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Abstract 

Stress is a societal and economical problem increasingly discussed in literature. Although 
technology may itself induce stress, various studies highlight its potential for stress 
management. Current research focusses on developing systems that assess people’s stress 
using mobile devices’ sensing capabilities. These mobile stress assessment (MSA) systems 
collect and analyze sensor data on the user, the environment, and their interplay. Various 
instantiations have demonstrated the feasibility of MSA in different application 
scenarios. However, a common ground on MSA design is yet missing. In this work, we 
investigate design-related differences and commonalities of MSA in a literature analysis 
comprising 112 studies. We establish a design knowledge base, which introduces an 
abstract blueprint consisting of common architectural components, proposes design 
elements shaping the design depending on the application scenario, and describes 
archetypes prevailing in current literature. Future research should extend our work to a 
design theory to promote stress-adaptive information systems development. 

Keywords: Mobile stress assessment, Design Knowledge, Taxonomy Development 

Introduction 

Digitalization affects all domains of life including our work and private lives. Emerging technologies such 
as autonomous driving, smart home, advanced user assistance systems, and eHealth increasingly permeate 
our lives (Maedche et al., 2016). This digitalization of everything brings many advantages to individuals, 
organizations, and society. Although IS literature argues that the use of information technology (IT) 
artifacts can create technostress, we investigate the role of IT artifacts in managing stress. We suppose that 
increasing pervasiveness of digital technologies and advances in affective computing afford not only 
lessening negative technostress (Tarafdar et al., 2017), but also positively contribute to stress management 
at large. Several IS papers have recently made explicit calls for the development of neuro-adaptive 
information systems – that is, systems that recognize the neurophysiological state of the user and positively 
adapt to it (Riedl, 2012; Vom Brocke et al., 2013). Researchers responded to this call, e.g., by proposing a 
design blueprint for stress-sensitive adaptive enterprise systems (Adam et al., 2017).  

Recent IS literature discusses the problem and suggests various solutions for ambulatory stress prevention 
(Adam et al., 2017; Jimenez and Bregenzer, 2018; Friemel et al., 2018). A broad stream of research 
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specifically focusses on assessing individual stress as a prerequisite for IT-enabled targeted stress 
management. However, the primary challenge in building such IS lies in the timely and reliable assessment 
of the user’s stress. While survey-based assessments like the Perceived Stress Scale (Cohen et al., 1983) have 
proven highly reliable in determining the user’s perceived stress, they reach their limits in digital 
application scenarios that require frequent re-assessments. The sensing capabilities of modern mobile 
devices such as smartphones or wearables enable another approach: the mobile stress assessment (MSA) 
using sensor data on the user, their environment, and the user-environment interaction to assess users’ 
stress as input for further application. Various instantiations have already demonstrated MSA’s general 
feasibility in different scenarios (Lane et al., 2011; Lu et al., 2012; Wang et al; Gimpel et al., 2015). 

First applications also indicate that MSA provides significant utility in enabling the development of 
advanced stress management support based on real-time feedback and of adaptive enterprise systems that 
factor in the user’s stress, e.g., to prevent unmindful decisions. However, the development of MSA systems 
currently is very laborious as a comprehensive design theory is yet missing. Hence, we argue that a common 
ground on essential design elements is an important prerequisite of an MSA design theory, facilitates the 
development of new artifacts building on MSA, and could increase the quality of MSA applications. 

In this work, we aim to investigate design-related differences and commonalities of systems that assess 
stress using mobile devices, present common architectural components in MSA system design, elaborate 
design elements to communicate MSA design targeting a specific application scenario, and identify 
archetypes of extant MSA systems. In their combination, this condenses the current design knowledge base 
on MSA and constitutes a first step towards a design theory on MSA. Our research leverages a literature-
based approach inspired by the taxonomy development process from Nickerson et al. (2013) to collect, 
analyze, and cluster examples of MSA systems. In this process, we investigate three research questions (RQ): 

RQ 1: What common architectural components do MSA systems typically consist of? 

RQ 2: What design elements are suitable to shape the design of an MSA system to the specific 
application scenario? 

RQ 3: What archetypes of MSA systems exist and how can they be distinguished? 

The paper includes justificatory knowledge from various fields of research: it complies with stress models 
from psychological stress literature, considers common knowledge on affective computing, and provides an 
extensive review of research on MSA. Specifically, we identify 112 descriptions of MSA in academic 
literature and summarize their design knowledge. Our findings feature the Purpose and Scope, Constructs, 
Principle of Form and Function, and Justificatory Knowledge components of an IS design theory (Gregor 
and Jones 2007) and inform further research building on this. The design knowledge presented here may 
also support practitioners working on stress management systems in building effective IS. 

The paper employs a structure similar to the publication schema suggested by Gregor and Hevner (2013): 
in the next section, we shed light on the theoretical background on stress and affective computing theories. 
Building on existing publications on MSA instantiations, we develop a taxonomy for dimensions that need 
to be considered when designing MSA. Furthermore, we identify typical types of MSA in literature and 
elaborate a simple design blueprint consisting of common components of MSA systems. Finally, we discuss 
the implications of our research and conclude with a description of the current work’s limitations as well as 
an outlook on ongoing and future research. 

Theoretical Background  

Justificatory knowledge related to the research questions originates from research on stress theory and 
affective computing. Stress is the targeted area of application. Affective computing provides the fundament 
for the design of human-centered information systems like MSA. 

