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Asset Allocation Taking into Account 

the Time Lag of Volatility Forecasting 

 

Abstract: Striving for efficient asset allocation investors usually have limited risk bearing 

ability. This results in an upper limit for their portfolio volatility that must not be exceeded. 

Ensuring compliance with this risk limit at any point in time is essentially complicated by 

two factors: First, portfolio volatility permanently changes over time. Second, there is a 

considerable time lag between two consecutive estimations of portfolio volatility due to a 

restricted capacity of the employed technical resources as well as a fixed forecast horizon. 

This can result in a (considerable) inaccuracy with regard to future volatility which is 

usually accompanied either by a violation of the risk limit or by a suboptimal asset 

allocation yielding less than actually achievable return. In order to contribute to the 

prevention of these drawbacks, this paper focuses on the second factor for forecasting 

inaccuracy and presents the so-called Risk-at-Risk approach. This approach allows for the 

consideration of the time lag with respect to volatility forecasting. Its integration into asset 

allocation facilitates the maximisation of return while simultaneously ensuring compliance 

with the predefined risk limit with utmost probability. The practical applicability of the 

approach is demonstrated by means of two examples, one assuming future volatility to be 

normally or log-normally distributed and one employing real-world intra-day returns of 

Linde and Merck between January and September 2010. While the first example illustrates 

the relevance of a dynamic adjustment of forecasting frequency dependent on current 

market developments, the second emphasizes strong differences in asset allocation when 

applying Risk-at-Risk instead of mean future volatility. 

 

Keywords: risk/return management, asset allocation, volatility forecasting, forecast horizon 
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1. Introduction 

Today’s investors are acting in globally integrated, extremely dynamic, and thus highly 

volatile market environments. They allocate their capital to risky investment opportunities 

like financial assets, participations, or project funding with the objective of maximising 

their overall return. If these investments succeed, they can achieve considerably higher 

rates of return than the risk-free rate. On the other hand, the failure of investments can 

cause serious losses and further problems as the last financial and economic crisis shows. 

The economically reasonable allocation of sparse capital among various assets is hence 

one of the fundamental problems of capital investment planning (see Alexander (2001),  

p. 186; Bhapkar (2007)). 

Higher return is systematically associated with higher risk – as explained by classical 

approaches such as the Capital Asset Pricing Model (CAPM) (see e.g. Sharpe (1964)). 

Given a limited risk bearing ability, investors usually have an upper limit for their overall 

risk exposure. This risk limit depends on their capital bases and must not be exceeded in 

order to avoid the threat of liquidity problems, heavy losses or other negative 

consequences. An investor’s investment activity and the resulting asset allocation are thus 

essentially governed by his risk limit. 

The problem of asset allocation subject to a predefined risk limit is one of the classical 

issues in finance. In the context of securities, Markowitz (1952) was the first to answer 

this question by establishing the idea of maximising a portfolio’s expected return subject 

to a risk constraint in terms of the corresponding variance. This approach was extended to 

a multi-period setting by Samuelson (1969) and to continuous time by Merton (1969, 

1971). Sharpe (1964), Lintner (1965), and Mossin (1966) took it as a starting point for 

their well-known CAPM, which assumes investors to hold some linear combination of a 

fixed market portfolio and a risk-free investment alternative. Beyond this, there is recent 

research discussing the problem of asset allocation subject to a shortfall or Value-at-Risk 

(VaR) constraint (see e.g. Campbell et al. (2001), Cuoco et al. (2008), Daníelsson et 

al. (2008), Hainaut (2009), Jansen et al. (2000), or Yin (2004)) as well as the challenge of 

dealing with illiquid assets (see e.g. Budhraja/de Figueiredo (2005), Cao/Teïletche 

(2007), Gârleanu (2009), Koren/Szeidl (2002), Longstaff (2001), or Milevsky (2004)), 

which makes the problem more difficult as trading cannot “take place at short notice in 

large quantities without a substantial price change” (Koren/Szeidl (2002), p. 1). 

Apart from the specific characteristics of different risk measures or asset classes, ensuring 
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compliance with a predefined risk limit at any point in time is fundamentally complicated 

by two factors: First, portfolio risk permanently changes over time, either willingly (by 

making investment decisions) or unwillingly (by movement of the underlying markets). 

Second, there can be a considerable time lag between two consecutive estimations of 

portfolio risk due to a restricted capacity of the employed technical resources as well as a 

(considerable) forecast horizon. Accordingly, information about the risk currently being 

taken might be inaccurate as well as significantly outdated. As a consequence, the risk 

limit could temporarily be exceeded without the investor noticing it. In order to avoid the 

unnoticed violation of the predefined risk limit and the resulting negative consequences, 

in practice investors establish capital buffers, i.e. they build higher risk-freely invested 

capital reserves than actually necessary. This behaviour, however, usually leads to an 

economically unfavourable asset allocation resulting in radical profit cuts. Ensuring a 

continuous re-estimation of portfolio risk and a subsequent asset re-allocation, which aims 

at maximising overall return while simultaneously satisfying a predefined risk limit, is 

thus a crucial task of risk/return management. It is generally relevant for all sorts of 

industries, regardless of whether they invest in financial assets, R&D-projects, or 

marketing and sales innovations (to name but a few possible kinds of investment 

opportunities). For two reasons, this task is however of particular importance when 

operating in financial markets: First, financial assets often show a (considerably) higher 

value fluctuation than real investments. That is why volatility timing is of particular 

importance with regard to this asset class (see Busse (1999); Fleming et al. (2001); 

