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Abstract 
 

Hedge funds typically reveal some statistical properties like serial correlation, 
non-normality, volatility clustering, and leverage effect, which have to be 
considered when risk positions of hedge funds are computed. We describe an 
autoregressive Markov-Switching model that captures the specific features of 



hedge fund returns and allows especially to fit for volatility clustering and 
leverage effects in the data. The model is tested using publicly available hedge 
fund index data from different regions. We compare two different variants of the 
model by means of risk and performance measures. Our case study implies that if 
the leverage effect appears in the data, it is worth to fit for leverage in the 
parameter estimation process. 

 
Keywords: Hedge Fund, Leverage Effect, Markov-Switching Autoregressive 
Model   
 
 
1 Introduction 
 
   The hedge fund industry has been clearly growing during the last twenty years. 
According to [28], the number of hedge funds (HF) shot up from 610 in 1990 to 
more than 9,400 in 2006. The estimated assets held by the funds have grown from 
39 billion US$ in 1990 over 500 billion US$ in 2000 to about 1.5 trillion US$ in 
2006. Whereas 20 years ago most hedge funds were US based, the hedge fund 
industries in other regions have been strongly increasing in the last years. E.g., the 
assets under management of Asia-focused hedge funds have grown strongly over 
the years from barely 5 billion US$ in 1996 to an estimated 170 billion US$ in 
2008, with growth of 30 % per annum over the past five years. At the beginning 
of 2008 some analysts forecasted that Asia, which had around 1,200 hedge funds 
at this time, will have close to 1 trillion US$ in assets in five years’ time (see [33]). 
Due to the impact of the current financial market crisis this size will probably not 
be reached. Recent estimates even predict a shrinkage of the whole hedge fund 
industry between 10% and 50%. Nevertheless, since their invention hedge funds 
always had an important impact on the financial markets and probably will also 
have in the future. 

Hedge funds often play the role of a trigger and multiplier of crises and problems. 
For example, Asian hedge funds played a notable role in the Asian Currency 
Crisis of 1997 (see, e.g., [14]). Another failure of appropriate risk management is 
the downturn of the US-based Long Term Capital Management (LTCM) hedge 
fund in 1998 that was due to an underestimation of risk (see, e.g., [22]). Also in 
the recent subprime crisis hedge funds played a crucial role. This illustrates the 
importance of a sound risk management and strongly emphasizes a risk-adjusted 
performance measurement.  

There have been different methods proposed for the modelling of hedge fund 
returns, which can be basically categorized in two categories: replication methods 
and econometric models.  

Factor models, where the return of a particular hedge fund or hedge fund index is 
attributed to a number of risk factors, are the most common replication models 



used in academic literature, see e.g. [30], [15], and [20]. The latter constructed a 
six-factor model with factors describing the stock market, the bond market, 
currencies, commodities, credit, and volatility and used it to replicate the returns 
of 1,610 individual hedge funds.  

In addition to academic literature, a number of investment banks have recently 
launched hedge fund replication products based on factor models: In September 
2006 Merrill Lynch launched its Factor Index (Bloomberg ticker: MLEIFCTR). In 
December 2006 Goldman Sachs announced its Absolute Return Tracker (ART) 
Index (Bloomberg ticker: ARTIUSD), while in February 2007 JP Morgan 
announced the upcoming launch of its Alternative Beta Index (ABI).  

A drawback of a simple factor model is that it has serious difficulty producing 
accurate replicas for individual hedge funds and most hedge fund indices. To 
obtain an accurate replication, the factor model approach needs to be applied to an 
extremely well diversified index, where essentially everything that makes hedge 
funds interesting, and thereby causes factor models to fail, has been diversified 
away (see [23] and [16]).  

Another way to obtain a sound model for hedge fund return time series is the 
application of econometric models accounting for typical properties of hedge fund 
return time series, such as data biases, non-normality, and autocorrelation, which 
are the most commonly known and observed ones.  

Hedge fund returns, like private equity funds1, suffer from data biases, where the 
main biases are survivorship bias, selection bias, and backfill bias. Summing up, 
there is an overall positive bias that has to be taken into account (see [6]). 
Empirical studies, e.g. [5] and [27], illustrate the data biases in hedge fund returns, 
and account for it by subtracting an appropriate value from the hedge fund time 
series when replicating the returns.  