Stress Theory 

The concept of stress has been extensively researched in psychology and biology for many decades. This has 
brought up a large number of slightly different definitions. While some of them describe stress from a purely 
response-based view (Aamodt, 2012), others explain stress as an independent variable, which causes a 
reaction in people (Earnshaw and Cooper, 2000). Lazarus and Folkman (1984) conceptualize stress as a 
two-way process that involves the production of and response to stressors. The human mind is permanently 
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challenged by stressors, which are internal or external stimuli with a specific influence on our mental or 
physiological resources (Varvogli and Darviri, 2011). These stressors can be either physical (e.g., 
temperature, noise) or psychological  (e.g., social problems) (Lu et al., 2012; Riedl and Javor, 2012) and 
their relevance is evaluated within a complex psychological and biological process. Various sensors in the 
human body transmit the information about the perception of a stressor to the brain. A psychological 
process called primary appraisal classifies incoming stressors into three categories: positive, irrelevant, and 
danger. When the stressor is classified as ‘danger’, the sympathetic division of the autonomic nervous 
system (ANS) releases adrenaline and noradrenaline into the bloodstream and induces a state of arousal 
(e.g., increased heart rate, pupil dilation, increased skin conductance, brain activity, muscle activity, 
respiratory response, or facial expression) as preparation for the “fight-or-flight” response (Riedl, 2012). In 
a secondary appraisal, mind and body evaluate for each ‘danger’ stressor, if enough resources are available 
to cope with the demand (Lazarus and Folkman, 1984). This step activates the parasympathetic division of 
the ANS and results in the release of the hormone cortisol, which mediates physiological and behavioral 
stress response, for example by raising the blood sugar and pausing some biological processes like digestion 
with positive effects on perception and cognition. This shows that not all ‘danger’ stressors are harmful but 
can also represent a challenge. Literature distinguishes eustress – that is, a challenge that can be coped with 
– and distress – that is, a stressful situation the individual lacks resources to deal with (Lazarus and 
Folkman, 1984; Selye, 1976). Reactions to stress are commonly referred to as strains. Cassidy et al. (2003) 
distinguish three different types: physical, emotional, and behavioral strains. Possible physical reactions 
include the release of the stress hormone cortisol (Riedl, 2013), increased heart rate (Trimmel et al., 2003), 
and elevated blood pressure (Boucsein, 2009). Emotional and behavioral strains affect the human psyche; 
a lack of resources may lead to poor judgment or moodiness (Smith et al., 2014). To manage strain, different 
response strategies can be applied. This process is called coping. Gentry (1984) distinguishes two different 
types: problem-focused coping and emotion-focused coping. In problem-focused coping, the strained 
person attempts to change or influence the stressful situation. Potential strategies include requesting 
assistance and social support (Thoits, 1995) or removing the stressor, for example by turning down loud 
music. In contrast, emotion-focused coping attempts to influence the emotional arousal caused by stressors, 
for example by building up mental boundaries (Köffer et al., 2015). 

Affective Computing 

With the increasing ubiquity of information technology, information systems play a growing role in 
supporting and assisting the user (Maedche et al., 2016). Researchers have understood this need for user 
centricity in information systems. Recent IS literature suggests first solutions for ambulatory stress 
prevention (Adam et al., 2017; Jimenez and Bregenzer, 2018; Friemel et al., 2018). Context-aware systems 
are designed to react to a user’s location or nearby people (Marreiros et al., 2010; Schilit et al., 1995). 
Today’s capabilities of information technology like smartphones or social media allow to go one step further: 
affective systems take personal aspects such as emotions and affective states into account (Marreiros et al., 
2010). This can lead to fundamental changes in user interface design, health diagnostics, and stress 
adaptivity (Adam et al., 2014; Albu et al., 2008; Hockey et al., 1998). The research area of affective 
computing is committed to building information systems that are capable of detecting and responding to 
their user’s affective state (Picard 2003). The term “affective state” can refer to various psychophysiological 
constructs that influence the user’s behavior. These constructs can generally be divided into three categories: 
arousal, valence, and motivational intensity (Mehu and Scherer, 2015). Arousal is directly tied to the ANS 
and can be measured via physiological sensors. Here it is important to note that arousal can have different 
reasons, of which stress, anger, and physical exercise is only a small selection. Valence rates an affect as 
positive, negative, or neutral. Motivational intensity requires both physiological and psychological 
information on the individual’s current situation. The literature on affective computing has a strong focus 
on the determination of emotions (joy, anger, surprise, disgust, sadness, and fear), but also considers other 
affects such as frustration and stress. With the rapid and ubiquitous acceptance of new technologies, 
algorithms can measure the affective state and behavior of individuals based on data. Affective computing 
systems use data acquired from different sensors and sources (e.g., smartphones, wearables, but also data 
from social media platforms) to create “affect models” and statistical models that are capable of interpreting 
the user’s feelings and psychological states. They further involve the tasks of “affect information capture 
and modeling, affect understanding and expression” (Tao and Tan, 2005, p. 982). 
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Mobile Stress Assessment 

The combination of stress and affective computing may result in systems that are capable of assessing a 
user’s stress and adapting itself. This might become an indispensable factor in personal life management 
and work productivity (Sarikaya, 2017). However, the development of such systems is not trivial and 
requires the continuous and reliable assessment of stress. To do so, assessment systems need to “minimize 
retrospective biases while gathering ecologically valid data, including self-reports, physiological or 
biological data, and observed behavior, e.g., from daily life experiences” (Trull and Ebner-Priemer, 2013, 
p. 1), e.g., by means of mobile hardware. Stress assessment, and in particular MSA, has recently received 
significant attention due to its potential and complexity. Several literature reviews have been published over 
the last years, which aggregate the current state of the art of identifying stress or stress-related concepts 
using mobile data: Þórarinsdóttir et al. (2017) published a comprehensive review of the literature on 
smartphone-based stress assessment. Aigrain (2016) analyzed the topic of stress and discusses different 
assessment strategies for stress detection. Greene et al. (2016) published a survey on affective computing 
for stress detection. Liew et al. (2015) further analyzed the capability of mining personal data acquired by 
smartphones and wearable devices. Glenn and Monteith (2014) researched medical and commercial 
projects on pervasive healthcare enabling remote disease monitoring. These literature reviews demonstrate 
that a multitude of MSA prototypes and systems already exists and the field of research is growing. 