Fleming et al. (2003)). Second, financial assets are (at least to a large extent) tradable in 

the short run. In contrast, a short-term divestiture of real investments is most often 

accompanied by a considerable loss in value (Koren/Szeidl (2002), p. 1) and thus not 

desirable, even when portfolio risk changes. Therefore, the approach presented in this 

paper focuses on assets which are traded at financial markets. It is hence particularly 

relevant to banks, insurance companies, and other financial institutions – or more 

precisely to the divisions these institutions which are responsible for the proprietary 

trading of – as their core business consist in realising an efficient asset allocation. To be 

successful they require an accurate and fast risk re-estimation and asset re-allocation 

process. Against this background, this paper furthermore focuses on the volatility of 

financial assets as the probably most widely accepted risk measure for quantifying market 

risk next to VaR. 

There is lot of research dealing with volatility forecasting and particularly addressing the 
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first cause of inaccuracy that volatility of financial assets permanently changes over time: 

Alexander (2001), Figlewski (2004), and Poon/ Granger (2003) – to name but a few – 

provide a relatively broad overview of conventional methods for forecasting future 

volatility. In doing so, they distinguish two fundamentally different approaches, namely 

time series models such as linear or exponential moving average models, (Generalised) 

Autoregressive Conditional Heteroskedasticity ((G)ARCH) models, or stochastic volatility 

models, and option based models such as implied volatility models (see Bollerslev (1986, 

1987); Broto/Ruiz (2004); Engle (1982); Heston (1993); Nelson (1991); Stoyanov et al. 

(2009)). These approaches in particular try to model typical effects regarding future 

volatility such as persistence, clustering and mean reversion (see Poon/Granger (2003)). 

Furthermore, we can detect an increasing awareness among both researchers and 

practitioners concerning the drawbacks of different forecasting methods (see e.g. 

Andersen/Bollerslev (1998); Andersen et al. (2004); Barruci/Renò (2002); Hentschel 

(2003); Patton/Shepard (2009); Poon/Granger (2005)) as well as the variability of the 

forecasting results depending on the model used and the market conditions (see Alexander 

(2001), p. 117). Researchers thus recommend to run a plethora of simulations varying 

both the historical data basis and the scenarios of future market behaviour or even to 

combine several forecasting methods in order to reach a reasonable volatility estimator 

(cf. Yang (2004)). Although being aware of the significant influence of the forecast 

horizon and the resultant time lag with regard to volatility estimation (Andersen et al. 

(1999); Poon/Granger (2003); Poon/Granger (2005)), there is only little research 

addressing this second cause of inaccuracy with regard to future volatility so far. While 

some authors analyse the value of intra-day data for reaching better volatility estimations 

(Andersen et al. (2003); Andersen et al. (2005)), to the best of our knowledge there is no 

research addressing the field of asset allocation with respect to the simultaneous 

incorporation of both a predefined risk limit and the time lag between two consecutive 

volatility estimations. This paper intends to close this research gap and 

1. presents an alternative volatility estimator named Risk-at-Risk, which allows for the 

incorporation of the time lag with respect to volatility forecasting as well as 

2. integrates this estimator in the continuous re-allocation of financial assets taking into 

account in addition a predefined risk limit. 

For this purpose, this paper strikes a new path by focusing on the volatility process instead 

of the return process. In doing so, it simplifies the complex problem of allocating a fixed 
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amount of capital to a large number of various assets by assuming the case of two assets, 

namely a predefined risky portfolio and a risk-free investment alternative, which allows 

for building the required capital reserve (see Yin (2004) for a similar simplification). 

The remainder of the paper is organised as follows: in section 2 we briefly introduce the 

basics of volatility forecasting as well as the underlying process. In section 3, we present 

the Risk-at-Risk approach, which allows for the incorporation of the time lag with respect 

to volatility forecasting. Subsequently, we integrate this Risk-at-Risk in the continuous re-

allocation of financial assets additionally taking into account a predefined risk limit. We 

furthermore demonstrate the approach’s practical applicability by means of two examples, 

one assuming a normally or log-normally distributed future volatility and one using intra-

day tick data from Boerse Stuttgart. We finally summarise the central findings and point 

out limitations and areas for further research in section 4. 

2. Forecasting Volatility 

The derivation of the Risk-at-Risk approach and its application in the context of asset 

allocation require a few notations and basic assumptions about the general setting, which 

are presented in subsection 2.1. In subsection 2.2, we briefly outline common methods of 

volatility forecasting and explain our incremental contribution. In subsection 2.3, we 

furthermore discuss the basics of the volatility forecasting process. 

