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1. INTRODUCTION 

General intelligence is a statistical measure that emerges from the correlations among how well 

individuals do a wide variety of tasks (Spearman 1904). By analogy, collective intelligence is defined as 

a measure of a group’s capacity to perform a wide variety of tasks (Engel et al. 2014, Kim et al. 2016, 

Woolley et al. 2010). A seminal paper established the existence of collective intelligence in teams 

collaborating in a face-to-face context by measuring a single dominant factor that accounts for major 

variance in a team’s task performance scores (Woolley et al. 2010). Though collective intelligence may 

be partially determined by general individual intelligence (Barlow 2017, Bates and Gupta 2017), other 

factors also play a role (Meslec et al. 2016, Chikersal et al. 2017, Kim et al. 2017). 

 

The consistent existence of a collective intelligence construct would have implications for how 

organizational teams are assembled, trained, and even evaluated, as it suggests that a single set of 

competencies and processes underpin performance in all teams (Crede and Howardson 2017). Thus, 

there should be widespread interest in how it can be managed effectively in different organizational 

team collaboration contexts. However, replications in face-to-face, online, and hybrid contexts have all 

provided mixed results regarding the existence of a single collective intelligence factor (Engel et al. 

2014, 2015, Bates and Gupta 2017, Barlow and Dennis 2016a, 2016b). The goal of this research is to re-

analyze the existence and structure of collective intelligence across contexts of team collaboration, 

considering multiple data sets in a meta-analysis. Individual studies suffer from limits in scope and 

scale and, thus, fail to identify a potentially multifaceted structure of collective intelligence. 

 

The existence, structure, and measurement of general individual intelligence has been one of the most 

researched and discussed topics in psychology over the last hundred years (Deary 2000). Traditional 

intelligence tests follow Spearman and are designed to measure cognitive ability in a single score (Nevid 

2003). However, other theories argue that a single score cannot meaningfully reflect the full range of 

mental abilities and suggest models of multiple primary mental abilities (Thurstone and Thurstone 

1941, Gardner 2008, Sternberg 1985). For example, a meta-analysis on more than 450 data sets 

conceptualizes individual intelligence as a higher-order factor model with general individual 

intelligence as the highest order factor, showing paths to several sub-factors such as cognitive 

speediness, visual perception, memory, learning, and further factors deeper down in the hierarchy 

(Carroll 1993). Just as Woolley et al. (2010) proposed a single factor of collective intelligence based on 

Spearman’s work, we propose, like later individual intelligence researchers, that the structure of 

collective intelligence is more complex than a single factor. 

2. METHODS AND RESULTS 

We identified an initial set of scientific papers that used quantitative analysis of collective intelligence 

and included correlation coefficients (r or ρ) between employed team task types. Studies missing 

variable covariates and qualitative articles were excluded. Our first meta-analytic sample included 745 

teams in 13 studies from 6 scientific papers: Woolley et al. 2010 (2 studies: 40, 107 teams); Engel et al. 

2014 (2 studies: 32, 36 teams); Engel et al. 2015 (3 studies: 68, 25, 116 teams); Barlow & Dennis 2016a 
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(2 studies: 64, 65 teams); Barlow & Dennis 2016b (1 study: 86 teams); Bates & Gupta 2017 (3 studies: 

26, 40, 40 teams). As work-in-progress, we have now performed a more comprehensive literature review 

and are in process of updating our meta-analysis to include additional studies that have been published 

more recently. We report here our initial results. The primary studies subject to this analysis used 

different tasks for measuring identical task types defined by McGrath (1984). In total, the identified 

studies in our initial set referenced 5 out of 8 task types: generating ideas (Type 2), solving problems 

with correct answers (Type 3), deciding issues with no right answer (Type 4), resolving conflicts of 

interests (Type 6), and executing performance tasks (Type 8). 

 

Meta-analytic structural equation modeling (MASEM) for complex datasets (Wilson et al. 2016) served 

to synthesize respective correlation coefficients to a single pooled correlation matrix. Hence, the 

correlation matrices of the studies were synthesized to a pooled 5x5 correlation matrix referencing the 

employed task types. We used a three-level multivariate mixed-effects weighted meta-regression model 

to account for the respective complexities and derive a pooled correlation matrix. This model accounts 

for statistical dependencies associated with the clustering of units within levels, including those 

resulting from the use of multiple tasks within the same studies (Wilson et al. 2016). As Equation (1) 

illustrates, the dependent variable rik represents the observed correlation coefficients i = 1 − 128 from 

study k = 1 − 13. Each cell of the future pooled correlation matrix is represented with a unique 

independent dummy variable (Cell1ik, …, Cell10ik), which take a value of 1 if coefficient i from study k is 

assigned to that cell and a value of 0 otherwise. This serves to assign each effect size stated in the 

primary correlation matrices to its “right position” in the pooled matrix. 
 