Many empirical studies also found significant positive autocorrelation in hedge 
fund return series (see for example [17] and [10]). Positive autocorrelation means 
that today’s returns depend on last periods’ returns, and is created through market 
frictions like illiquidity, i.e. autocorrelation increases with market frictions. One 
way to consider autocorrelation when modeling hedge fund returns is to smooth 
the returns. Thereby, the reported or observed returns are a finite moving-average 
of unobserved economic returns (see [17]). With this model realistic levels of 
serial correlation can be generated for historical hedge-fund returns. The idea of 
using lagged returns for the explanation of reported returns is based on the 
empirical observation that in a market-model regression for hedge fund returns 
observable returns can be explained by a weighted average of the market’s returns 
over the most recent periods (see [6]). Another way is direct modeling, as 
described in [17]. Among other things, he proposes to use a two-state Markov 

                                                 

1 For the dealing of selection bias in private equity funds, see, e.g., [13] and [29]. 



process.  

Since the pioneering work of [19] Markov Switching Models (MSM) have 
become increasingly popular in economic studies (see, e.g., [9], [32] or [10]) and 
are able to capture non-normality and serial correlation. Furthermore, MSM can 
replicate more typical statistical properties of hedge funds, for example volatility 
clustering and the leverage effect.  

Volatility clustering means that large changes in price tend to follow large 
changes in price, of either sign, and small changes tend to follow small changes. 
The leverage effect implies for stock markets that volatility is higher in a falling 
market than in a rising market.  

In this article, we use an autoregressive two-state Markov Switching process to 
describe the evolution of hedge fund returns over time. We extend the existing 
MSM of [10] by deriving the autocorrelation function of the leverage effect for 
the method of moments according to [32]. To the authors’ best knowledge, the 
leverage effect is not yet captured by applications of MSM in the literature. In 
contrast to [10] or [21] who use this model to derive optimal portfolios including 
alternative investments, we rather investigate the quality of the model in 
forecasting risk positions. Furthermore, we compare two different specifications 
of the parameter estimation method to analyse if it is worth to fit for the leverage 
effect that can be found in hedge fund data. 

The main research questions we address in this article are the following: What are 
typical statistical properties of hedge fund indices and are there any differences 
for different regions? Is it worth including the leverage effect into the parameter 
estimation of a MSM used to predict the risk exposure or performance measures 
of hedge fund indices?  

The article is organized as follows. Section 2 contains the statistical analysis of 
the hedge fund index data. In Section 3 we first describe the class of MSM in 
general and derive two specifications for the parameter estimation, which is then 
applied in Section 4. In Section 4 the results of the two compared MSM 
specifications subject to risk and performance measures are presented. Section 5 
concludes.  

 
2 Statistical Properties of Hedge Fund Indices 
 
   This section aims to characterize some of the typical features found in hedge 
fund index time series. Before we analyse our dataset, we first give a short 
summary on the statistical properties and the data used in other studies.  

Compared to stocks and bonds, hedge funds reveal some typical statistical 
properties, which have been confirmed by a number of studies, for example [24]. 
Main statistical properties of hedge funds, as for example pointed out in [10], are: 



• Non-normality: Hedge fund time series are characterized by negatively 
skewed and fat tailed returns. Skewness is defined as the degree of asymmetry 
of a probability distribution. A negative skewness implies that the left tail is 
the longest and that the mass of the distribution is concentrated on the right 
side of the density function. Kurtosis is defined as the fatness of the tails of a 
probability distribution. A normally distributed random variable has an excess 
kurtosis of zero. Now, a positive excess kurtosis implies fatter tails, meaning 
that extreme or tail events are more likely to occur.  

• Autocorrelation: In contrast to long-only equity portfolios and mutual funds, 
hedge fund returns exhibit in most cases strong serial correlation (see, e.g., 
[17]. Positive serial correlation or autocorrelation means that today’s return 
depends on last periods’ returns. When today’s return only depends on 
yesterday’s return, we speak of first-order autocorrelation; when today’s 
return depends on the return two (three) periods ago, we speak of 
second-order (third-order) autocorrelation. 

• Volatility Clustering: Additionally, hedge fund time series often exhibit 
volatility clustering, which means that large changes in price tend to follow 
large changes in price, of either sign, and small changes tend to follow small 
changes. While the returns themselves may be uncorrelated, absolute returns 
or their squares can be positively autocorrelated. This means that volatility is 
dependent upon past realizations of the volatility process. 

As already mentioned above, our special focus in this paper is on an additional 
property, the leverage effect (see, e.g., [2] for a theoretical description and [8] for 
an empirical study).  

• Leverage Effect: The leverage effect implies that for stock markets volatility is 
higher in a falling market than in a rising market. The reason for this may be 
that when the equity price falls, the debt remains constant in the short term. So 
the debt-equity ratio increases, the firm becomes more leveraged, the future of 
the firm becomes more uncertain and the equity price therefore becomes more 
volatile. A simple estimator for the leverage effect is the empirical 
autocorrelation between current squared returns and the last period’s returns. 