2.1. Notations and Basic Assumptions 

Focusing on banks, insurance companies, and other financial institutions we can start from 

the premise that they normally have a planning horizon of several periods ݇ ൌ 1, … , ܶ, 

where ݐ denotes the beginning of period ݇. Dealing with financial assets we can 

furthermore start from the assumptions of classical portfolio theory and assume: 

Assumption 1: Investors have access to a set of risky investment opportunities 

݅ ൌ 1, … , א ݊  Գ, with ݎ
  denoting the uncertain return of investment opportunity ݅ 

during period ݇, as well as to a risk-free investment alternative, which yields a 

constant risk-free rate ݎ. Each asset is perfectly divisible and traded on a no-

frictions market, which is free of transaction costs and taxes. Investment and 

disinvestment decisions take effect only at the beginning of each period ݇ . For all 

periods k=1,…,T and all risky investment opportunities ݅ ൌ 1, … , ݊, the expected 

return ߤሺݎ
ሻ is higher than the constant risk-free rate ݎ. 
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Assumption 2: Investors are risk-averse and strive for efficient combinations of 

investment opportunities. 

Assumption 3: Investors use the standard deviation of return for quantifying their 

overall risk exposure. 

The standard deviation seems a natural choice for market risk, as it has the same unit as 

the random variable return and is very closely related to the concept of volatility. We 

therefore use the terms volatility and standard deviation synonymously and think of the 

volatility as the annualized standard deviation of percentage change in daily price (see e.g. 

Alexander (2001), p. 5). The presented assumptions characterise the typical setting of 

classical portfolio theory, where investors aim at maximising a portfolio’s expected return 

subject to a predefined risk constraint in terms of the standard deviation or variance (see 

e.g. Markowitz (1952) or Sharpe (1964) for similar assumptions about the market 

environment). It is, however, important to realize that the approach presented in this paper 

does not address the problem of determining efficient portfolio weights for various risky 

assets, but the problem of determining an efficient asset allocation between risky and risk-

free assets, which allows for the simultaneous consideration of both a predefined risk limit 

and the time lag with respect to volatility forecasting. We therefore simplify the complex 

problem of allocating capital to a large number of various risky assets to the case of two 

assets, a predefined risky portfolio P, which incorporates some or all of the risky 

investment opportunities ݅ ൌ 1,2, … , ݊, and the risk-free investment alternative, which 

serves as a basis for the company’s capital reserve. Denoting by ܽ א ሾ0; 1ሿ the share of 

capital that is allocated to risky portfolio P during period ݇ and using common portfolio 

theory, we obtain the following equations for the overall expected return ߤ and volatility 

 ݇  in periodߪ

ߤ ൌ ܽ · ߤ
  ሺ1 െ ܽሻ · ߪ   andݎ ൌ ܽ · ߪ

      (1) 

where ߤ
 denotes the expected return of the risky portfolio P in period ݇ and ߪ

 its 

volatility. Regarding these equations, we see that the higher the share ܽ of risky invested 

capital, the larger the overall expected return as well as the overall volatility. On the one 

hand, investors certainly strive for the highest possible return. On the other hand, ߪ is 

limited by a predefined risk limit ߪത. Investors hence have to estimate the future volatility 

ߪ
 of their risky portfolio P as accurately as possible in order to reach an efficient asset 

allocation that ensures compliance with this risk limit during the whole period ݇. We thus 

briefly present common methods for volatility forecasting in the next subsection. 
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2.2. Methods for Volatility Forecasting 

Following Alexander (2001), Figlewski (2004), or Poon/Granger (2003) – to name but a 

few – there are two fundamentally different concepts of forecasting volatility: time series 

models and option based models. While the latter rely on current market data, the former 

are based on historical data and require complex mathematical calculation procedures as 

well as extensive IT support. Compared to option based models time series models very 

likely show the much bigger time lag problem due to many degrees of freedom with 

regard to data processing. In the following, we therefore focus on this concept of 

forecasting volatility. The simplest time series approach is just to take the realized 

volatility of the last period as an estimator for the volatility of the next period. However, 

this is also the most error-prone one, at least if there were any extraordinary developments 

in the last period which cannot be expected to repeat in the next one. That is why so-called 

mean average models usually do not take only the last but many past volatility 

realizations. The subgroup of moving average methods focuses on recent data and steadily 

exchanges the oldest observation for a new one. Exponentially weighted moving averages 

furthermore put the more weight on an observation the more up to date it is and assume an 

exponential decline of relevance of older observations. So-called ARCH models in 

particular aim at accounting for the fact that volatility is characterized by 

heteroskedasticity (see Alexander (1982), p. 71), i.e. a rather high value in one period is 

accompanied by a rather high value in the next period (see Engle (1982); Engle/Kroner 

(1995)). The basic idea of ARCH models is extended by so-called GARCH methods 

which additionally consider autoregressive terms, i.e. the fact that volatility tends back to 

a certain mean value in the long run (see Bollerslev (1986, 1987); Barruci/Renò (2002)). 

Stochastic volatility models run another path by expressing future volatility as a stochastic 

process (Heston (1993); Broto/Ruiz (2004)). They in particular aim at modelling the 

specific characteristics of volatility such as mean reversion or persistence by assigning 

certain helpful properties to the stochastic process. 

Summing up, there are already many different time series concepts which aim at 

estimating future volatility on the basis of historical data while simultaneously 

considering empirically observable characteristics of volatility’s long-term behaviour. 

