the 

(global) problem. One iteration in the process of the determination of a solution is called a partial solution 

process step.  

But the proposed heuristic does not only provide for a bottom-up approach, but also for the 

opportunity to integrate top-down combination knowledge. If such knowledge exits and a problem or 

partial problem is identified as one where top-down combination knowledge is present and can be 

applied, the system has to recognize that fact and trigger a separation of the problem into partial problems 

                                                 
4  On heuristic optimization in portfolio management see e.g. [21]. On problem solution algorithms cf. e.g. [6], on heuristic 

approaches cf. e.g. [19], [21], and [33]. The approach presented here belongs to the group of exact heuristic methods, which 
are suited for an implementation in an information system due to the fact that the problem may be poorly structured but it is 
well-defined; cf. [6]. 
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– if necessary.5 This part of the solution process is called a process of recognition (top-down) as opposed 

to the process of search (or learning by discovery, see [19]) for another partial solution (bottom-up). 

(Note that the process of recognition and the process of search are not separated in a way that either it is 

searched or available combination knowledge is applied but the solution process can be a combination of 

both.) In conjunction the solution process is a hybrid process of search and recognition. This way of 

producing superior solutions has a number of merits [17], [30]: 

 

• Established local combination and optimization knowledge is incorporated into the solution process. 

Thus, knowledge that is already available and tested can be utilized. 

• New innovative solutions – solutions that no one would have thought of upfront – can be found due 

to the iterative process of search. 

• Since a set of feasible solutions is generated during the solution process, the financial advisor has a 

number of solutions that may be presented to the customer. This has at least two advantages: First, the 

customer has a choice and that is generally already associated with utility. Instead, if a global top-

down solution could be determined, just one solution would be offered. Second, a financial solution 

just considers quantitative factors, but a decision of a customer will be made based on quantitative as 

well as qualitative considerations. Thus, a customer might choose intentionally a second or third best 

solution from a quantitative point of view. 

 

To cope with the problem of complexity, a concept of cooperating knowledge based systems is 

used. For each financial domain a knowledge based system works as an expert (a so-called “domain-

agent”) selecting and/or configuring solutions to a given (residual) problem. Implementing domain-agents 

as separately running software processes the performance can be improved on the one hand and the 

maintenance and extension of the knowledge base is simplified. For implementing this concept of 

                                                 
5  For instance in the ALLFIWIB project this has been realized by an autonomous so-called combination agent; cf. [7]. 

Combination knowledge will not be covered here, since the formulation and solution of customer problems that take 
uncertainty and risk into account are the focus at this point. 
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offering combined solutions of several locally optimized products cooperation of the domain-agents is 

necessary [4]. The blackboard approach [14] can be applied to realize this cooperation. Each domain-

agent can offer and write solutions on the “blackboard” to (residual) problems which it has taken from the 

blackboard upfront. This implicit way of cooperation is complemented by a “combination-agent”, with 

explicit knowledge overlapping several domains. A control system takes care of the solution process 

terminating at a specific point in time, first with a request to the domain-agents to solve existing residual 

problems without aiming at reaching local optimality und second by breaking off the solution process 

after a specific time frame. 

The problem solution process and the interrelations of the above described terms partial solution, 

residual problem, objective function, superior solution and financial problem are illustrated in Fig. 1. 

 

Feasible (standard) 
solution  

Unfeasible solution 
(with respect to  
initial problem) 

Residual problem 

Feasible solution  
(with respect to  
residual problem) 

Solution alternative 1 Solution alternative 2 

Application of objective function on solution alternatives 

Selection of superior solution 

Set of  
feasible  
solutions 

Unfeasible solution 
(with respect to  
initial problem) 

Residual problem 

Unfeasible solution  
(with respect to  
residual problem) 

Residual problem 

Feasible solution  
(solves residual 
problem) 

Solution alternative 3 

Unfeasible solution 
(with respect to  
initial problem) 

Residual problem 

Unfeasible solution  
(with respect to  
residual problem) 

Residual problem 

Unfeasible solution  
(with respect to  
residual problem) 

Request to solve 
residual problem 
by control system 

Breaking off 
solution process 
by control system 

Financial Problem  
(objective function and set of constraints) 

Breaking off 
solution process 
by control system 

 
Figure 1. Schematic problem solution process6 

A basic requirement for such a solution process being implemented is the formal representation of 

problems as well as solutions. As Will showed, it is advantageous to model problems as well as solutions 

                                                 
6  The general process pattern is taken from [27] and has been modified and extended. For the sake of simplification, in the graph the process of 

recognition - a combination agent splitting a problem into two or more disjunct problems - is not illustrated, since it will not be the focus in 
this contribution. 
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as cash flows [30]. Using a formal way of representing problems facilitates the use of an appropriate DSS 

that may help to find a superior solution. Therefore, an objective has to be translated into a form where 

the problem is characterized by a desired cash flow stream. The following simple example shall illustrate 

a typical customer problem.7 

 
Example 1: Mr. Smith wants to undertake a longer journey in two years. Therefore, he plans to invest 

today and in one year 10,000 Euro each. His objective is to maximize the repayment in two years. 

 
However, future cash flows are usually not certain but inherently affiliated with risk. This holds 

true on the one hand for investment products such as bonds, stocks or funds. On the other hand, a 

customer is hardly able to formulate an exact cash flow requirement in 25 years from now. However, he 

might be able to state at least a minimal payment that he will need. Or he might be able to set a maximum 

cash outflow that he is willing to bear.  