Before we analyse if these features also apply to our data, we give a short 
summary on the data used in other empirical studies.  

There are many studies that analyse hedge funds of exactly one region. For 
example, [18] and [31] focus on Asian hedge funds, [4] on European. Since most 
hedge funds are US-based, the results of most studies mainly refer to data from 
North America, see for example [27] and [11]. The latter also gives an overview 
on the main hedge fund data bases and their use in the academic literature.  

In addition to empirical studies focusing on hedge funds or hedge fund indices 
from one specific region, there are – according to the authors’ best knowledge – 
so far no studies that compare the properties of hedge funds from different regions. 



One can only find, e.g., comparisons of the Asian and European stock market 
relating to the Asian Crisis 1997 (see [12]).  

Therefore, the aim of this section is to compare hedge fund indices (HFI) from 
different markets. This is done by highlighting the special characteristics, 
equalities and differences regarding the different regional markets. 

We use publicly available data from ‘Eurekahedge’, a hedge fund research 
company based in Singapore.2 In the following we concentrate on the overall 
indices, i.e. including all different hedge fund styles, from North America, Europe, 
Asia, Emerging Markets, Eastern Europe & Russia, and Latin America.  

The monthly log returns of those six HFI ranging from January 2000 to 
September 2008 are shown in Figure 1. 
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Figure 1: Monthly Log Returns of HFI 

 

Table 1 gives a summary of the basic statistics for the six HFI. Most HFI - except 
for North America and Europe with a small positive skewness - exhibit a negative 
skewness. All HFI have a positive excess kurtosis implying fatter tails than for a 
normal distribution, again with the North American and European HFI differing 
from the other HFI by much higher values for the excess kurtosis. From the 
Jarque-Bera Test we see that the null hypothesis of normally distributed returns 

                                                 

2 For more information on the HFI see www.eurekahedge.com.  



can be rejected for all HFI at a 5% significance level. As a result, we can say that 
the considered HFI are non-normally distributed.  

 

Basic Statistics Jarque-Bera 
Test 

mean 
(in %) 

std.dev. 
(in %) skewness excess 

kurtosis 
max 

(in %)
min   

(in %) p-value 

North 
America 0.827 1.584 0.024 2.753 6.955 -5.274 0.000 

Europe 0.766 1.995 0.096 4.666 9.794 -6.999 0.000 

Asia 0.741 1.990 -0.596 0.178 4.417 -5.581 0.042 

Emerging 
Markets 1.294 2.441 -0.797 0.328 6.322 -6.737 0.003 

Eastern 
Europe 1.947 5.803 -0.673 1.134 17.917 -18.392 0.001 

Latin 
America 1.405 1.544 -0.587 1.061 4.847 -4.299 0.004 

Table 1: Basic Statistics and Jarque-Bera Test for HFI 

 

The empirical autocorrelations, volatility clustering, and leverage effect are shown 
in Table 2. All HFI show a significant positive autocorrelation of lag 1. Volatility 
clustering, measured by the autocorrelation of squared returns, ranges from -0.044 
to 0.286, whereas the leverage effect, measured by the autocorrelation of today’s 
squared returns and last period’s returns, ranges from -0.048 to 0.262. All three 
statistical properties of Table 2 can be statistically confirmed with the Ljung-Box 
Test for autocorrelations, and thus are in line with previous studies (see, e.g., [17]). 
Especially prominent are the high volatility clustering and leverage effect in the 
European HFI and the high leverage effect in Asian HFI. 

One might wonder why the leverage effect of some of the HFI has a positive sign, 
whereas the leverage effect observed in stock markets is negative. This might be 
due to the fact that hedge funds can run different strategies, e.g. short selling, or 
invest in other assets than stocks. If we compute the leverage effect of the overall 
HFI for long-only strategies we observe a leverage effect of -0.101 which is in the 
line with the results known from stock markets. 

To sum it up, our empirical HFI data reveal the typical features of hedge funds 
known from other studies: non-normality, serial correlation, volatility clustering, 
and leverage effect.  