In the following sections, we refer to MSA as a mobile information system that uses sensor data on the user 
(e.g., physiological data), their environment (e.g., environmental conditions), and the user-environment-
interaction (e.g. behavioral data) order to determine the user’s stress state. A description of MSA’s 
architectural components and their functions will be provided in the next section. 

Design Knowledge Base 

Despite the increasing attention towards MSA, design knowledge on MSA has not yet been consolidated. 
We argue that a common ground for the design of MSA systems could enhance transparency in this 
interdisciplinary field, which is low on theoretical insights in designing such systems and foster 
sophisticated systems for stress assessment and stress adaptation in both research and practice. Our 
literature collection and analysis on MSA design is inspired by the taxonomy development process by 
Nickerson et al. (2013), who suggest an iterative process that combines both the collection of examples to 
empirically infer conceptual similarities and differences and the use of existing conceptual information to 
better distinguish examples. Combining these approaches, we construct a design knowledge base for MSA 
that, in line with the research questions, consists of three integral parts: (I) an abstract architectural 
blueprint of MSA systems comprising design components common in all MSA systems, (II) a morphological 
box of design elements that shape and specify the design of an MSA system depending on its application 
scenario, encompassing relevant dimensions of design elements as well as their specific characteristics, and 
(III) a description of MSA system archetypes prevailing in current literature. While (I) and (II) result 
directly from the iterative literature analysis, (III) involves an additional cluster analysis that groups all 
MSA systems from literature according to their design element manifestations. 

The defined ending conditions for the iterative procedure are met when (1) all identified studies on MSA 
are analyzed and classified, (2) each characteristic is unique within its dimension, (3) each dimension is 
unique within the morphological box, and (4) at least one study represents each characteristic for all 
dimensions. The first iteration of our literature analysis starts with the basket of extant literature reviews 
in the context of MSA introduced in the previous section. These reviews contain aggregated descriptive 
knowledge on MSA systems and, thus, provide a good foundation to identify common architectural 
components of MSA system design (I) and essential dimensions and characteristics of design elements, 
whose manifestation highly depends on the MSA system’s application scenario (II). The preliminary results 
are refined in a second iteration, in which we analyze the 55 individual studies referenced in the literature 
reviews in detail. The search for properties that all MSA systems have in common (I) already converges in 
this iteration and reveals typical design components. However, we still find new dimensions and 
characteristics of design elements depending on the application scenario (II) in the second iteration. As 
they are particularly interesting for understanding the variety of MSA systems and designs, we complement 
our list of studies in a third iteration by searching in the AIS Senior Scholars Journal Basket (MISQ, ISR, 
JAIS, JMIS, EJIS, ISJ, JSIS, JIT) and all outlets of the IEEE Xplore. We limit our search to research articles 
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on the assessment, detection, determination, or recognition of stress (the first two steps in the literature 
analysis revealed that the words assessment, detection, determination, and recognition are used 
synonymously in literature) using mobile or smartphone-based information systems or technology in the 
context of humans, people, users, or individuals (also used interchangeably in literature). This results in 
the following search string: stress AND (assessment OR detection OR determination OR recognition) AND 
(mobile OR smartphone OR technology) AND (human OR people OR user OR individual). We consider 
only studies from 2010 and later because stress detection gained substantial attention only since then and 
exclude all studies that refer to stationary medical devices or are designed to work only in a certain location. 
This search resulted in an additional list of 57 studies discussing MSA. We classify each of them into our 
schema of design elements. In this third iteration, only marginal rewording but no significant changes to 
the dimensions or characteristics of design elements were necessary. Complying with our ending conditions, 
we stop the process after the third iteration. For the complete coding, please see 
https://www.dropbox.com/s/99zdxfqia2yksly/MSA_Literature_Review.pdf?dl=0.  

The iterative process revealed insights into several facets of MSA design knowledge. The findings regarding 
architectural commonalities (I) detail two anatomical parts of a design theory (Gregor and Jones, 2007): 
on the one hand, it describes the essential components of MSA systems as Constructs of their design, on 
the other hand, the interrelations between these components enable to understand MSA’s Principle of Form 
and Function. Dimensions and characteristics of design elements further specify the operating principles 
of MSA systems and provide details on the design of MSA for different application scenarios. The following 
sections describe these contributions. 

 (I) Design Components 

The literature analysis yielded general architectural components of MSA that are common in MSA 
instantiations and form a simple blueprint, which interrelates these components. Even though they are 
neither new in literature nor overly surprising to practitioners, we describe each component to ensure a 
common understanding, which is essential when it comes to different application scenarios for MSA. 

The prevailing insight gained from the literature analysis is that the components of MSA do not form a 
purely technical system, but a sociotechnical system. Five major components are present in all studies: (A) 
the user and its environment, (B) data collection, (C) data storage, (D) data transformation, and (E) stress 
prediction. Figure 1 illustrates their interrelations. There are two transitions between the technical and the 
social part of the system: First, sensors digitalize information on the user and its environment into 
computer-processible data. Second, the stress assessment and its implications loop back to the user and its 
environment using stress feedback, emotion-focused or situation-focused coping suggestions.  