These models try to forecast future volatility subject to both its history as well as a 

perception of future market development. Thus, they focus mainly on the first cause of 

inaccuracy with respect to volatility forecasting. Employing one or several of these 
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models usually results in a distribution of future volatility. The shape of this distribution 

depends, among other things, on the forecast horizon. The approach presented within this 

paper starts at this point and proposes a possibility to consider the specific shape of this 

distribution by simultaneously taking into account the time lag with regard to volatility 

forecasting, which is implicitly included in this distribution. In doing so, it complements 

existing methods for volatility forecasting by making a first proposal how to deal with the 

distribution of future volatility instead of discussing how to generate a reasonable 

distribution. Regarding the continuous re-estimation of this distribution and asset re-

allocation, financial institutions normally have a well-elaborated forecasting process, 

which is briefly introduced in the next subsection. 

2.3. The Process of Volatility Forecasting  

Considering the volatility forecasting process, we first have to establish the following 

notations: The time interval between two consecutive volatility estimations, which results 

from the fixation of a certain forecast horizon, is named forecast time frame ݂݂ݐ. The time 

interval between starting a specific calculation and reaching the outcome, which results 

from the restricted capacity of the employed mathematical methods and IT, is called 

calculation time frame ݂ܿݐ. Accordingly, there is a delta time frame ∆ denoting the time 

interval between the end of one calculation and the beginning of the next one. Having 

these notations in mind, for ݇ ൌ 1 … , ܶ the volatility forecasting process consists of the 

following three basic steps: 

1. Starting at time ݐ, one first has to determine the length of the forecast time frame 

ݐ݂ ݂ by deciding on the length of the forecast horizon. In business practice this ranges 

from one hour to one year (in some cases one has up to five years; see Poon/Granger 

(2005)). As one calculation has to be finished before the next one can start, the 

following constraint for the starting point ݐାଵ of the next estimation run has to hold: 

ାଵݐ  ݐ  ݐܿ ݂          (2) 

Accordingly, one first has to determine the length of the calculation time frame und 

subsequently can fix an arbitrary starting point ݐାଵ of the next estimation run that 

holds equation (2). We thus obtain the following equivalence for the forecast time 

frame ݂ݐ ݂ at time ݐ: 

ݐ݂ ݂ ൌ ݐܿ ݂  ∆         (3) 
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In doing so, the portfolio volatility is implicitly assumed to be time-invariant during 

the interval ሾݐ;  .ାଵሻݐ

2. Next, one deploys one or several methods for forecasting volatility (see subsection 

2.2) in order to estimate future volatility ߪ
 as accurately as possible. These 

calculations occupy the length of the calculation time frame ܿݐ ݂ and result in a wide 

range or an interval of different values, each with a specific probability of occurrence. 

Subsequently, future volatility ߪ
 is a random variable with a specific distribution ߴ

 

(cf. Alexander (2001), p. 118). 

3. At the end of the calculation time frame ܿݐ ݂, one uses the determined distribution ߴ
 

to generate a suitable estimator for ߪ
. Based on this, one adjusts the asset allocation 

ܽ to reach an overall volatility ߪ somewhere below the predefined risk limit ߪത. This 

includes a risk-freely invested capital reserve for ensuring compliance with the risk 

limit ߪത even when volatility varies during ∆ without the investor noticing it, as he 

does not run any volatility estimations during ∆. 

At time ݐାଵ, the end of the forecast time frame ݂ݐ ݂, the process recurs starting with 

step 1. Figure 1 illustrates the relevant time frames in detail. 

Figure 1: Relevant Time Frames within the Volatility Forecasting Process1 

 

Regarding this volatility forecasting process and using equation (3), we have the 

following time lag ܪ between two consecutive estimation runs and the corresponding 

adjustment of an investor’s asset allocation (see also Figure 1): 

ܪ ൌ ∆  ݐܿ ݂ାଵ          (4) 

The length of this time lag considerably influences the accuracy of volatility estimation 

(see Poon/Granger (2003)). Investors can thus benefit from adjusting it to the effect that, 

depending on the current market situation, volatility forecasting and asset re-allocation 

                                                            
1 In Figure 1, the calculation time frame ctf and the delta time frame Δ of different periods tk and tk+1 are deliberately 

charted varyingly long. That is because, in business practice, both time frames are highly variable (see the detailed 
explanation in the next paragraph). 

time lag Hk 

ftfk ftfk+1

Δk+1 Δk ctfk+1 ctfk 

… … t1 tk tk+1 tk+2
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may take place in distinct time intervals. Following equation (4), one has two possibilities 

for modifying the length of the time lag ܪ: varying the calculation time frame ܿݐ ݂ାଵ or 

varying the delta time frame ∆. However, there are different maturities with respect to 

the variability of these two parameters. The length of the delta time frame ∆ can easily be 

modified in the short-term as it solely depends on the starting point ݐାଵ of the next 

estimation run. The length of the calculation time frame ܿݐ ݂ାଵ mainly depends on the 

applied mathematical methods and IT infrastructure, and can thus hardly be modified in 

the short-term. It is rather a question of the medium-term IT capital budgeting to invest in 

a suitable infrastructure in order to form a basis for flexible calculation time frames. 