 

 

autocorrelation of 
lag volatility 

clustering 
leverage 

effect 
1 2 

North 
America 0.096 -0.025 -0.044 -0.011 

Europe 0.290 0.053 0.286 0.262 

Asia 0.177 0.260 0.066 0.127 

Emerging 
Markets 0.211 0.126 0.077 0.071 

Eastern 
Europe 0.186 0.018 0.021 -0.048 

Latin 
America 0.174 0.011 0.023 0.056 

Table 2: Autocorrelations, Volatility Clustering and Leverage Effect of HFI  

 
3 Markov Switching Model 
 
3.1 Model Description 
 
   As hedge funds reveal some typical statistical properties like non-normality, 
autocorrelations, volatility clustering, and leverage effect, a normal distribution is 
not appropriate to describe the evolution of hedge fund returns. Instead, we use in 
the following a MSM as introduced in [19]. We extend the approach of [10] so 
that it is not only able to capture non-normality, autocorrelations, and volatility 
clustering, but also the leverage effect.  

As time series processes can change dramatically over time, the idea of MSM is to 
model different states (or regimes) a time series process can be in. Each regime of 
a time series process is described by its own density function, which leads to the 
possibility of capturing typical features of hedge fund returns.3 The changes of 
regimes are modelled via a Markov chain (St)t∈R with transition probabilities given 
                                                 

3 The joint density distribution reveals moments different from those of the single density 
functions, with especially the skewness and excess kurtosis being different from zero. Thus, the 
non-normality of hedge fund returns is accounted for, while for example the feature of volatility 
clustering is captured by time-varying volatilities.  



by  

   ( ) ( )t t 1 t 2 t t 1 ijS j | S i,S k,... S j | S i p ,− − −= = = = = = =P P          
(1) 

where pij denotes the transition probability of changing from state i in period t-1 to 
state j in period t. The transition matrix is given by  

     

11 12 1N

21

N1 NN

p p p
p

P

p p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
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O M

M

K

.            

(2) 

In the following, we restrict ourselves to the case of N = 2 (as for N > 2 the 
number of parameters would become too high for a suitable parameter estimation), 
i.e. only two possible states, for a first-order Markov switching autoregressive 
time series process similar to [10].  

The return Rt at time t is given by 

    ( )t t 1 tt S t 1 S S tR R ,
−−= μ + Φ ⋅ − μ + σ ⋅ ε                 

(3) 

where |Φ|<1, εt ~ Ν(0,1) i.i.d. εt and St are assumed to be independent at all leads 
and lags and Rt is stationary. St = 1 if the process is in state 1, and St = 2 if it is in 
state 2.  

Let p11, p22 < 1 and p11 + p22 > 0 so that the Markov chain is ergodic, then there 
exists a unique stationary distribution π’ = (π1, π2) given by 

    21 12
1 2

12 21 12 21

p p  and  
p p p p

π = π =
+ +

 .        

(4) 

 
3.2 Estimation Procedure 
 
   The parameter vector  

    ( )1 2 1 2 12 21θ , , , , ,p ,p= μ μ σ σ Φ           
(5) 

can be estimated by moment matching. For this, we set up a system of seven 
equations to get an estimate for the seven parameters of θ.4 We set up seven 
                                                 

4 When the number of moment conditions is the same as the number of unknown parameters, the 



equations by equating the first to fourth centred moments (four equations) to the 
corresponding distribution moments as well as the autocorrelation of lag 1 to its 
empirical counterpart (one equation). The remaining two equations can be chosen 
out of  

• the autocorrelations of lag n, n > 1, 

• the autocorrelation of squared returns (volatility clustering) of lag 1, 

• and the autocorrelation between yesterday’s returns and today’s squared 
returns (leverage effect) of lag 1. 

Again, the chosen autocorrelations are equated to the corresponding empirical 
autocorrelations.  

The first to fourth centred moments and autocorrelations (serial correlation and 
volatility clustering) of a first-order Markov switching autoregressive process are 
given by (see [32] or [10]):  

mean μ:  

S'μ = π μ                      
(6) 

variance σ2:   

( ) ( )
2

2 S
S S 2' 1 1

1
⎛ ⎞σ

σ = π μ − μ ⊗ μ − μ +⎜ ⎟⎜ ⎟− Φ⎝ ⎠
            

(7) 

skewness s: 

( ) ( ) ( )( )

( ) ( )

( )( )

3
1

S S S

12 2 2
2 S S

2
S S

s ' 1 1 1

      3 ' B I B 1

      3 ' 1

σ

−

⎡= π μ − μ ⊗ μ − μ ⊗ μ − μ⎣
⎛ ⎞⎛ ⎞+ Φ π − Φ σ ⊗ μ − μ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎤+ π μ − μ ⊗ σ ⎦

         

(8) 

excess kurtosis ek: 

                                                                                                                                      

method of moments estimator equals the generalized method of moments (GMM) estimator, since 
the weighting matrix has no impact (see [19], Chapter 14). 
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(9) 

autocorrelation of lag n ∈ N autocorn: 