 

Figure 1. Illustration of the architectural components forming a simple blueprint 

(A) User and environment: As described in the theoretical background, human physiology (Singh et al., 
2011; Cho, 2017), human behavior (Lawanont and Inoue, 2018; Liao et al., 2005), human perception 
(Rodrigues et al., 2015; Gaggioli et al., 2013), and environmental conditions  (Lane et al., 2011; Garcia-Ceja 
et al., 2016) can provide valuable input to stress assessment of individuals (Cohen et al., 1983; Traina et al., 
2011; Weisman et al., 2016). This enables a comprehensive view on stress-related factors, which is vital for 
MSA and gives an indication for both stressors and strains. While we found in our literature analysis that 
all systems view the user or the environment as an important informer of their system, not all systems 
include both the user and its environment. Besides sensing, some systems incorporate a second interaction 
point with the user and apply the processed data to provide behavioral or environmental feedback to the 
user. Although MSA systems could also benefit from direct interaction with the environment to correct 

https://www.dropbox.com/s/99zdxfqia2yksly/MSA_Literature_Review.pdf?dl=0


 Design Knowledge on Mobile Stress Assessment 
  

 Fortieth International Conference on Information Systems, Munich 2019 6 

stressing environmental conditions like noise pollution or stroboscopic light, currently no system 
incorporates actuation on the environmental level due to technological boundaries. However, the increasing 
pervasiveness of smart home technologies could help to overcome difficulties with automatic 
environmental adjustments to reduce people’s stress. 

(B) Data Collection: In MSA, data is the foundation for all analytical activities that allow for the assessment 
of stress. According to the principle “Garbage in – garbage out”, sound data is a vital determinant of MSA 
performance. Thus, significant thought should be put into the specification of what data to collect and how 
to collect it. In our literature analysis, we found that a multitude of different approaches to data collection 
exists in the context of mobile stress assessment. These approaches range from self-reported data manually 
provided by the user to sophisticated sensor fusion models that automatically combine data from different 
sensors using machine learning techniques in order to create new variables (Gimpel et al., 2015). 
Approaches based on self-reported data include, for example, periodic questionnaires or the manual input 
of stress-relevant data (Rodrigues et al., 2015). While these approaches are rather easy to implement, they 
also demand for strong user engagement. Consequently, we found that the focal point in current research 
lies on sensor-based approaches, which use sensors to automatically collect information on the user and its 
environment. Instead of having to rely on the user’s steadiness, the performance of sensor-based 
approaches highly depends on the adequate choice of sensors (Greene et al., 2016). In our terminology, 
‘sensor’ refers to every single data source that automatically gathers relevant information for MSA. 
Hardware sensors (e.g., microphone (Gimpel et al., 2015) or accelerometer (Garcia-Ceja et al., 2016)) often 
provide powerful capabilities on sensing environmental information (Zhao et al., 2013; Ollander et al., 2016) 
or human physiology (Adnane et al., 2011), but only occasionally allow to draw direct conclusions on the 
user’s behavior (Bauer and Lukowicz, 2012; Gjoreski et al., 2015). Although the term ‘sensor’ is commonly 
associated with hardware, there are also software sensors that capture data on the application level. 
Software sensors have easier access to behavioral data, for example, in the number of incoming text 
messages (Bogomolov et al., 2014) or the degree of social interaction based on nearby Bluetooth devices 
(Lu et al., 2012). Both types of sensors can be attached to a single device (e.g., a smartphone (Ciman et al., 
2015)), distributed over multiple devices (e.g., a smartphone and a wearable  (Zenonos et al., 2016)), or 
integrate information from other IS (e.g., online social networks (Lee et al., 2012)). Further, sensors can be 
triggered either by time (e.g., continuously, every 5 minutes, once) or by event (e.g., incoming text message, 
significant change of location) (Pioggia et al., 2010). With all these possibilities, the appropriate design of 
the data collection part of an MSA system is vital. While data with high resolution allows deeper analyses 
and can result in higher stress assessment accuracy, this performance boost often comes at the cost of 
battery life, data transmission volume, and, consequently, user acceptance. If sensors are distributed across 
different devices, additional factors like time synchronization may need to be considered as the clocks of 
two devices generally slightly differ. Time-triggered sensors that are distributed across these devices, should 
be synchronized to ensure comparability over time and between sensors (Adams et al., 2014). 

(C) Storage: The data collected in (B) needs to be stored to enable data analysis. This can be performed 
locally on the device that captures sensor data (Bauer and Lukowicz, 2012; Massot et al., 2012), on an 
external storage attached to the system via a wired or wireless connection (Mohino-Herranz et al., 2015; 
Zhang et al., 2012), or on a cloud platform (Gaggioli et al., 2013; Berndt et al., 2011), which is particularly 
relevant, when sensors are distributed across multiple devices as described in (B). 

(D) Transformation: As stress assessment requires a set of sensor observations, raw sensor data does 
usually not directly qualify for the model generation but needs to be pre-processed. In doing so, the systems 
must aggregate sensor data over time and apply various transformations, which need to be defined before 
the model generation and stress assessment (Ben-Hur and Weston, 2010; Bakker et al., 2011). The design 
choices relevant for this component include the selection of an appropriate approach to data aggregation, 
the definition of how to deal with missing values, or the decision on a method for removing outliers in 
variables (Fernandez and Picard, 2003).  

(E) Stress Assessment: Finally, statistical model building allows for the assessment of stress based on the 
acquired and transformed data points (Picard, 2003). In this step, the selection of statistical models 
appropriate for the application scenario at hand is of vital importance (Salai et al., 2016), especially when 
it comes to sophisticated scenarios that require a rapid, near real-time assessment of stress and involve 
calculation- and resource-intense tasks like updating the model with new observations (Zubair et al., 2015). 
Sensor fusion – i.e., the generation of new variables by combining data from different sensors – can improve 
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robustness and confidence, and reduce ambiguity and uncertainty of the model (Xiong and Svensson, 2002) 
by providing a more valid representation of the user (Chen et al., 2014), their environment (Lu et al., 2012; 
Huh et al., 2014), and the user-environment interaction (Zenk et al., 2014). In a final step, the results of 
this stress assessment component can be communicated to the user to foster stress coping and management. 