Significantly reducing the delta time frame, in an extreme case one can reach the ideal of 

almost real-time risk/return management, where the next volatility forecasting process 

starts as soon as the preceding one is completed, i.e. ∆ൌ 0 and ܪ ൌ ݐܿ ݂ାଵ. In doing so, 

investors can react almost immediately to all relevant, expected and unexpected market 

movements, as their overall time lag is solely determined by the unavoidable time lag 

ݐܿ ݂ାଵ resulting from the restricted capacity of the employed mathematical methods and 

IT infrastructure. This is of high relevance in times of stormy waters where markets are 

highly volatile. In contrast, during only slight movements of the underlying markets, a 

longer re-estimation frequency is usually sufficient to detect relevant changes of volatility. 

This may help to save expenses for risk management. Against this background, the 

question arises how to determine a reasonable estimator for ߪ
 which reflects this 

variability of risk management. We will answer this question in the next section and 

therefore introduce the notation ߪ
,ு instead of ߪ

 for indicating that the investor has a 

time lag of volatility forecasting of length ܪ. 

3. Asset Allocation Taking into Account the Time Lag of Volatility 

Forecasting 

3.1. The Risk-at-Risk Approach 

Having determined the distribution ߴ
,ு of the volatility ߪ

,ு in the course of the 

volatility forecasting process (see subsection 2.3), the question arises, how to generate a 

suitable estimator for ߪ
,ு taking into account the characteristics of this distribution. If 

one simply takes its expected value, one will lose parts of the available information and 

the expenditure for generating ߴ
,ு would be hardly justifiable (see Cox et al. (2008), 

p. 467). This suggests a more detailed consideration of the distribution’s characteristics to 
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reach better volatility estimation. We therefore propose the so-called Risk-at-Risk (RaR) 

as a basic approach, which allows for the consideration of (parts of) the distribution ߴ
,ு 

when estimating future volatility. As already suggested by its name, this approach is 

strongly connected to VaR, which is probably the most widespread risk measurement 

concept for market risk next to volatility in corporate and regulatory practice due to its 

ease-of-use and simplicity (see Alexander (2001) or Jorion (1997) for an extensive 

discussion of VaR and its strengths and limitations). Fixing a target horizon H, where the 

portfolio is not managed, as well as a confidence level 0 ,ߙ ا ߙ ൏ 1, we can briefly recap 

the definition of VaR as: 

 

 

Drawing on the portfolio’s volatility ߪ
,ு instead of its market value, we can transfer the 

basic idea of VaR to this random variable. Thereby, the target horizon H is canonically 

given by the corresponding time lag ܪ between two consecutive volatility forecasts. 

Setting a confidence level 0 ,ߙ ا ߙ ൏ 1, we can thus state (see Hackenbroch (2007)): 
 

 

Analogous to the VaR, RaR by design covers the maximum future risk over the given 

target horizon with the high probability ߙ or, in other words, over the time lag ܪ 

maximum future risk will exceed the RaR only in ሺ1 െ ሻߙ · 100  of 100 cases. Following 

the well-known quantile representation of VaR, the ܴܴܽு,ఈ  over the time lag ܪ at 

confidence level ߙ can thus be calculated as 

ܴܴܽு,ఈ  ൌ ఈݍ
ణೖ

ು,ಹ
          (5) 

where ݍఈ
ణೖ

ು,ಹ
 denotes the ߙ-quantile of the distribution ߴ

,ு of ߪ
,ு. 

Determining this estimator for future volatility, one has to specify the confidence level ߙ. 

In order to ensure compliance with the predefined risk limit no matter how markets 

Definition 2: 

The Risk-at-Risk ܴܴܽு,ఈ א ሾ0;∞ሾ of a portfolio P over the time lag ܪ summarizes the 

maximum future risk of the portfolio P over the time lag ܪ, which is only exceeded with 

probability 1 െ  .ߙ

Definition 1: 

The Value-at-Risk ܸܴܽு,ఈ א Թ of a portfolio P over the target horizon H summarizes the 

maximum future loss of the portfolio’s market value over the target horizon H, which is 

only exceeded with probability 1 െ  .ߙ
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develop, for caution’s sake it is reasonable to follow general banking practice with regard 

to VaR determination and choose a rather high value for ߙ such as 98 % to 99 %, (see 

Basel Committee on Banking Supervision (2004), p. 46) as the RaR increases with an 

increasing value of ߙ (see the identical conclusion for VaR, e.g. Alexander (2001), pp. 

254). Fixing a rather high value for ߙ makes the RaR a rather conservative estimator for 

portfolio volatility during the time horizon ܪ. Rewriting equation (1), we obtain the 

following upper limit for the share ܽ of capital which can be allocated to the risky 

portfolio P during period ݇ while simultaneously ensuring compliance with the risk limit 

 :തߪ

ܽ  ఙഥ
ோோಹ,ഀ ൌ ఙഥ

ഀ
ഛೖ

ು,ಹ          (6) 

Allocating a share of up to ఙഥ
ோோಹ,ഀ of the available capital to the risky portfolio P, the 

maximum future risk over the time horizon ܪ will exceed the predefined risk limit ߪത only 

in ሺ1 െ ሻߙ · 100  of 100  cases. Since the higher the share ܽ of risky invested capital the 

higher the overall expected return (see equation (1) in subsection 2.1), investors usually 

try to exploit this upper limit for ܽ as far as possible. Furthermore, there is also empirical 

evidence for the economic value of volatility timing (see Busse (1999), Fleming et al. 