 
Example 2: Mr. Smith not only wants to maximize the repayment in two years but he demands at least 

22,000 Euro as a minimal repayment. 

 
Another less restrictive constraint would be that a specified cash inflow has to be exceeded with a 

specified probability. Equally, a specified cash outflow must not be exceeded with a specified probability.  

 
Example 3: Mr. Smith expects a repayment of more than 22,000 Euro with a probability of 90%. 

 
Example 2 and Example 3 illustrate two different approaches of formulating uncertain 

constraints. In decision science Example 2 refers to a situation under uncertainty. There are no 

probabilities associated with different states of the world. The constraint in Example 3 only makes sense 

in a situation under risk where objective or subjective probabilities can be assigned to each state of the 

                                                 
7  Obviously this is a very simple example in comparison to real world financial planning problems; however, it is not unusual 

that customers come with modular and specific problems to their financial services provider (pension planning, mortgage 
lending, consumer finance etc.). A solution to such problems should still take into account the whole financial situation of this 
customer. The example will be continued throughout this contribution.  
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world. Instead of using the expression “state of the world” in the following, the expression “scenario” will 

be used. In a meeting with a customer often “best-”, “average-”, and “worst-”scenarios are used to 

visualize uncertainty or risk in a financial planning situation. 

But it is not only the customer who has desires that cannot be expressed by fixed or arbitrary cash 

flows but also financial products inherently contain risk with respect to the level future payments in 

different scenarios. Increased return is usually combined with increased risk of an investment [28]. To 

configure superior solutions, it is important to also consider risky securities in the solution process, thus 

the model shall also be capable of taking this fact into account. 

Having described the perspective on financial problems and solutions, in the following the basic 

model is presented. 
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4. Basic Model 

4.1 Assumptions 

In the following basic assumptions and notation are introduced to lay the ground and define the 

restrictions for the proposed (mathematical) formulation of the solution process [30]. 

 

(AF) Framework: Future states of the world are denoted as scenarios. In each scenario j = 1,..., m there 

are certain payments at each point in time t = 1,..., n. In the following, pre or after tax payments will not 

be explicitly distinguished. 

(AS) Solution: Solutions are represented as (n x 1)-column vectors, where each row marks a cash inflow 

(positive) or a cash outflow (negative) at a specific point in time t. The solution vector jas
r  is an 

aggregation of l = 1,…, b partial solutions of a solution alternative a ∈ IN+ for each point in time t in a 

scenario j, hence an aggregation of the partial solution vectors jals
r , thus ∑

=

=
b

l

jalja

1

ss
rr

. sal denotes the set 

of all scenario-specific partial solution vectors of partial solution l, thus { }malalalals sss
r

K
rr

,,, 21= . sa 

denotes the set of all scenario-specific solution vectors of a solution alternative a, thus 

{ }maaaas sss
r

K
rr

,,, 21= .  

(APr) Problem: The equality and inequality constraints of the optimization problem are modeled using a 

(n x n) problem matrix8 Pj and a (n x 1) problem vector jp
r . If a problem cannot be solved after a first 

solution step (l = 1) a residual problem remains denoted by the residual problem vector )1( +ljapr  within a 

solution alternative als  and solution step l in scenario j. 

                                                 
8  The problem matrix is in case of certainty and uncertainty independent of scenarios, i.e. Pj will be the same for all scenarios. 

However, in case of risk this changes. Therefore, the problem matrix is already introduced as scenario specific at this point. 
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(AV) Value additivity: All cash flow streams are based on the principle of value additivity, i.e. “the 

value of the whole is equal to the sum of the values of the parts”.[3] That has to be true for within a partial 

solution as well as across partial solutions, i.e. cash flow streams can be summed.9 

 

Example 410: There are three scenarios (best (j = 1), average (j = 2), and worst (j = 3)). An investment 

today of 10,000 Euro in a fund with European bonds, that is sold two years from now yields 12,000 Euro 

in the best, 11,000 Euro in the average, and 9,000 Euro in the worst case. This situation may be a partial 

solution s11 (l = 1), that can be combined with other partial solutions to form a solution alternative (a = 1)  

⎪
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4.2 The Financial Problem 

As mentioned above, the financial problem consists of an objective function subject to a number of 

constraints. A feasible solution has to satisfy all constraints. These constraints can be represented in a 

system of linear equations – one equation for each point in time t:  

011 =+++++++ ′′
j

t
jal

n
j

tn
jal

t
j

tt
jal

t
j

tt
jalj

t psPsPsPsP KKK  (1) 

If the coefficients j
tiP  and j

tp  are appropriately chosen, the following desired cash flow streams 

(constraints) can be formalized:11 

• Fixed payment (Case I): Let k denote the desired value of a payment at time t then only solutions sal are 

feasible if and only if payment jal
ts  has the value k ∈ IR across all scenarios (see Example 1). This can 

be represented in the following way:  

                                                 
9  Note that if the marginal tax rate is an endogenous variable, a simple aggregation of two or more after tax payment streams is 

not possible [30]. Therefore, in the following it is implicitly assumed that the investor’s marginal tax rate is exogenously given. 
10  In all examples the three zeros for thousand are omitted in vectors and matrices for reasons of clarity and simplicity. 
11  Constraints in the form of the following Cases I – III and later on also Cases IV and V have to be satisfied, of course, for the 

global solution sa. However, since upfront it is not known whether the first solution process step will yield a feasible solution, 
sa is replaced by sal in the following. 
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Rearranging Eq. (1) yields ks jal
t = . 