( )( ) ( )( ) ( ) 1n n 2 2
n S S 2 S2

1autocor ' B 1 1 ' I B
−⎡ ⎤= π μ − μ ⊗ μ − μ + Φ π − Φ σ⎢ ⎥⎣ ⎦σ

   (10) 

autocorrelation of squared returns of lag 1 autocorsq:  
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with 
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and 
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In our approach we also include the autocorrelation between yesterday’s returns 
and today’s squared returns of lag 1 (leverage effect) autocorle: 

  
( ) ( )

( )

2 2
t t t 1

22 2
t t

R R R
autocorle

R R

−
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with 
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5  I2 

is the two-dimensional identity matrix, Φ the autocorrelation parameter, Rt the 
return in period t, and ⊗  the element by element multiplication.  

Hence, the parameter vector θ (see (5)) can be estimated via 

  

( ) ( ) ( ) ( ){
( ) { } ( )

{ } ( ) }

2 2 2 2

n
2 2

i i m 1
i 1

2
p 1

min s s ek ek

       autocor autocor 1 autocorsq autocorsq

       1 autocorle autocorle

θ

=
=

=

μ − μ + σ − σ + − + −

+ − + ⋅ −

+ ⋅ −

∑

% %% %

% %

%

  (13) 

                                                 

5 The matrix B gives the transition probabilities for the “time-reversed” Markov chain that moves 
back in time. In the case with two states, the “backward” transition probability matrix B equals the 
“forward” transition probability matrix P. For more details see p.87 of [32]. 



with n + m + p = 3 and where μ%  resembles the sample mean, 2σ%  the sample 
variance, s%  the sample skewness, ek%  the sample excess kurtosis, nautocor%  (n 
∈ N) the sample autocorrelations of lag n, autocorsq%  the sample 
autocorrelations of squared returns, and autocorle%  the sample autocorrelations of 
yesterday’s returns and today’s squared returns.  

We tested different specifications of (13) and found the best results when using 
autocorrelation of lag 1, volatility clustering, and autocorrelation of lag 2 (see also 
[10]) or autocorrelation of lag 1, volatility clustering, and leverage effect. Hence, 
we will focus on these two variants in the empirical part. 

 
4 Case Study 
 
   In this section we apply the model and estimation methods proposed in 
Section 3 to the HFI data from Section 2. In contrast to [10] or [21] we don’t 
apply the model to an asset allocation problem, but test it in terms of another 
important application – risk management. 

 
4.1 Parameter Estimation 
  
   The parameter estimates of the model from Equation (3) estimated via (13) 
with n = 2, m = 1, and p = 0 (method 1) as well as with n = 1, m = 1, and p = 1 
(method 2) are given in Tables 3 and 4. 

 North 
America Europe Asia Emerging 

Markets 
Eastern 
Europe 

Latin 
America 

μ1 0.0082 0.0141 0.0082 0.0256 -0.0251 0.0073 
μ2 0.0079 0.0136 -0.0259 -0.0092 0.0288 -0.0060 
σ1 0.0221 0.0136 0.0129 0.0096 0.0739 0.0120 
σ2 0.0022 0.0017 0.0146 0.0223 0.0410 0.0212 
Φ 0.0897 0.2781 -0.3061 0.4805 0.2012 0.1803 
p12 0.7006 0.0868 0.0763 0.4228 0.6680 0.2872 
p21 0.7170 0.0500 0.2726 0.6692 0.2824 0.6476 

Table 3: Parameter Estimates for Method 1 (without autocorle)  

 



 North 
America Europe Asia Emerging 

Markets 
Eastern 
Europe 

Latin 
America 

μ1 0.0010 0.0136 0.0057 0.0235 -0.0278 0.0021 
μ2 0.0007 0.0139 0.0203 -0.0193 0.0391 0.0172 
σ1 0.0267 0.0012 0.0119 0.0139 0.0664 0.0165 
σ2 0.0042 0.0098 0.0072 0.0190 0.0424 0.0107 
Φ 0.0952 0.2912 -0.2207 0.2378 0.0150 0.0145 
p12 0.6522 0.1821 0.0505 0.2012 0.2018 0.1110 
p21 0.6290 0.3391 0.0413 0.6074 0.0477 0.0230 

Table 4: Parameter Estimates for Method 2 (with autocorle) 

As one can easily see the parameter values and hence the properties of the models 
are quite different for the two methods. If we compare both methods in terms of 
absolute errors between theoretical moments implied by the estimated parameters 
and empirical moments (including the first four moments, autocorrelations of lag 
1 and 2, volatility cluster, and leverage effect), we see that in most cases method 2 
leads to a better fit in absolute terms, especially for those time series where we 
observed a high leverage effect (Europe and Asia). 