(2001), Fleming et al. (2003)). Regarding equation (6), one has two possibilities for 

increasing this upper limit: one can either increase the overall risk limit ߪത or reduce the 

portfolio’s ܴܴܽு,ఈ. Without limitation the latter can be reached by a reduction of the time 

lag ܪ, as this is accompanied by a reduction of the corresponding ܴܴܽு,ఈ (see the 

identical conclusion for VaR, e.g. Alexander (2001), pp. 254). Investors can hence achieve 

higher returns by increasing the frequency of volatility forecasting and asset re-allocation. 

In the next subsection, we will demonstrate the approach’s practical applicability by 

means of two examples, one assuming a normally or log-normally distributed ߪ
,ு and 

one taking real-world intra-day tick returns of German stock index securities between 

January and September 2010 from Boerse Stuttgart. 

3.2. Exemplary Demonstration of the Risk-at-Risk’s Practical Applicability 

In order to apply the RaR approach in business practice, investors have to determine the 

distribution ߴ
,ு of their portfolio volatility ߪ

,ு. As volatility shows some characteristic 

effects such as high persistence, clustering and mean reversion (see Poon/Granger 

(2003)), one normally receives some empirical distribution ߴ
,ு for ߪ

,ு. Accordingly, 
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one has to determine the required ߙ-quantile for RaR determination numerically by adding 

up the relative frequencies of different possible realisations of future volatility. Only if 

ߪ
,ு follows some standardised distribution such as a normal, log-normal or exponential 

one, one is in the happy position of obtaining an analytical solution for the ܴܴܽு,ఈ. 

Although being aware that in reality ߪ
,ு is very rarely normally or log-normally 

distributed, we nevertheless exemplarily discuss these cases in the following subsection in 

order to get a basic feel for the RaR. 

3.2.1. The Case of Normally or Log-normally Distributed Volatility 

If ߪ
,ு ~ߥሺܧ

ு; ܵ
ுሻ is normally distributed with expected value ܧ

ு and standard deviation 

ܵ
ு, the following equivalence holds: 

ߪ
,ு ~ߥሺܧ

ு; ܵ
ுሻ ֞ ఙೖ

ು,ಹ ିாೖ
ಹ

ௌೖ
ಹ ;ሺ0ߥ~ 1ሻ       (7) 

where ߥሺ0; 1ሻ denotes the standardised normal distribution. As the linear transformation of 

a random variable results in a linear transformation of the corresponding quantiles, we get: 

ܳఈ ൌ ఈݍ
ఔሺ;ଵሻ ൌ ഀ

ഌሺಶೖ
ಹ;ೄೖ

ಹሻ
ିாೖ

ಹ

ௌೖ
ಹ          (8) 

where ܳఈ is the well-known, frequently tabulated α-quantile of ߥሺ0; 1ሻ. We hence obtain: 

ܴܴܽு,ఈ ൌ ఈݍ
ఔሺாೖ

ಹ;ௌೖ
ಹሻ ൌ ܧ

ு  ܳఈ · ܵ
ு       (9) 

In practice, the portfolio volatility ߪ
,ு cannot be assumed to be exactly normally 

distributed since the normal distribution always adopts negative values with positive 

probability, while risk measured by the volatility of returns by definition has only non 

negative values. Therefore, we can either apply a truncated normal distribution, where 

negative values are assigned by a probability of 0, or use a log-normal distribution 

ܧሺߥ
ு; ܵ

ுሻ, since ߥሺܧ
ு; ܵ

ுሻ by definition is concentrated on ሾ0;∞ሾ. Assuming ߪ
,ு   to be 

log-normally distributed with parameters ܧ
ு and ܵ

ு, the following equivalence holds: 

ߪ
,ு ~ߥሺܧ

ு; ܵ
ுሻ ֞ ݈݃ ߪ

,ு ~ߥሺܧ
ு; ܵ

ுሻ ֞  ఙೖ
ು,ಹ ିாೖ

ಹ

ௌೖ
ಹ ;ሺ0ߥ~ 1ሻ   (10) 

Analogously we obtain: 

ܴܴܽு,ఈ ൌ ఈݍ
ఔሺாೖ

ಹ;ௌೖ
ಹሻ ൌ ݁ாೖ

ಹାொഀ·ௌೖ
ಹ

        (11) 

Applying these equations we obtain the following upper limits for the share ܽ of risky 
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invested capital: 

ܽ  σത
ாೖ

ಹାQα·ௌೖ
ಹ, if ߪ

,ு ~ߥሺܧ
ு; ܵ

ுሻ is normally distributed    (12) 

and 

ܽ  σത

ಶೖ
ಹశೂഀ·ೄೖ

ಹ, if ߪ
,ு ~ߥሺܧ

ு; ܵ
ுሻ is log-normally distributed    (13) 

Analysing these equations, we see that determinants of the RaR and the resulting upper 

limit for asset allocation are volatility’s distribution parameters ܧ
ு and ܵ

ு as well as the 

 quantile ܳఈ of the standardised normal distribution and (for asset allocation) the risk-ߙ

limit ߪത. Accordingly, RaR increases with increasing values of α (leading to a higher 

quantile value ܳఈ), ܧ
ு, or ܵ

ு (and vice versa). The upper limit ܽ for the share of capital, 

which can be allocated to the risky portfolio P, correspondingly decreases with increasing 

values of ܧ ,ߙ
ு, or ܵ

ு, as well as with a decreasing risk limit ߪത (and vice versa). The 

distribution parameters ܧ
ு and ܵ

ு, however, essentially depend on the time horizon ܪ of 

volatility forecasting. Accordingly RaR and the upper limit for the asset allocation ܽ also 

depend on the time lag ܪ of volatility forecasting. 