• Arbitrary payment (Case II): Feasible are all solutions sal independent of the value of the payment jal
ts . 

Consequently  

mjp

mjniP
j

t

j
ti

,,1for 0

,,1;,,1for 0

K

KK

==

===
 

Rearranging Eq. (1) yields 00 =jal
ts , which is always true. Note that this case is particularly useful if 

investment problems have to be formulated where the desired future cash inflows are known but not the 

amount that has to be invested. 

• Desired payment is a multiple of a preceded payment (Case III): Let t’ denote the preceded point in 

time (t’ < t), then all solutions sal are feasible if and only if jal
ts  has the value jal

ts '⋅α , α ∈ IR, across all 

scenarios. Thus,   

mjp

mjtitiniPPP
j

t

j
ti

j
tt

j
tt

,,1for 0

,,1;; ;,,1for 0 , ,1

K

KK

==

=′≠≠===−= ′ α
 

Rearranging Eq. (1) yields jal
t

jal
t ss '⋅= α .  

 

For each point in time t a constraint in form of the cases (I) – (III) can be formulated and results 

in n equations in the form of Eq. (1). All coefficients j
tiP  and j

tp  can be summarized in the problem 

matrix Pj and the problem vector jp
r , respectively. Thus, for each of the m scenarios there is one problem 

matrix and one problem vector. A solution is feasible if and only if it satisfies all constraints, i.e. if Eq. (2) 

holds true. 
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Example 5: Mr. Smith financial problem based on Example 1 can be formalized using the above notation. 

Taking into account that Example 1 assumed just one scenario (situation under certainty), thus j = m = 1, 

the system of equations according to Eq. (1) can be summarized in a problem matrix and problem vector 

(see Eq. (2)) 

.0
0
10
10

000
010
001

11

1
r

321

r

4434421
r

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
−

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−

pP

s al   

 

4.3 Formulation and Solution of Residual Problems 

As already mentioned above, it may often be advantageous to utilize local optimization 

knowledge to configure or select a partial solution that does not solve the initial problem entirely but 

yields a residual problem. Such a partial solution is called an unfeasible solution.  

Let s11 denote an unfeasible solution. Apparently, a partial solution s12 that solves the residual 

problem constitutes a global solution s1 which solves the initial problem. The respective problem vector is 

determined using Eq. (3).  

( ) jaljaljlja psPp
rrr

+=+ :1  (3) 

Generally, the problem vector ( )1+ljap
r

 refers to the residual problem that remains after l partial 

solution process steps. To be precise, jalp
r

 has to be set equal to the initial problem vector for the first 

partial solution process step (l = 1), thus 

1for : == ljjal pp
rr

 (4) 



 Page 16/36  

Suppose Eq. (2) yields the zero vector then the solution process is terminated. If Eq. (2) does not 

yield the zero vector another iteration using problem vector ( )1+ljap
r

 (Eq. (3)) can be performed integrating 

another partial solution sl + 1. This process can be iterated either until there is no residual problem 

anymore or a specified stopping rule fires, leading to a termination of this solution process without a 

feasible solution. A stopping rule may be that either a specified CPU time or a specified number of 

financial products (or product groups) to solve the problem is exceeded. Especially the latter rule strongly 

depends on the sophistication level of the customer. There the customer model briefly touched on above 

comes into play again. To provide tailored solutions, knowledge about the customer has to be used in the 

solution generation process. 

After the basic model has been introduced, the center of interest will now be the inclusion of 

uncertainty into the model. 

 

5. Extensions: Model under Uncertainty and Risk 

In the following sections the basic model (Sec. 4) is extended first to capture uncertainty (Sec. 

5.1) and finally to capture risk (Sec. 5.2). 

5.1 Model under Uncertainty 

To formalize desired cash flows of customers that include a minimal cash inflow or a maximal cash 

outflow (see Example 2) another case has to be introduced that leads to inequalities in the system of linear 

equations. Uncertainty is captured providing for m > 1 different scenarios [29]. Even though there is 

knowledge about different scenarios, there are no subjective or objective probabilities that may be 

assigned to each of the scenarios. Uncertainty is defined as the absence of knowledge for the decision 

maker about the probability distribution on states of the world. This does not necessarily mean that these 

probabilities are not available at all. It just states that a decision maker has no knowledge and no 

subjective expectation about these probabilities. (This separation is originally due to [16]. Though this 

separation is still widely used, it is criticized e.g. in [1].) 
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5.1.1 The Financial Problem 

A constraint in the form of an inequality at point in time t may be formalized using m inequalities of the 

following type: 

011 ≤+++ j
t

jal
n

j
tn

jalj
t psPsP K  (5) 

Accordingly, the so-called inequality constraint can be described as follows.  

• Desired payment is a minimum cash inflow or a maximum cash outflow (Case IV): Let v denote the 

desired minimum or maximum payment, then all solutions sal are feasible if jal
ts  has at least the value v 

across all scenarios.12 Thus,  

mjvp

mjtiniPP
j

t

j
ti

j
tt

,,1for 

,,1; ;,,1for 0 ,1

K

KK

==

=≠==−=
 

Rearranging Eq. (5) yields vs jal
t ≥  for all scenarios j. 

 

Since there may now be equalities in the form of Eq. (1) as well as inequalities in the form of Eq. 