(II) Design Elements 

As indicated in the descriptions of common architectural components, a deeper look on the specific systems 
also reveals that there is a large variety of differences in MSA system design. In the following, we present 
an overview of the dimensions and characteristics of relevant MSA design elements as a result of the 
iterative literature analysis (Table 1). The online appendix details the classification of the reviewed literature 
into Table 1. While the first two dimensions describe WHAT should be assessed and gathered, dimensions 
three to six describe HOW the assessment is performed. Dimensions seven to nine consider relevant 
BOUNDARIES in the design of MSA systems. The number next to each characteristic indicates how many 
of the identified systems exhibit the given characteristic. 

 Dimension Characteristics (mutually exclusive, collectively exhaustive) 

W
H

A
T

 

Subject of 
Investigation 

Biological Stress 

(4) 

Perceived Stress  

(24) 

Stress Indicators 

(84) 

Stress 
Determinants 

Environment 

(0) 

Introspection 
(2) 

Biological 
Symptoms 

(50) 

Behavioral 
Symptoms 

(21) 

Mixed  
(39) 

H
O

W
 

Visibility for  
the User 

Obtrusive 

(43) 

Unobtrusive 

(62) 

Life-integrated 

(7) 

Assessment 
Frequency 

Regular Intervals 

(33) 

Continually 

(42) 

Continuously 

(37) 

Assessment 
Scale 

Binary 

(61) 

Ordinal 

(42) 

Metric 

(9) 

IT Ecosystem 
Single Device 

(18) 

Multiple Devices using 
Local Communication 

(70) 

Multi-Platform-System 

(24) 

B
O

U
N

D
A

R
IE

S
 

User Privacy 
Non-Personal Data 

(4) 

Non-Personal and Agg-
regated Personal Data  

(71) 

Non-Personal and Raw 
Personal Data  

(37) 

IT Resource 
Requirements 

Substantial Resources 

(86) 

Limited Resources 

 (26) 

Robustness 
Normal Fault Tolerance  

(94) 

Low Fault Tolerance  

(18) 

Table 1. Morphological box of the dimensions and characteristics of design elements 
(numbers refer to n = 112 MSA instantiations) 

WHAT 

Naturally, an IS incorporating stress assessment should be able to assess the user’s stress. However, as 
outlined in the theoretical background, different definitions of stress exist and they substantially affect the 
input needed, depending on the actual subject of investigation. While some MSA instantiations focus on 
the assessment of perceived stress as stress based on self-perception, feelings and emotions (Ayzenberg et 
al., 2012; Zenk et al., 2014), e.g., by using the Perceived Stress Scale (Cohen et al., 1983), other systems 
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assess biological stress using evidence or indication of biological and neurological reactions such as an 
increased cortisol level or decreased heart rate variability (Berndt et al., 2011; Cho, 2017). Traditionally, 
biological stress parameters are measured by means of medical equipment such as electrocardiogram or 
electroencephalogram that are hard to apply in a mobile context, but today, emerging technologies such as 
wearables or NeuroIS devices also enable the mobile sensing of some biological markers (Riedl et al., 2010). 
We further find a third category of instantiations that targets stress assessment with the help of theoretically 
grounded stress indicators, in particular, stressful situations induced by exposing participants to a stressful 
task. These studies aim to distinguish normal and stressed periods based on differences in sensor data (Liao 
et al., 2005; Bauer and Lukowicz, 2012; Bogomolov et al., 2014), but do not target assessing stress itself. 

Stress assessment can draw information from various sources as determinants for stress. As outlined in the 
section Design Components both the user and its environment are valuable sources for sensor data. While 
we do not find any systems that use exclusively environmental data such as weather information or ambient 
noise to infer external stressors affecting the individual, many systems include environmental information 
to improve assessment performance (Plarre et al., 2011; Mayya et al., 2015). On the user side, various facets 
are relevant for stress assessment. Although quite scarce, some systems use methods of introspection and 
ask the user to provide input on their stress perception or feelings at certain points in time. Typical 
application scenarios for systems using introspective methods typically stress diaries following the idea of 
quantified self or analyzing differences in stress over time (Aigrain, 2016; Wang et al.). Again, the number 
of systems relying only on introspective methods is low (only two studies), but eight more instantiations 
use introspection in combination with other stress determinants. Especially in the last years, many systems 
make use of smartphone and wearable sensors to conclude an individual’s symptoms of stress. These 
symptoms can manifest either biologically or in changed behavior. Biological symptoms of stress include 
all bodily changes associated with automatic, mostly unconscious, biological processes such as heart rate, 
blood pressure, sweating, or pupil dilation. Many wearables come with sensors that allow to sense one or 
multiple biological factors related to stress. Still their application for stress assessment is not trivial due to 
reduced accuracy compared to expensive medical equipment and their application in an uncontrolled 
environment. Therefore, a large part of MSA systems aims to demonstrate that stress assessment based on 
wearable sensor data is feasible. Fifty systems use only data on biological symptoms; another 32 systems 
combine biological data with other data sources, e.g., Rodrigues et al. (2015) or Pioggia et al. (2010). A 
common additive is data on behavioral symptoms such as reduced typing accuracy (Gimpel et al., 2015), 
characteristic gestures (Lefter et al., 2016), or voice modulation (Ferreira et al., 2009). Systems in this 
category often apply software sensors that provide valuable information on behavioral patterns by analyzing 
how the user interacts with the mobile device. Studies classified into the Mixed category apply various stress 
determinants together. The most frequent combinations are Biological and Behavioral Symptoms (e.g. 
Liao et al. (2005), Ayzenberg et al. (2012)) as well as the both symptom types plus data on the Environment 
(e.g. Kocielnik et al. (2013), Picard and Sano (2013)).  