If portfolio volatility over consecutive periods is additionally assumed to be independent 

and identically distributed (iid), we can furthermore profitably employ the “square root of 

time”-rule on the time horizon ܪ, as the following equivalence holds (see Dorfleitner 

(2002) or Steiner/Bruns (2002)): If volatility ߪ
,ଵ over a time lag of length 1 is normally 

distributed with ߪ
,ଵ~ߥሺܧ

ଵ; ܵ
ଵሻ, where ܧ

ଵ denotes its expected value and ܵ
ଵ its standard 

deviation, volatility ߪ
,ு over a time lag of length ܪ is also normally distributed with 

ߪ
,ு~ߥሺܧ

ଵ · ;ܪ ܵ
ଵ · ඥܪሻ. To obtain the expected value ܧ

ு and standard deviation ܵ
ு 

over a time lag of length ܪ, one thus only has to multiply the expected value ܧ
ଵ over one 

unit of time by the length of ܪ and the standard deviation ܵ
ଵ by the square root of the 

length of ܪ. Using the afore-developed equivalence for the time lag ܪ of volatility 

forecasting (see equation (4)), we thus obtain 

• in the case of ߪ
,ு being independent and normally and identically distributed: 

ܴܴܽு,ఈ ൌ ܧ
ଵ · ሺ∆  ݐܿ ݂ାଵሻ  Qα · ܵ

ଵ · ඥ∆  ݐܿ ݂ାଵ    (14) 

• in the case of σ୩
P,H being independent and log-normally and identically distributed: 

ܴܴܽு,ఈ ൌ ݁ாೖ
భ·ሺ∆ೖା௧ೖశభሻାொഀ·ௌೖ

భ·ඥ∆ೖା௧ೖశభ      ሺ15ሻ 
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where ܧ
ଵ and ܵ

ଵ denote the distribution parameters over one unit of time. As a result, one 

gets the following upper limits for the share ܽ of riskily invested capital: 

ܽ  ఙഥ
ாೖ

భ·ሺ∆ೖା௧ೖశభሻାொഀ·ௌೖ
భ·ඥ∆ೖା௧ೖశభ

 if ߪ
,ଵ~ߥሺܧ

ଵ; ܵ
ଵሻ     (16) 

and 

ܽ  ఙഥ

ಶೖ
భ·൫∆ೖశೖశభ൯శೂഀ·ೄೖ

భ·ඥ∆ೖశೖశభ
 if ߪ

,ଵ~ߥሺܧ
ଵ; ܵ

ଵሻ     (17) 

Analysing these equations, we can derive the following additional results for the RaR in 

the case of independent and normally or log-normally and identically distributed 

volatility. Applying the “square root of time”-rule, we get a direct link between the RaR 

or the upper limit for ܽ and the two components ∆ and ܿݐ ݂ାଵ of the time lag ܪ. RaR 

increases with increasing values of ∆ or ܿݐ ݂ାଵ while ܽ decreases with increasing values 

of ∆ or ܿݐ ݂ାଵ. The only parameter that can be influenced directly in the short-term is the 

delta time frame ∆. Depending on the assumption about market developments, investors 

should use this degree of freedom to increase the overall return by reducing the forecast 

horizon ܪ in times of stormy waters. 

Observing volatility in financial markets, one has to notice that future volatility shows 

some specific characteristics such as high persistence, clustering, and mean reversion (see 

Poon/Granger (2003), Xiao/Aydemir (2007)). We therefore have to stress that volatility 

will not be normally or log-normally distributed in almost all cases in business practice. 

That is why we present another example for the application of RaR applying real-world 

intra-day tick data from Boerse Stuttgart in the next subsection. 

3.2.2. An Example Applying Intra-Day Data From Boerse Stuttgart 

Analysing the logarithmical intra-day tick returns of German stock index shares from 

Boerse Stuttgart between January and September 2010, we decided to focus on the shares 

of Linde and Merck, as both show nearly the same trading activity in the regarded period 

of January 2010 to September 2010 (2638 vs. 2640 sales). 

The RaR approach aims at considering the distribution of future portfolio volatility over 

the time lag of volatility forecasting and provides a volatility estimator for asset allocation 

subject to a predefined risk limit. Before being able to apply this approach, we thus have 

to determine a reasonable distribution of future portfolio volatility. We therefore rely on 

the available data base and estimate a distribution of daily and monthly volatility both 
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Regarding these tables the following observations are remarkable:  

Having a slightly worse performance than the Merck share, the Linde share shows a 

(considerably) lower daily and monthly volatility. The RaR values follow the inequality 

RaRH,ଽହ %  RaRH,ଽଽ % and are furthermore considerably higher than the mean daily or 

monthly volatility. Applying these volatility estimators in the context of asset allocation, 

one allocates only one third (if the confidence level is 95 %) to one quarter (if the 

confidence level is 99%) of the capital to the risky portfolio P compared with using the 

mean volatility. This is of course accompanied by a profit cut. However, one can 

simultaneously ensure compliance with a predefined risk limit in 95 % to 99% of all cases 

and thus guarantee viability and sustainable economic growth. 