 
Method 1 

(without autocorle)

Method 2 

(with autocorle) 

North America 0.0872 0.0610 

Europe 0.0945 0.0538 

Asia 0.3541 0.0801 

Emerging Markets 0.0900 0.0813 

Eastern Europe 0.1247 0.1258 

Latin America 0.0817 0.1331 

Table 5: Mean Absolute Deviations of Theoretical and Empirical Moments 

 
4.2 Comparison of Risk and Performance Measures 
   As a direct measurement of the goodness of the models in terms of a test for 
residuals is not possible, we compare the two different variants of parameter 
estimation according to their impact on risk and performance measures in this 
section. The first variant (method 1) is similar to the one used e.g. in the asset 
allocation case study of [10], while the second one (method 2) takes the leverage 
effect into account instead of the autocorrelation of lag 2. Both of them take 
account for non-normality by including skewness and excess kurtosis and 



furthermore, the features volatility clustering and autocorrelation of lag 1 (see 
Table 6). 

 Method 1 Method 2 

non-normality + + 
volatility clustering + + 
autocorrelation lag 1 + + 
autocorrelation lag 2 +  
leverage effect  + 

Table 6: Survey of MSM models and Incorporated Features 

For both sets of estimated parameters, we simulate the monthly evolution of the 
HFI return time series for 105 months (the length of the historical time series), 
using a Monte Carlo Simulation with 10,000 paths. Then we compute the risk and 
performance measures value-at-risk (VaR), conditional value-at-risk (CVaR), 
adjusted Sharpe ratio (ASR), and Sharpe-Omega (SΩ) (for a definition of the 
measures see the Appendix) of the simulated monthly returns for each path and 
compare their averages with the empirical risk and performance measures. We 
concentrate on the 5% VaR and CVaR, respectively, because conclusions drawn 
from the 1% measures could be misleading as our empirical return series are 
rather small. We have chosen the adjusted Sharpe ratio instead of the more 
popular Sharpe ratio to account for the non-normality in HFI returns found in 
Section 2. As loss threshold L in the calculation of Sharpe-Omega we have chosen 
the risk-free rate. 

Table 7 shows the empirical risk and performance measures as well as the average 
risk and performance measures of the simulated returns according to method 1 
and 2, respectively. The last two columns additionally contain the mean absolute 
(MAE) and mean relative errors (MRE). As the adjusted Sharpe ratio is in 
absolute terms much higher than the other numbers, the comparison of mean 
absolute error might be misleading in some cases where the error in adjusted 
Sharpe ratio dominates the other terms. 

    VaR CVaR ASR SΩ   MAE MRE 
                  

North 
America 

Empirical 0.0241 0.0253 0.3594 0.0058       
Method 1 0.0277 0.0297 0.3661 0.0057   0.0147 0.3478
Method 2 0.0260 0.0261 0.1895 0.0031   0.1753 1.0432

                  

Europe 
Empirical 0.0331 0.0379 0.2562 0.0052       
Method 1 0.0310 0.0355 0.7551 0.0053   0.5035 2.0998
Method 2 0.0327 0.0369 0.3820 0.0053   0.1273 0.5571



                  

Asia 
Empirical 0.0334 0.0406 0.2407 0.0049       
Method 1 0.0394 0.0384 0.1968 0.0038   0.0532 0.6480
Method 2 0.0369 0.0386 0.2440 0.0049   0.0090 0.1767

                  

Emerging 
Markets 

Empirical 0.0461 0.0441 0.4023 0.0104       
Method 1 0.0372 0.0315 0.5727 0.0123   0.1937 1.0788
Method 2 0.0481 0.0458 0.3964 0.0102   0.0099 0.1215

                  

Eastern 
Europe 

Empirical 0.1059 0.1237 0.2816 0.0170       
Method 1 0.1139 0.1347 0.2545 0.0157   0.0473 0.3362
Method 2 0.1002 0.1091 0.3352 0.0178   0.0747 0.4135

                  

Latin 
America 

Empirical 0.0292 0.0222 0.6751 0.0116       
Method 1 0.0304 0.0280 0.5816 0.0103   0.1017 0.5491
Method 2 0.0267 0.0213 0.7419 0.0118   0.0705 0.2475

Table 7: Comparison of Simulated and Empirical Risk and Performance Measures 

In most cases the MREs of method 2 are smaller than those of method 1. Only for 
the two regions that showed the lowest leverage effect in their HFI return series 
(see Table 2), North America and Eastern Europe, method 1 has a lower MRE. 
Especially for the two tail risk measures VaR and CVaR we observe in almost all 
cases better results for the model where we included the leverage effect in the 
fitting procedure than for the model without leverage effect in the objective 
function of the parameter estimation. Also for the performance measure 
Sharpe-Omega, which takes the whole distribution into account, the specification 
with leverage effect is clearly preferable, since it yields – except for the North 
American HFI – the smaller differences to the empirical performance measures. 
Only for the adjusted Sharpe ratio none of the two methods clearly dominates the 
other.  