(5), a (1 x n)-inequality row vector Tur  has to be introduced to distinguish between fixed payments on the 

one hand (Cases I and III) and minimum, maximum or arbitrary payments on the other hand (Cases II and 

IV). Therefore, for each payment according to the Cases I and III ut is set to one (ut = 1). For the other 

two cases ut is set to zero (ut = 0). If there are several different desired payments at one point in time, 

Case IV is more binding than Cases I and III, and these for their part are more binding than Case II. 

Hence, Case II is overwritten by Cases I and III, and these are overwritten by Case IV. This can occur if a 

customer mentally distinguishes several financial problems. 

Even though the coefficients can be gathered again in the problem matrix Pj and the problem 

vector jpr , there are now two steps necessary to check whether all constraints according to the Cases I – 

IV are satisfied. In a first step it is checked whether the inequalities hold true. In a second step it is 

                                                 
12  This case makes also sense in the model under certainty, i.e. if there is just one scenario. The solution process cannot be 

performed using Eq. (2) but the two step solution process using Eq. (6) – (8) has to be applied. 
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checked whether fixed payment requirements are satisfied. These two steps have to be performed for each 

scenario. 

 
Step 1: To check whether the inequalities of the constraints are satisfied (Case IV), the left hand side of 

(6) has to be smaller or equal to the zero vector. 

0psP
rrr

≤+ jaljalj  (6) 

Here, all constraints are considered to be inequalities and it is checked whether at least the desired cash 

inflow or at most the desired cash outflow holds true for the respective solution. 

 

Step 2: Further, using the inequality vector the fixed payment constraints (Cases I and III) are checked. 

Let Eij denote the (n x n) matrix that has all elements equal to zero except for the (i,j)-th’s element which 

is equal to one and let i
r
 denote the (n x 1) vector that has elements equal to one. K denotes the (n x n) 

matrix which is yielded by a right hand sided multiplication of the left hand side of Eq. (2) with the 

inequality vector Tur . 

( ) KupsP =+ Tjaljalj rrr
 (7) 

Using Eq. (7) it can be checked whether all fixed payment constraints are satisfied.  

0
1

rr
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑
=

iKEE
n

t
tttt  (8) 

5.1.2 Formulation and Solution of Residual Problems 

If one of these two steps described above is not satisfied, Eq. (3) yields the residual problem. The initial 

problem matrix Pj and the inequality vector Tur  are not altered and can be used for the next partial 

solution process step.  

 



 Page 19/36  

5.2. Model under Risk 

The model under risk distinguishes itself from the model under uncertainty by the introduction of 

probabilities of occurrence for each scenario. Thus, risk is captured in a discrete function. There is no 

separation between systematic and unsystematic risk [3]. The focus is again to ensure minimum cash 

inflows or maximum cash outflows, i.e. the shortfall risk remains the center of interest. Other risk 

parameters such as beta, volatility, residual volatility, correlation coefficient, tracking error are at least not 

covered in the constraints. Introducing different scenarios into the consulting and solution process marks 

a significant improvement compared to the status quo in practical financial planning consulting, scenarios 

without scenario probabilities will not suffice for a number of financing and especially investment 

problems. 

From the perspective of the customer inequality constraints (Case IV) may be too restrictive since 

a payment must not fall below a specified value. To make sure that this specified value is reached at all 

costs, the customer may have to sacrifice a lot of potential return. Especially in the context of financial 

planning services, the used “best” and “worst” scenarios are often very unlikely compared to the 

“average” scenario, since they are usually based on historical data and mark the worst and best possible 

outcome over a couple of years or even decades. In addition, generally speaking at least subjective 

probabilities for scenarios can be obtained from historical data for most traded securities. From the 

perspective of the solution and decision process, all relevant information that is accessible (without 

prohibitive costs) should be included in the process to improve the quality of the decision. 

5.2.1 The Financial Problem 

The solution process is more difficult compared to the models under certainty and uncertainty. In contrast 

to the constraints of Case I to IV a probability constraint can not be formalized using linear equations or 

inequalities because it does not address a specific cash flow at one point in time t but a discrete random 

variable characterized by all scenario specific cash flows at one point in time t and the probabilities of the 



 Page 20/36  

scenarios. Thus, the solution process considering probability constraints could not be performed solely by 

matrix algebra and another assumption is necessary. 

 

(AD) Distribution function and scenario probabilities: The payment at time t within a (global) solution 

sa is a discrete probability variable denoted by a
tS . The corresponding distribution function is denoted by 

( )xa
tF . Let wj denote the probability of occurrence of scenario j, with jww j

j

j ∀≥=∑ 0;1 . This 

probability is assumed to be constant in time and independent of all partial solutions sal and all other 

solution alternatives. 

 

To capture cases that are similar to the one described in Example 3, another two cases have to be 

introduced: 

• Desired payment is a maximum cash outflow with a maximal probability (Case Va): If vt denotes the 

desired maximum cash outflow at time t with the maximal probability v
tw , then all solutions sa are 

feasible if and only if  ( ) ( ) v
tt

a
t

v
tt

a
t wvwvSW ≤⇔≤≤ F . ( )t

a
t vSW ≤  denotes the probability that a

tS  

yields a value that is equal to or below vt. Even though probability constraints are checked without 

using matrix algebra, the coefficients of the problem matrix and the problem vector still have to be set 

to zero for further calculations, thus 
mjp

mjniP
j

t

j
ti

,,1for 0

,,1;,,1for 0

K

KK

==

===
 

Rearranging Eq. (1) yields 00 =jal
ts , which is always true. 