HOW 

Conventional methods of stress assessment involve the subject to undergo medical tests (e.g., measurement 
of cortisol levels in the saliva), think about their perception (e.g., questionnaires), or be mentally aware (e.g., 
due to wearing unaccustomed devices like custom-made heart trackers). MSA has the potential to achieve 
a high degree of independence of location, attention, and thought, if this is a requirement for the application 
scenario (Gimpel et al., 2015). Therefore, we find systems in our literature analysis that have different levels 
of visibility for the user, which we define as the degree to which an MSA system is integrated into an 
individual’s life. In its highest stage, the MSA system is not interfering with an individual’s perceived routine 
constraints, which means that the individual does not have to adapt his habitual routines for MSA. Contrary, 
an obtrusive way to MSA requires the attention of users (but – speaking of ‘mobile’ stress assessment – 
does not demand a specific location). Typical methods in this level are questionnaires (Ferdous et al., 2015) 
that are used in combination with smartphones to trigger ecological momentary assessments (Chang et al., 
2011; LiKamWa et al., 2013). More sophisticated MSA systems do not require any user attention at all. 
These unobtrusive systems employ long-range devices to assess the stress level, e.g., video cameras as an 
indicator for the heartbeat (Elgharib et al., 2015) or additional devices like wearables developed specifically 
for this purpose, e.g., heart rate tracker (Chang et al., 2011; Lu et al., 2012). However, they still might 
interfere with the user’s perceived routine constraint by requiring the user to adapt their habitual routines 
(e.g., by wearing additional devices). Exemplary approaches assess stress based on a voice analysis 
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involving two smartphones to distinguish speakers (Chang et al., 2011; Lu et al., 2012) or use wearables to 
assess skin conductance or activities (Lane et al., 2011; Picard and Sano, 2013; Wang et al.). Less obtrusive 
approaches employ only the smartphone to assess stress but can require additional knowledge on the user’s 
location (Lane et al., 2011) or connectivity to the internet (Lee et al., 2012). These life-integrated systems 
refrain from altering the user’s daily routines and integrate themselves into their daily routines without 
interference (e.g., by doing all work on the user’s smartphone). While this type of assessment is the most 
natural way to determine stress, it is also the most difficult and potentially yields more noise in the 
assessment compared to the other characteristics of the visibility for the user dimension. 

From a time perspective, there are two different types of stress: chronic stress (referring to a long-lasting 
endurance of stress) and acute stress (short-term stress). While chronic stress constantly exposes people to 
a certain level of stress, for most people the level of acute stress varies over time depending on the 
individual’s availability of resources and the load induced by environmental stressors. This difference 
makes also an impact on the assessment frequency of MSA. If the application scenario targets a long-range 
assessment of stress (Fehrenbacher, 2017; Unsoo et al., 2015) or involves the analysis of treatment effects 
in lab studies (Costin et al., 2012), an elicitation of stress in regular intervals of weeks or months is 
sufficient. To evaluate the effects of stress interventions targeting chronic stress or investigate extended 
episodes of acute stress (Wang et al.), stress assessment is required to continually (e.g., daily) retrieve 
reliable values for the current level of stress. Complex scenarios, which perform just-in-time interventions 
(Nahum-Shani et al., 2015), like stress-sensitive adaptive enterprise systems (Adam et al., 2017) pose even 
higher requirements and demand for the continuous assessment of stress to obtain real-time stress levels. 

Stress levels can be reported in different levels of granularity. The dimension assessment scale specifies 
what requirements are made towards the level of detail of the assessment results. In the most basic way, 
stress can be modeled as a binary variable that differentiates ‘stress’ or ‘no stress’ (Bogomolov et al., 2014; 
Chen et al., 2014; Hovsepian et al., 2015). While this distinction might be sufficient for many application 
scenarios, other MSA use cases require more details on the level of stress intensity. This can be achieved 
using an ordinal scale with three or more increments (Garcia-Ceja et al., 2016). Metric scales enable an 
even more granular differentiation of stress levels (Gao et al., 2014; Zhang et al., 2012). The 4-item 
Perceived Stress Scale (Cohen et al., 1983), for example, assesses stress on a scale ranging from 0 to 16 and 
allows for the recognition of subtle changes in the user’s stress. However, the assessment scale should be 
aligned with the application scenario as assessment accuracy generally decreases with an increased level of 
detail (Lawanont and Inoue, 2018; Mohino-Herranz et al., 2015). 

As discussed in the section on design components, MSA systems consist of several components responsible 
for the acquisition of sensor data, the storing of gathered data, and the processing to qualify data for the 
assessment of stress. While these components muse have the possibility to communicate with each other, 
they do not necessarily have to operate on a single device. While several MSA systems target such an all-in-
one solution (Bauer and Lukowicz, 2012; Lane et al., 2011) on a single device, the majority of instantiations 
distributed these components across multiple mobile devices. These systems generally exhibit a distributed 
system architecture that connects multiple devices using local communication protocols like Bluetooth or 
NFC (Liao et al., 2005; Singh et al., 2011). Some application scenarios require an even more holistic 
approach that connects devices and components via internet-based protocols (e.g., by using cloud services) 
to form Multi-Platform-Systems (Berndt et al., 2011; Ayzenberg et al., 2012). Contrary to systems using 
local communication, these multi-platform systems enable, e.g., the integration of location-dependent 
sensors in the smart home or the dynamic incorporation of omnipresent powerful sensors. 