 
5 Conclusion 
 
   In our statistical examination we saw that there are typical features which 
occur in hedge fund index return series in (almost) all regions, e.g. non-normality, 
serial correlation, volatility clustering, and leverage effect. Nevertheless, there are 
regional differences, e.g. the North American index shows the lowest 
autocorrelation and only very small volatility clustering and leverage effect, 
whereas the European index and the Asian index have much higher 
autocorrelations, volatility clusters, and leverage effect.  

As already pointed out in the introduction, a sound risk management for hedge 



funds is essential to anticipate the risk exposure. Therefore, we extended the 
MSM model of [10] by including the leverage effect, which is a typical hedge 
fund feature with impact on the risk exposure, in the parameter estimation.  Then 
we compared the two MSM specifications (one with leverage effect (method 2) 
the other without (method 1)) on a set of hedge fund indices from different 
regions to see which specification is better in forecasting risk and performance 
measures. 

In a case study we showed that it is worth including the leverage effect in the 
parameter estimation via moment matching if there is a leverage effect in the data. 
Using this method the goodness of risk and performance measures could be 
increased significantly. 
 
Appendix 
 
A Proof of Markov Regime Switching Formula 
 
   The proofs for the first four centred moments, autocorrelation of lag n, and 
autocorrelation of squared returns of lag 1 can be found in [32]. For sake of 
completeness we derive here the formula of the leverage effect (Equation (12)). 
This is similar to the derivation of the autocorrelation formulas (see, e.g., [32]).  

The underlying process is given by Equation (3). Further assumptions are:  

1. The process starts from its steady-state distribution.  

2. The error terms εt are iid. 

3. εt and St are independent at all leads and lags. 

4. Rt is stationary. 

Using (3) we get for the squared return Rt
2 at period t 
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Noting, that linear terms of εt will be uncorrelated with terms dated period t or 
earlier, the last line of (14) can be omitted when inserting (14) into the following 
equation: 
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where all covariance terms that include εt, St or ( )tt SR − μ  with odd exponents 
cancel out. This follows from assumptions 2 and 3. The last two terms of (15) can 
also be deleted, due to the fact that [ ]t SR 'μ = = π μE  (for a proof see [32]).  

Hence, (15) reduces to 
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where the terms T1 and T3 are given by 

  ( )( )( )2
S ST1 ' B 1= π μ − μ ⊗μ               

(17) 

and 

  ( )( )( )2
S ST3 ' B 1 .= π μ − μ ⊗ σ               

(18) 

To derive expressions for the second and forth terms T2 and T4, notice that  
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where I2 is the 2-dimensional identity matrix and B the backward transition 
probability matrix.6 The third equation follows from the property of a geometric 
series and the fact that (I2 – Φ2B) is invertible. Since |Φ| < 1 this will automatically 
be satisfied for all transition probability matrices since B has a single eigenvalue 
equal to one and its remaining eigenvalue is smaller than one.  

Using (19), we get 

  ( ) ( )( )12 2 2
2 S ST2 ' B I B 1

−⎛ ⎞= π Φ − Φ σ ⊗ μ − μ⎜ ⎟
⎝ ⎠

       (20) 

and 

  ( ) 12 2
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Inserting (17), (18), (20) and (21) into (16), we receive the nominator of the 
leverage formula (12).   

To derive the denominator of (12), we use the variance formula 
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and the formula for the fourth centred moment (for a proof see [32]) 
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Setting μ = 0 we obtain 

                                                 

6 For more details see Footnote 5 or p.87 of [32]. 



  

( ) ( )
( )

( ) ( )

( ) ( )

2 22 2 4 2
t t t t

4 2 2
S S S

1 14 4 2 2 2 2
2 S 2 S S

212 2 2 2 2
2 S S t

R R R R

          ' 6 '

          ' I B 3 6 B I B

          6 ' B I B R   

− −

−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

= π μ + π μ ⊗ σ

⎛ ⎞⎛ ⎞+ π − Φ σ + Φ −Φ σ ⊗σ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎡ ⎤+ Φ π − Φ σ ⊗μ −⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠

E E E E

E

    (23) 

which completes the proof.  
 