• Desired payment is a minimum cash inflow with a minimal probability (Case Vb): If vt denotes the 

desired minimum cash inflow at time t with the minimal probability *v
tw , then all solutions sa are 

feasible if and only if ( ) ( )
321

v
tw

v
tt

a
t

v
tt

a
t wvwvSW ** 1F −≤⇔≥> . Obviously, Case Vb can be transformed 

into a formulation analogously to Case Va. Analogously to Case Va, the coefficients of the problem 
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matrix and the problem vector are set to zero. 
mjp

mjniP
j

t

j
ti

,,1for 0

,,1;,,1for 0

K

KK

==

===
 

Rearranging Eq. (1) yields 00 =jal
ts , which is always true. 

 

To check a solution sa on feasibility with respect to a formulated probability constraint at a time t, 

first the distribution function ( )xa
tF  has to be calculated. Solution sa comprises all partial solutions sal that 

have been integrated in sa so far on the way to find a feasible solution after l partial solution process steps. 

A separated calculation for partial solutions, like in Sec. 4.2 and Sec. 5.2 does not suffice here anymore. 

Each solution alternative a
ts  at time t is characterized by its payments ja

ts  in the various scenarios 

j and the respective probabilities of occurrence wj. Summarizing the payments and the respective 

probabilities into a tuple, a solution for time t (the discrete probability variable) can be written as 

( ) ( ) ( )[ ]mma
t

a
t

a
t

a
t wswswsS ;...;; 2211=  (9) 

To calculate the distribution function, first, the row of tuples has to be sorted ascending 

dependent on the value of the payment ja
ts . The respective sorting function is denoted by Θ. After the 

sorting, the resulting tuples have the form ( )ctct
a

ct jws ,,, ;; , where c denotes the rank among the tuples after 

the sorting took place and jt,c denotes the rank according to the scenarios before sorting. The coefficient t 

in wt,c reflects for which point in time the sorting took place. 

( ) ( ) ( )[ ] ( ) ( )[ ]mtmt
a

mttt
a
t

mma
t

a
t

a
t jwsjwswswsws ,,,1,1,1,

2211  ; ;... ; ; ;... ; ; =Θ  (10) 

Having sorted the tuples, now an accumulation of the probabilities is necessary to get the distribution 

function. This operation is denoted by Φ. 

Apparently, the constraint ( ) v
tt

a
t wv ≤F  is satisfied if point ( )v

tt wv ;  is located on or above the 

distribution function. To check whether the probability constraints are satisfied at time t the first tuple 

( )*** ;; ttt jws  (denoted critical tuple in the following) has to be considered where the cumulated 
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probability is above v
tw . Thus, a condition of the form ( ) v

t
a
t wx ≤F  is satisfied if and only if *

tsx < . That 

is, for ( ) v
tt

a
t wv ≤F  to hold, the following statement has to be true. 

0** >−⇔< tttt vssv  (11) 

Like in the simpler cases mentioned above, there may remain residual problems to be solved. How can a 

residual problem formally be described? 

5.2.2 Formulation and Solution of Residual Problems 

If the condition 0* >− tt vs  (Eq. 11) is not true, this is equivalent to the statement that the solution so far 

provides for a payment that is too low in scenario *
tj  at time t. Therefore, for another partial solution 

( )1+ljas  at time t in scenario *
tj  the following condition – ε being some marginal value – has to be true:  

( ) ( ) ( ) ε+−≥⇔−−> ++ *1*1 **

tt
laj

ttt
laj

t svsvss tt  (12) 

Apparently, Eq. (12) corresponds to Case IV and the constraints formulated there. However, in 

contrast to Case IV the constraint for a minimum cash inflow and a maximum cash outflow is limited to a 

specific scenario here. Therefore, scenario specific problem matrices Pjal have to be introduced that are 

dependent not only on the scenario but also on the solution alternative a and the partial solution process 

step l. The integration of a residual problem into the scenario specific problem matrix and problem vector 

is accomplished by an adaptation matrix Ajal and adaptation vector jalar . 

• For each point in time t without a probability constraint and for each point in time t with a satisfied 

probability constraint the elements of the adaptation matrix Ajal and adaptation vector jala
r

 are set to 

zero.  

jiaA jal
t

jal
ti ,0;0 ∀==  
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• For each point in time t with a probability constraint that is not satisfied, the elements of the adaptation 

matrix Ajal and adaptation vector jalar  have to be altered according to the following rules   

**

*

0;

,0;0;1

t
jal

ttt
alj

t

t
jal

ti
alj

ti
alj

ti

jjasva

ijjAtiAA
*
t

*
t

*
t

≠∀=+−=

≠∀=≠∀=−=

ε
 

 

Thus, the residual problem vector can be calculated as 

jaljaljaljal)ja(l apsPp
rrrr

++=+1  (13) 

and the corresponding adapted problem matrix as  

jalj)ja(l APP +=+1  (14) 

Note that in Eq. (14) it is always the initial problem matrix Pj that is used to determine the 

problem matrix for the solution step (l+1). In contrast to Sec. 4.3 and Sec. 5.1.2 it is not sufficient here to 

check whether another partial solution just satisfies the constraints of the residual problem. Instead, it is 

inevitable to check the constraints also based on the complete aggregated solution, since the last 

integrated partial solution may alter the ranking of the tuples in Eq. (10) and thus may yield a different 

result based on Eq. (11) (See Appendix A for a detailed example). 

So far, just the conditions to check a probability constraint have been discussed in this section. 