BOUNDARIES 

Aligned with traditional non-functional requirements for medical IS (Meulendijk et al., 2014), we 
emphasize three dimensions of quality factors for MSA systems that constitute central boundaries in the 
design of MSA. First, stress is highly individual and, thus, its assessment requires collecting information 
that describes the user. By design, this data intrudes into users’ privacy. As a consequence, MSA systems 
must implement security and privacy measures to best possibly eliminate user concerns (Adams et al., 2014; 
Miyamoto et al., 2016). The specific measures strongly depend on the data gathered. If the system collects 
exclusively non-personal data from the environment (Betti et al., 2017), there are little privacy concerns 
that need to be addressed. This changes as soon as the application scenario additionally demands for 
aggregated personal data (e.g. number of incoming calls; average duration of phone calls) and complicates 
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even more if it requires the processing of raw personal data (e.g., message content (Ayzenberg et al., 2012), 
video processing (Cho, 2017), or sentiment analysis (Gimpel et al., 2015)). 

Second, to gain a high level of user acceptance, the technical resources required for stress assessment (e.g., 
data, storage, time, and energy) should be handled with care. Otherwise, an excessive drain of resources 
may induce stress itself (Tarafdar et al., 2011). Some scenarios, in particular in a multi-platform ecosystem, 
can be designed to have sufficient resources, e.g., by performing computationally expensive activities such 
as model training to cloud platforms (Berndt et al., 2011) or gathering data via personal computers (Garcia-
Ceja et al., 2016). This enables models that are more complex and opens the doors for complex sensors such 
as voice analysis. In contrast, if the MSA system has only access to very limited resources such as wearable 
(Muaremi et al., 2013) or smartphone resources (Hovsepian et al., 2015), careful thought is necessary for 
the design of model building, sensing frequency, and sensing extent. 

Third, robustness is a vital aspect of stress assessment. The increased complexity of sensing and model 
building can result in increasing noise in the data and reduced data quality (Bogomolov et al., 2014; Garcia-
Ceja et al., 2016). While some MSA systems are for personal use only without any serious influence on a 
user’s health, other MSA heavily rely on sound results. Domains where high robustness is necessary are, for 
example, traffic (Gao et al., 2014), business (Adam et al., 2014; Adam et al., 2017), or healthcare (Zenonos 
et al., 2016; Gaggioli et al., 2013). Hence, we distinguish MSA systems with a normal fault tolerance (errors 
are rather uncritical) and such with a low fault tolerance (errors can result in severe negative effects).  

(III) MSA Archetypes 

The literature analysis process revealed valuable insights into the design of MSA by producing both 
essential design components of all MSA systems and design dimensions as levers that help tailor the 
system’s design to the specific application scenario. To achieve higher-level insights into the current 
diversity of MSA systems and demonstrate the design elements’ utility, we perform a hierarchical cluster 
analysis that aims to identify MSA archetypes by clustering all 112 MSA studies according to their 
manifestation of the design elements using divisive clustering. The elbow method (Thorndike, 1953) reveals 
that four clusters are an appropriate choice of clusters. In the following, we describe them in detail based 
on information on how strongly the clusters correlate and how clusters developed during clustering. 

A first split divides our sample into two clusters. Compared to all subsequent splits, this shows the highest 
distance and the lowest correlation between the grouped objects. One cluster comprises MSA systems that 
have a low fault tolerance (n = 10). We call this archetype Critical Foundation as it comprises systems that 
lay the foundation for critical services supporting users in their daily life. They are designed to support car 
drivers, fire workers, people with diseases (e.g., depression), or people in a working context. Systems of this 
archetype usually do not aim to assess stress in the first place, but use stress indicators to continuously infer 
their user’s stress level and exhibit an emphasis on biological markers (e.g., heart rate variability) collected 
via wearables and smartphones. The systems remaining for the other cluster are significantly more tolerant 
to fault. They involve logging tools for the quantified self or systems aiming to prove the feasibility of MSA 
in various application scenarios. Further dividing the systems with normal fault tolerance in a second split 
ejects an archetype of MSA systems that apparently make use of multiple data sources. These Multimodal 
Sensing systems (n = 20) employ sensors to gather information on the user (i.e., changes in behavior and 
biology) and its environment to infer the user’s level of perceived stress. Most of these systems also use 
perceived stress questionnaires to calibrate the assessment models. Due to their broad data collection, the 
majority of systems in this archetype processes critical personal data such as message contents or video 
signals and, thus, has the highest demand for security and privacy measures. This split leaves behind 
systems that focus on the sensing of biological symptoms and primarily use aggregated personal data. The 
third split divides these remaining systems into two archetypes. With 61 studies falling into this cluster, the 
Visible Tracker archetype is the biggest cluster. It comprises systems, which gather biological data using 
sensors that are visible for the user. Their application scenarios do rarely pose complex requirements to the 
system design and mostly require only a distinction whether a user is in a stressful condition (by consulting 
different stress indicators) or not. The last archetype, Resource Consumer (n = 21), can be found primarily 
in application scenarios, where the general availability of resources (for gathering data, the analysis of data, 
etc.) is given. These systems are unobtrusive and use complex sensors with a high acquisition rate to gather 
a variety of biological markers. Data is analyzed using sophisticated algorithms (e.g., neural networks, 
random decision trees) to infer the general availability of stress indicators on a continual basis. 
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Table 2 presents the footprints of each archetype within the design elements classification. This footprint 
shows the archetype’s prevailing characteristic (occurring with a frequency of at least 50%). Each 
archetypes’ specifics are highlighted in blue.  
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Visible Tracker 
Resource 
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 Number of Studies 10 20 61 21 
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W
 