4. Conclusion and Limitations 

Regarding their asset allocation, investors often build higher than necessary risk-freely 

invested capital reserves to have a buffer against undetected price changes. This usually 

leads to considerable profit setbacks. One cause for not detecting substantial changes in 

portfolio volatility is the time lag between two consecutive volatility forecasts, which may 

lead to the problem that information about the volatility currently being taken is 

inaccurate as well as significantly outdated. Common methods of volatility forecasting 

and asset allocation do not consider this time lag so far. 

This paper aims at contributing to the closure of this research gap. We therefore present 

the RaR approach which allows for the incorporation of the time lag between two 

consecutive volatility forecasts by transferring the basic idea of VaR to portfolio volatility 

instead of portfolio return. In doing so, we determine the maximum future volatility that is 

not exceeded during the existing time lag with a predefined confidence level α. 

Accordingly, RaR is the α-quantile of future portfolio volatility’s distribution. We 

furthermore illustrate how to employ RaR profitably in the determination of an efficient 

asset allocation between a risky portfolio and a risk-free investment alternative 

simultaneously taking into account a predefined risk limit, which must not be exceeded. 

The approach’s practical applicability is demonstrated by means of two examples. On the 

one hand, we determine the RaR and the corresponding upper limit for the share of risky 

invested capital in the case of a normally and log-normally distributed volatility. We 

thereby gain the following specific results: determinants for the portfolio’s RaR are 

volatility’s distribution parameters expected value and standard deviation as well as the α-



Seite 22 
 

quantile of the standardised normal distribution and the time lag between two consecutive 

risk estimations. The upper limit for the share of risky invested capital is lowered with 

increasing values of these distribution parameters as well as with increasing values of the 

confidence level and the time lag between two consecutive risk forecasts or a decreasing 

risk limit (and vice versa). The only parameter that can be influenced in the short-term is 

the time lag of volatility forecasting. Adjusting this parameter according to the current 

market situation in such a way that for instance calculations are performed more often in 

times of stormy waters enables an economically reasonable asset allocation and an as high 

return as possible. On the other hand, we determine RaR for daily and monthly volatility 

of Linde and Merck shares as well as an equally weighted portfolio of both shares on the 

basis of intra-day tick returns from Boerse Stuttgart for the period of January 2010 to 

September 2010. Applying these volatility estimators for the determination of the upper 

limit of the share of riskily invested capital, one will reduce risky investments by two 

thirds to three quarters, but also ensure to not exceed one’s risk bearing ability with an 

utmost probability. 

Besides the discussed advantages of the RaR in the context of volatility estimation and 

asset allocation, the approach shows some drawbacks that remain to be discussed and 

reveal directions for further research. First of all, VaR and consequently RaR by design 

ignore the distribution structure beyond the α-quantile and therefore maybe neglect 

valuable information about future volatility. As there is empirical evidence that especially 

the handling of high-frequency data often leads to highly leptokurtic distributions with fat 

tails (see Alexander (2001), p. 82), the consideration of the distribution structure beyond 

VaR becomes very important. Conditional VaR and similar Expected Shortfall approaches 

undoubtedly mark the first step towards a better integration of the tails of the distribution 

and should also be transferred to volatility distribution. Second, the quality of RaR 

calculation substantially depends on the calculation methods, data and simulation 

scenarios used for generating the underlying distribution of portfolio volatility. Future 

research should thus focus on the improvement of existing concepts. Besides, companies 

cannot expect the portfolio volatility to have an analytical distribution in practice, but 

have to deal with an empirical one. In contrast to the relatively simple equations for the 

RaR and the resulting upper limit for the asset allocation presented within this paper for 

the case of a normally or log-normally distributed volatility, one usually has to estimate 

the necessary quantiles numerically. Therefore, future research should focus on the 

identification and further development of appropriate methods for generating a reasonable 
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estimate for the distribution of future portfolio volatility and the necessary α-quantile. 

Third, there is a trade-off between the benefits of faster volatility calculations and the 

additional costs caused by the infrastructure that is necessary to perform these 

calculations. Thus, the guideline “the quicker the better” does not hold in general and 

future research should study this trade-off in detail, also considering improvements in the 

field of IT such as service oriented architectures or grid and cloud computing. Finally, 

both RaR quantification and the corresponding asset allocation are based on mathematical 

calculations using historical data. However, statistical analysis “made in times of stability 

is a bad guidance for times of crises” (Szegoe (2002), p. 1248) as for instance the 

turbulences during the last financial and economic crisis show. The lacking robustness of 

VaR or RaR against extreme market changes also requires future research activity. 

Summing up, despite these potentials for improvement, the strict application of the RaR 

approach can nonetheless provide a basis for an integrated and ideally real-time 

risk/return management, enforcing compliance with a predefined risk limit while 

simultaneously integrating the (sometimes considerable) time lag with respect to volatility 

estimation. 
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