However, there may also be desired payment streams in a setting with scenarios and a probability 

distribution on these scenarios that correspond to the cases I to IV. To check a solution not only on the 

probability but on all constraints presented above, the following conditions have to be satisfied in order to 

call a solution a feasible solution. 

 

• Check equality and inequality constraints: 

 Step 1: Check inequality constraints of the (residual) problem using the last partial solution sal. 

 Step 2: Check equality constraints of the (residual) problem using the last partial solution sal. 
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• Check probability constraint: Calculate the distribution functions of solution sa for each necessary 

scenario j and point in time t. 

 

If and only if both checks are satisfied with respect to the last partial solution sal and the complete 

solution sa, the solution is a feasible solution sa. 

5.2.3 Transformation of Probability Constraints 

As briefly mentioned above, the presented procedure to deal with probability constraints has two major 

disadvantages. First, the (complete) solution sa and its distribution function have to be calculated in each 

solution step proceeded by the check of the probability constraint(s). This increases the computing time. 

Second, residual problems resulting from unfulfilled probability constraint(s) are not completely 

described: further partial solutions may be feasible to the residual problem formulation, but the 

aggregated solution is unfeasible to the probability constraint. If the control system (cf. Sec. 3) triggers 

that no further locally optimized partial solutions shall be included, but the residual problem has to be 

solved (in order to generate a feasible solution), the decision system will not be able to accurately “find” a 

feasible partial solution by analyzing the payment structure of available partial solutions. To address these 

disadvantages, an innovative transformation of probability constraints into scenario specific minimum 

payment constraints is introduced in the following. The transformation consists of four steps: 

 

1) Calculate all m! possible tuple orders (permutations) which may result after sorting the tuples for m 

scenarios and accumulate the probabilities to get the distribution functions. E.g. in case of three 

scenarios 3! = 6 different tuple orders (permutations) { }!1;...; Me XXX ∈  are possible. 

2) Identify the critical tuple for each permutation based on the accumulated probabilities. 

3) From the ranking of the tuples and the critical tuple of each permutation a set of scenario specific 

minimum payment constraints can be derived (permutation constraints), whereas a solution fulfilling 
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a set of constraints is feasible. E.g. in case of three scenarios 3! = 6 permutation constraints can be 

formulated. 

4) Delete all double and unnecessarily restrictive permutation constraints. 

 

The result is a disjunction of permutation constraints whereas each consists of a conjunction of 

scenario specific minimum payment constraints, i.e. it is sufficient for a solution to satisfy one 

permutation constraint to be feasible. Step 1) and 2) are illustrated in the following example. 

 

Example 6: Three scenarios exist with the probabilities 25,01 =w , 6,02 =w  and 15,03 =w . The 

probability constraint for point in time t = 3 can be written as ( )1.0;22 33 == vwv . Depending on the 

payments of a solution in the different scenarios ja
ts , the following tuple orders with the corresponding 

critical tuples can occur (permutations): 

 Tuple of Permutation eX  Critical Tuple 

1X  ( ) ( ) ( )[ ] ( )1,0;22

13,32,31,3

33

3 ;1 ;2 ;,850 ;1 ;25,0 ;
==

⇒
vwv

aaa sss  ( ) ( )1 ;25,0 ;;; 1,31
*** a
ttt sjws =  

2X  ( ) ( ) ( )[ ] ( )1,0;22

23,32,31,3

33

2 ;1 ;3 ;,40 ;1 ;,250 ;
==

⇒
vwv

aaa sss  ( ) ( )1 ;25,0 ;;; 1,32
*** a
ttt sjws =  

3X  ( ) ( ) ( )[ ] ( )1,0;22

33,32,31,3

33

3 ;1 ;1 ;,850 ;2 ;,60 ;
==

⇒
vwv

aaa sss  ( ) ( )1 ;25,0 ;;; 1,32
*** a
ttt sjws =  

4X  ( ) ( ) ( )[ ] ( )1,0;22

43,32,31,3

33

1 ;1 ;3 ;,750 ;2 ;,60 ;
==

⇒
vwv

aaa sss  ( ) ( )2;6,0 ;;; 1,34
*** a
ttt sjws =  

5X  ( ) ( ) ( )[ ] ( )1,0;22

53,32,31,3

33

2 ;1 ;1 ;,40 ;3 ;,150 ;
==

⇒
vwv

aaa sss  ( ) ( )1 ;25,0 ;;; 1,32
*** a
ttt sjws =  

6X  ( ) ( ) ( )[ ] ( )1,0;22

63,32,31,3

33

1 ;1 ;2 ;,750 ;3 ;,150 ;
==

⇒
vwv

aaa sss  ( ) ( )1 ;25,0 ;;; 1,32
*** a
ttt sjws =  

 

After sorting the payments and cumulating the probabilities (step 2), the ranked payments of a 

specific permutation ( ) ( ) ( )[ ]mtmt
a

mtctct
a

cttt
a
t jwsjwsjws ,

'
,,*,

'
*,*,1,

'
1,1,  ; ;... ; ;... ; ; fulfill 
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a
mt

a
ct

a
t sss ,*,1, ...... ≤≤≤≤ , wherein c* denotes the rank of the critical tuple. If a

ctt sv *,≤+ ε  is true, the 

solution is feasible and  

a
mt

a
ctt ssv ,*, ... ≤≤≤+ ε      (15) 

is also true.  