Visibility for the User Unobtrusive Unobtrusive Obtrusive Unobtrusive 

Assessment Frequency Continuously Continually - Continually 

Assessment Scale Ordinal Ordinal Binary Binary 
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Multiple 
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- 
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User Privacy 
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Personal Data 
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and Raw 

Personal Data 
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and Aggregated 
Personal Data 

Non-Personal 
and Aggregated 
Personal Data 

IT Resource 
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Limited 
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Limited 
Resources 

Substantial 
Resources 

Robustness 
Low Fault 
Tolerance 

Normal Fault 
Tolerance 

Normal Fault 
Tolerance 

Normal Fault 
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Examples 

(Singh et al., 
2011; Mohino-
Herranz et al., 
2015; Lefter et 
al., 2016; Gao 
et al., 2014) 

(Picard and 
Sano, 2013; 
Wang et al; 

Gimpel et al., 
2015; 

Ayzenberg et 
al., 2012) 

(Liao et al., 
2005; 

Lawanont and 
Inoue, 2018; 

Bauer and 
Lukowicz, 

2012; Massot et 
al., 2012) 

(Zubair et al., 
2015; Ciman et 

al., 2015; 
Sanches et al., 

2010; 
LiKamWa et 

al., 2013) 

Table 2. Archetypes of MSA systems (blue cells indicate the archetype’s essential 
characteristics) 

Overall, we observe that most MSA systems do not assess stress directly, but aim to identify situations or 
contexts that are typically stressful and differentiate between more and less stressful phases, e.g., in games, 
in artificial tasks, or in school. Furthermore, the broad availability of cheap commodity devices (wearables) 
facilitates gathering data on biological markers and, thereby, fosters the development of MSA systems that 
investigate biological symptoms. Therefore, most systems incorporate biological features either exclusively 
or in combination with other stress determinants. Only few systems focus on neither biological nor 
behavioral symptoms. However, enabled by today’s omnipresence of powerful sensors, e.g. in smartphones 
or smart things, recently published MSA systems use multiple rich sensing capabilities to unobtrusively and 
continuously collect data on an individual and a situation. Finally, it is surprising to note that although 
there are already many systems demonstrating the feasibility of MSA, only few application scenarios 
incorporate MSA components to form new and individual systems and services.  
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Conclusion 

In this paper, we performed an iterative literature analysis inspired by Nickerson et al. (2013) to establish 
a common ground for the design of mobile stress assessment systems. We follow the call for the 
development of neuro-adaptive information systems (Riedl, 2012; Vom Brocke et al., 2013) and analyze 
design-related commonalities and differences in 112 individual MSA studies. We find that the basic 
architecture is similar across MSA instantiations, but different application scenarios of MSA make specific 
requirements on the system design with observable emphases on the assessment of stress indicators, the 
sensing of biological symptoms, and binary or ordinal valuation of stress. 

In the iterative literature analysis, we construct a design knowledge base, which introduces an abstract 
architectural blueprint as a common language of design components included in all MSA systems, proposes 
a set of design elements that shape and specify the design of an MSA system depending on its application 
scenario, and describes archetypes of MSA systems prevailing in current literature. In doing so, we 
consolidate implicitly applied knowledge on the design of MSA systems and make it easier accessible to 
research and practice. Our work establishes a common ground on the design of MSA systems, enables a 
better understanding of how MSA systems work today, and gives first insights into good practices of MSA 
design. In doing so, it makes a first step towards a design theory (Gregor and Jones, 2007) on MSA by 
presenting its Purpose and Scope (design of MSA systems in general), Justificatory Knowledge (the 
theoretical background on stress theory and affective computing), the Constructs of interest (the design 
components), and the Principle of Form and Function (the architectural blueprint and design elements) of 
existing MSA systems.  The design knowledge on MSA presented here can motivate researchers to further 
investigate the principles of good MSA system design and help practitioners to develop advanced 
applications building on the users’ stress more easily and in higher quality. 

A subsequent cluster analysis groups all MSA studies included in the literature analysis according to their 
manifestation of design elements and reveals four archetypes of MSA systems prevailing in current 
literature. These archetypes range from obtrusive MSA over systems with high demands on accuracy or 
high resource availability to multimodal systems exploiting all available data sources. For communication, 
we describe each archetype by means of the dimensions and characteristics of design elements and, thereby, 
demonstrate the utility of our work for communicating differences in the design of MSA systems that can 
provide the basis for the identification of best practices and further improvements in system design. 

Naturally, our work is subject to several limitations. Although 112 studies is already a substantial amount, 
we did not yet search in all outlets of IS and adjacent disciplines, which might reveal additional insights 
into best practices in MSA design. Our literature analysis only considered papers published in 2010 or later, 
but might have neglected very early works on MSA. The design knowledge presented in this work could be 
further refined by incorporating studies, which were published before 2010 or in outlets that were not in 
our scope. While the MSA archetypes provide an overview, which types of MSA systems and application 
scenarios exist, they do not yet indicate where research gaps exist that might be worth exploring. 
Furthermore, the assessment of stress using mobile sensors is subject to biological and sensory blurriness 
and, therefore, might not be the right approach or associated with high costs in application scenarios that 
depend on a very high accuracy of stress assessment, such as in medical applications. To account for inter-
individual differences in stress perception, the use of personalized stress models might improve reliability. 

Future research could extend our work to a comprehensive design theory on MSA that features all elements 
of a design theory proposed by Gregor and Jones (2007), details prevalent design patterns, and includes 
best practices as prescriptive knowledge on MSA system design to further facilitate and improve the 
application of MSA. This can lead to the development of systems supporting individuals’ stress management 
or enterprise systems that consider the employee’s stress to adapt their workflows accordingly and can have 
favorable effects on human health and well-being as well as improved quality and safety at work. 
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