B Risk and Performance Measures 
 
   In this section, we give an overview on some well-known risk and 
performance measures. We differentiate between tail related risk measures like 
value-at-risk and conditional value-at-risk and performance measures based on the 
whole distribution like Sharpe ratio, adjusted Sharpe ratio, Omega, and 
Sharpe-Omega. 

Value-at-Risk and Conditional Value-at-Risk 

The value-at-risk VaRα of a random variable R to a confidence level 1 - α is 
defined by (see, e.g., p. 252 of [34]) 

  ( ) ( )VaR R R R ,α α= −E                    
(24) 

where  

  ( ){ }R sup x : R xα = ∈ < ≤ αR P              
(25) 

is the value of R that will be exceeded with probability 1 - α.  

Despite its popularity, VaR has some negative properties: it does not address the 
distribution of potential losses on those rare events when the VaR estimate VaRα 
is exceeded. Furthermore, it is not coherent (see, e.g., p. 254 of [34]). A risk 
measure that addresses both disadvantages is the conditional value-at-risk. 

The conditional value-at-risk (CVaR) is a risk measure that focuses on the losses 
which exceed VaR. In the literature, CVaR is also sometimes referred to as 
Expected Shortfall.7  

CVaRα to a predefined confidence level 1 - α is defined as the average loss given 
                                                 

7 Note that this is only true for continuous random variables. For more details and proof see [1], p. 
10. 



that Rα is exceeded (see, e.g., p. 263 of [34]), i.e.  

  ( ) ( )CVaR R R |R Rα α= − ≤E ,              
(26) 

where Rα is given by (25).  

As already mentioned, CVaR is a coherent risk measure (see, e.g., [1]) and 
therefore more appropriate than VaR when assessing the risk of a portfolio.  

Sharpe Ratio and Adjusted Sharpe Ratio  

A popular performance measure is the Sharpe ratio (SR) introduced by William F. 
Sharpe in 1966. It measures the risk-adjusted performance of an investment or a 
trading strategy relative to a benchmark asset, such as the risk-free rate of return.  

The SR of an asset return R, SR(R), is defined as the expected excess return per 
unit of risk associated with the excess return, i.e. 
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− μ −
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σ
E

                     

(27) 

where the expected excess return is given as the expected asset return E(R) = μR  
beyond the risk free rate of return rf and the risk is given by the standard deviation 
of R, STD(R) = σR.  

The SR only is an appropriate performance measure when the return distribution 
solely depends on two parameters: location and scale parameter. Thus the SR does 
not measure correctly the performance of non-normally tailed or skewed return 
distributions, such as those of fat tailed and negatively skewed hedge fund returns. 
Therefore, a more generalized SR, called the adjusted Sharpe ratio, is presented.  

The adjusted Sharpe ratio (ASR) extends the SR by taking non-normality in form 
of skewness and excess kurtosis of the asset returns into account. The ASR of an 
asset return R, ASR(R), is given by (see, e.g., p. 44 of [3]) 

  ( ) ( ) ( ) ( ) ( ) ( )2s R ek R
ASR R SR R 1 SR R SR R ,

6 24
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⎣ ⎦
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where s(R) and ek(R) represent the skewness and excess kurtosis of an asset 
return R, respectively.  

Although the ASR is more appropriate than the SR for measuring the performance 
of non-normally distributed asset returns, the ASR still does not capture all the 
information contained in the return series – basically it only captures the 
information contained in the first four moments.  



Omega and Sharpe-Omega 

The Omega measure introduced by [26] was developed with the intention to take 
the entire return distribution into account and is defined as the ratio of the gain 
with respect to a threshold L and the loss with respect to the same threshold. Then 
the Omega measure ΩL with respect to a threshold L is given by 8 
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where (a,b) is the support of the return distribution and F is the cumulative 
distribution of returns.  

A new version of Omega introduced by [25] is the so called Sharpe-Omega given 
by  
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E
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(30) 

The formula for Sharpe-Omega consists of the numerator of (27), where the 
risk-free rate of return rf is replaced by the threshold L, and the denominator of 
(29).  

Since the numerator of (30) corresponds to the price of a put option, 
Sharpe-Omega represents a measure of risk/return that is more intuitive than 
Omega. Since the price of the put option is the cost of protecting an investment’s 
return below the target ratio (given by L), it is a reasonable measure of the 
investment’s riskiness. 
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