Based on this analysis of a specific permutation, we can now formulate a set (conjunction) of 

constraints for a solution to be feasible (step 3): 

εεεε +≥∧∧+≥∧+≥⇔≥∀+≥ + t
a

mtt
a

ctt
a

ctt
a

ct vsvsvsccvs ,1*,*,, ...* . (16) 

It is not necessary to demand Eq. (16) to be true or to specify constraints for the payments 

aj
t

aj
t

aj
t

cttt sss 1*,2,1, ;...;; −  as any change in the ranking of the scenario tuples before or after the critical tuple 

will not destroy the feasibility of the solution if Eq. (15) holds. As Eq. (15) was derived from the analysis 

of a specific permutation eX , the resulting set of scenario specific minimum payment constraints is 

denoted permutation constraint eZ . If identical sets of minimum payment constraints result from different 

permutations or if permutation constraints are more restrictive than others13, these can be abandoned (step 

4). These permutation constraints do not offer additional useful information about the required structure 

of a feasible solution. Finally, a solution is feasible if it fulfills (at least) one remaining permutation 

constraint. Thus, the probability constraint was transformed into scenario specific minimum payment 

constraint, the problem is completely described and a major disadvantage of probability constraints was 

solved. But a new question arises: When shall the system compute the transformation – upfront, i.e.  

before the start of the heuristic, or later? 

In case only one permutation constraint remains it is obviously advisable to transform the 

probability constraint upfront: the time to compute distribution functions can be saved and the checks for 

feasibility of (partial) solutions are faster. If two or more permutation constraints remain, the problem can 

be split into several problem formulations each including one permutation constraint. Feasible solutions 
                                                 
13  E.g. a permutation constraint includes the same but also additional minimum payment constraints than another less restrictive 

permutation constraint. 
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shall be concurrently computed for all these problem formulations which increase the computing time. 

(Note that it is not advisable to focus on a subset of problem formulations as each comprises more 

restrictive minimum payment constraints than the original probability constraint. Feasible solutions may 

be unjustifiably declared as unfeasible and thus are lost.) In this situation it may be preferable to 

transform the probability constraint not before the heuristic commands that a feasible solution shall result 

after the next addition of a partial solution. Until this instant the check of feasibility is accomplished as 

described at the end of Sec. 5.2.2. To include the scenario specific minimum payment constraints into the 

(residual) problem formulation the adaptation matrixes Ajal and adaptation vectors jalar  introduced in Sec. 

5.2.2 can be used accordingly. 

 

It has been shown formally how feasible solutions can be generated if fixed, arbitrary, minimum 

and maximum payments as well as minimum payments with a minimal probability and maximum 

payments with a maximal probability are required. As described in Sec. 3, this step of the overall problem 

solution process is followed by the valuation of the feasible solutions applying a valuation function and a 

selection of the solutions to be presented (for different evaluation functions in this context see e.g. [17]). 

6. Discussion and Limitations of the Model 

The presented model contributes to an improvement in the quality of the consultation process in at least 

two ways: First, due to the obligatory starting point of the process with the financial problem of the 

customer, a product centric view can be circumvented. Second, the model fosters the integration of 

already existing local optimization knowledge. Thus, applications that have already been developed for a 

local optimization can still be used if the implementation provides for a sufficient modularization. 

Talking about the convergence towards a superior solution, so far the model has only been 

implemented in a simpler form in comparison to the model proposed above. Thus, no empirical tests 

could be carried out, whether a convergence can be expected in the case of uncertainty or risk. However, 

there are reasons for hope that the hybrid recognition and search process converges towards qualitatively 
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good solutions. First, combination knowledge that is already available can be incorporated in the solution 

process. Thus, at least standard solutions that are widely offered today will be generated and in so far the 

model will at least ensure the status quo of the quality of recommendations in the financial services sector 

today. Second, in the ALLFIWIB project already mentioned above ([4], [7]) it could be shown in a 

prototypical implementation that superior solutions are generated and can be expected using this approach 

- at least under certainty.  

Besides the question of convergence, there are another three issues that limit the above model to 

some extent: risk representation, dependencies between partial solutions and constant marginal tax rate.  

First, the representation of risk can be criticized. Especially the constraints that can be formulated 

by the customer concerning minimum cash inflows or maximum cash outflows – eventually with a 

specific probability – just capture shortfall risks but do not take into account any chances. Applying an 

appropriate evaluation function, this situation can be relaxed. If the evaluation function takes into account 

also chances as opposed to just focusing on the downside risk, a well balanced decision can be 

safeguarded. In addition, the probabilities of occurrence were assumed to be constant in time, across 

discrete scenarios and across all solutions. This may be in most instances an oversimplification, however, 

the introduction of time-specific probabilities into the model would not pose a big difficulty. Knowledge 

about correlation of two or more financial products that may be used in an optimization process can be 

considered in two ways. Between two partial solutions a low correlation is represented implicitly if one 

partial solution has high (low) payments in scenarios where the other partial solution has low (high) 

payments. Second, correlation can be accounted for explicitly within a partial solution, e.g. if a partial 

solution is a portfolio of securities optimized with Markowitz’s portfolio theory. 