                                              (1) 
 

The use of a no-intercept model permits interpreting the respective regression coefficients as pooled 

correlation coefficients. Furthermore, variables ηik and ν0k represent Level 2 and Level 3 random effects 

for identified studies and are assumed to be normally distributed with a mean of 0, variance ω > 0, and 

τ > 0. While Level 2 random effects capture random effects of all coefficients in the pooled matrix, Level 

3 random effects capture random effects of all cells in the pooled matrix. The estimation error εik is also 

assumed to be normally distributed with a mean of 0 and variance of vik. The conditional sampling 

covariance between observed correlations from the same study is approximated by the unconditional 

Level 2 random effects. It is assumed that the errors at different levels are uncorrelated. Finally, as 

correlational effect sizes based on larger samples are more precise, they were weighted more heavily by 

applying inverse sample size weighting. As procedural and methodological variation in studies might 

obscure or even distort the underlying relationships of interest, respective variations must be smoothed 

out (Wilson et al. 2016). A moderator was introduced, approximating a situation where potential study-

level effects originating from different collaboration contexts (face-to-face, online, hybrid) are smoothed 

out. Another three-level mixed effects meta-regression model (Equation (2)) served to predict correlation 

coefficients expected with selected values of the respective moderator X0k. 
 

                                               (2) 
 

It is assumed that the regression coefficient for a moderator is the same across all cells of the matrix, 

which is a reasonable assumption in this case, as correlations are consistently larger in established 

experiments when teams collaborate in face-to-face contexts (Woolley et al. 2010) compared to CMC 

contexts (Barlow and Dennis 2016b). The random effects (ν0k, ηik) represent additional heterogeneity 

associated with experiment-level differences and differences between correlations due to size. 

Relationships represented by the coefficient β1, reflect the influence of different experiment-level 

contexts that we wanted to adjust for consistency. The pooled correlation matrix resulting from the 

multi-level mixed effects meta-regression is displayed in Table 1. 
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 1 2 3 4 

1 Generating Ideas     

2 Solving problems with correct answers -0.17    

3 Deciding issues with no right answer 0.01 -0.02   

4 Resolving conflicts of interest 0.07 0.07 -0.09  

5 Executing performance tasks 0.17 0.13 -0.02 -0.05 

Table 1. Pooled correlations among team task types, n=745 teams, aggregated via multi-level mixed effects meta-regression 

 

The prevailing theory suggests the existence of a single dominant factor (Barlow and Dennis 2016a, 

Engel et al. 2014, 2015, Woolley et al. 2010). We first used a confirmatory factor analysis (CFA) to assess 

the fit of this theory with empirical evidence, specifically the newly synthesized correlation matrix. 

However, the CFA found a bad fit for the single-factor solution [χ2 = 40.79, P = 0.00 (>0.05 would indicate 

good fit; Jöreskog and Sörbom 1989), df = 5; χ2/df = 8.2 (between 1-2 would indicate good fit; Hair et al. 

1995, 1998); CFI = 0.73 (>0.90 would indicate good fit; Bentler 1990); TLI = 0.45 (>0.90 would indicate 

good fit; Tucker and Lewis 1973); RMSEA = 0.10 (<0.05 or <0.08 would indicate a good fit; Browne and 

Cudeck 1993)], suggesting that the theory is not compatible with the data.  

 

We next applied principal axis factoring (PAF), which, like the CFA results, did not support the theory 

that a single collective intelligence factor exists (Figure 1). With exploratory factor analysis, the first 

factor can be declared a single intelligence factor if it has an eigenvalue >1.38 and accounts for 30−50% 

of variance (Woolley et al. 2010). Our factor analysis yielded three factors instead of a single dominant 

one. The first factor showed an eigenvalue of 1.05, which was lower than the threshold of 1.38 and only 

accounted for 17% of variance. The second factor did not explain significantly less than the first one 

(15%). Further, the average inter-item correlation for teams’ scores on different task types was low 

(r=0.001). Parallel analysis (Horn 1965) clearly suggested that a three-factor model is the best fit for 

the synthesized empirical data (Figure 1). 

 

 

Factors: 1 2 3 

1 Generating Ideas .89 .04 .15 

2 Solving problems with correct answers -.22 .10 .15 

3 Deciding issues with no right answer .02 -.09 -.02 

4 Resolving conflicts of interest .05 .99 -.07 

5 Executing performance tasks .03 .01 .90 

 
Fig. 1. Left: Parallel analysis yields 3 factors similarly accounting for the variance in the teams’ performance scores on different 

task types. Right: Factor loadings of team tasks types after Varimax rotation. 

 

The cumulative empirical evidence does not support the existence of a single inherent collective 

intelligence factor that transcends team collaboration contexts and a wide variety of cognitive tasks. 

Instead, we found team performance to be structured by multiple factors—specifically, a three-factor 

structure of collective intelligence that consists of (1) idea generation or creativity, (2) conflict resolution, 

and (3) execution of tasks. These results provide more insight into the complexity of collective 

intelligence and help shed light on the mixed findings in prior literature.  
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