An implicit assumption of the model is the independency of the cash flows between partial 

solutions, i.e. the cash flow of one solution is independent from the decision whether other partial 

solutions are added to form a solution. E.g. in case of a loan this might not be true as the purchase of a 

partial solution “life insurance” reduces the credit risk, which subsequently has an influence on the 

interest rate and finally on the cash flow of the partial solution “loan”. 
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Analogously - depending on the tax regime of the country where the investor assessed - the 

assumed constant marginal tax rate may in a number of cases constitute an oversimplification. In a 

progressive tax regime, it is well imaginable that a partial solution generates such high tax deductible 

amounts that the marginal tax rate is lowered after the integration of this partial solution. However, this 

would most likely have effects on all partial solutions already integrated and also on the efficiency of the 

initial portfolio. 

7. Conclusion 

A model has been presented that allows for the inclusion of uncertainty and risk into the formulation of 

financial problems by the customer as well as in the solution process, i.e. intelligently bundling financial 

products to form a superior solution for a specific customer problem. The presented formal model is just a 

first step to better incorporate risk in the financial planning process and facilitate the use of information 

technology for the solution generation process. Especially customer segments with comparably structured 

problems and a limited problem domain such as the Affluent segment may benefit substantially by a DSS 

enabled financial planning concerning the solution generation process. Today, this segment cannot be 

serviced appropriately due to the prohibitive high costs, but tomorrow supported by adequate applications 

in combination with well-trained staff this may become a sustainable competitive advantage. 

Moreover, a major innovation in this contribution is the proposed transformation of probability 

constraints into scenario specific minimum payment constraints, which is not only applicable in the 

domain of financial planning. This transformation and solution algorithm can be extended to the class of 

decision problems where scenarios (and scenario specific probabilities) are used to capture risk and 

constraints that require (deterministic) minimum or maximum outcomes with a specified probability. 
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Appendix A: Example for Sec. 5.1  

The probability constraint of Mr. Smith in Example 3 – to receive more than 22,000 Euro after two years 

(v3 = 22) with a probability of at least 90% ( 9.0
*

3 =vw ) – corresponds to type Vb and can formally be 

written as ( ) ( ) . 1.09.0122F9.022
3

33 =−≤⇔≥> 321
vw

aaSW   

Mr. Smith is offered a funds investing in European stocks as a first (partial) solution (l = 1) 

within a solution alternative s21 (a = 2). The funds is expected to yield 26,000 Euro with 25% probability 

in the “best” (w1 = 0.25), 23,000 Euro with 60% probability in the “average” (w2 = 0.6), and 

18,000 Euro with 15% probability in the “worst” scenario (w3 = 0.15) in 2 years. Probability variable 2
3S  

at time t = 3 can be written as ( )( )( )[ ]15.0 ;186.0 ;2425.0 ;26 3321
3

2221
3

1121
3 ====== wswsws . 

Sorting this expression and cumulating the probabilities yields 

( )( )( )[ ] ( )( )( )[ ]1 1; ;262 0.75; ;243 0.15; ;181 0.25; ;262 0.6; ;243 0.15; ;18 =Φ . 

This offered solution has to be checked on the probability constraint of Mr. Smith from Example 

3. The relevant tuple is ( )3;15.0;18 *
3

*
3

*
3 === jws  and the probability constraint is ( )1.0;22 33 == vwv  at 

time t = 3. The point ( )1.0;22 33 == vwv , representing the probability constraint, is obviously located 

below the distribution function ( )x2
3F . Thus, the probability constraint is not satisfied. 

Apparently, another partial solution (l = 2) s22 has to provide in the “worst” scenario a cash 

inflow after two years (t = 3) that is greater than 4,000 Euro (v3 = 4), i.e. ε+≥⇔> 44 322
3

322
3 ss 14. The 

constraints concerning the two fixed payments today (t = 1) and in one year (t = 2) were satisfied. To 

formally determine the residual problem, first the adaptation matrices Aj21 and vectors 21jar  have to be 

determined. 
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14  For reasons of clarity the marginal variable is not shown in the vectors and matrices below but is only used at the end of the calculation to 
check whether the constraint is satisfied. 
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Thus, the problem matrices P1 and P2 equal the initial problem matrix (see Example 5), whereas P3 is 

altered. 
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The problem vectors in the “best” and “average” scenario for the residual problem are   
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Obviously, the constraints concerning the fixed payments are satisfied in these scenarios. For the problem 

vector in the “worst” scenario Eq. (19) yields 
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A feasible solution for the residual 

problem has to satisfy Eq. (6) and Eq. (8). A possible partial solution s22 (l = 2) for this residual problem 

is to sell a futures contract with a maturity of two years15 and the following payment streams 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
==

5
0
0

;
0
0
0

;
5

0
0

32222212222 sss
rrr

s .It can be shown that this partial solution satisfies Eq. (6) 

as well as Eq. (8) and solves the residual problem. However, this does not need to mean in turn that also 

a global solution has been found as the residual problem does not describe the necessary payment 

structure completely. The probability constraint has to be checked using the (global) solution s2. The new 

probability variable 2
3S  of solution s2 can be described as ( )( )( )[ ]15.0;236.0;2425.0;212

3 =S . Sorting 

                                                 
15  Abstracting form margin payments, clearing fees, etc., there are no real cash inflows or outflows before maturity associated with the purchase 
of a futures contract. On futures contracts see e.g. [3]. 
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these tuples using Eq. (10) and accumulating the probabilities using Eq. (11) yields: 

( ) ( )( )( )[ ]2;1;243;40.0;231;25.0;212
3 =ΘΦ S .The relevant tuple for the check on feasibility is (21;0.25;1). 

Apparently, ε<−=−=− 122213
*
3 vs . Thus, the global solution does not satisfy the probability 

constraint and solution s2 is an unfeasible solution. 
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