Electronic Markets
https://doi.org/10.1007/s12525-019-00383-6

RESEARCH PAPER

®

Check for
updates

Value of data meets IT security — assessing IT security risks
in data-driven value chains

Laura Bitomsky ' @ - Olga Biirger>* - Bjorn Hackel** - Jannick Toppel>*

Received: 10 August 2018 /Accepted: 17 October 2019
© Institute of Applied Informatics at University of Leipzig 2020

Abstract

Digitalization forces manufacturing companies to shift towards customer-oriented, highly data-driven forms of value creation.
This results in a changing IT security risk landscape as data becomes an attractive target for adversaries leading to an increasing
number of attacks. In order to successfully protect data, it is essential that it is assessed in an integrated manner. Although IT
security and data-based value creation have been studied by large research bodies, the existing literature fails to provide guidance
on IT security risk analysis in data-based value chains. To contribute to the closure of this research gap, we propose a modeling
approach which allocates different data types to value activities and analyses the data types in relation to the properties of relevant
IT security risks. The evaluation, conducted with industry experts, reveals that it is not only a company’s primary assets that are of

concern but also less important data types subject to significant levels of exposure that bear considerable IT security risks.
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Introduction

Digitalization continues to significantly transform the way
companies conduct business across all sectors of the economy,
often enhanced by technological enablers such as big data
analysis, cloud computing, mobile technologies, and integrat-
ed sensor networks (Miiller et al. 2016). Major trends such as
servitization and the Internet of Things (IoT) further amplify
these changes, promoting the shift from product-centric to
customer-centric, highly data-driven value creation.
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However, interlinking data with a company’s value crea-
tion also entails a shift in the company’s risk landscape.
Firstly, the increasing importance of data as a new value driver
makes it an attractive target for adversaries, leading to an
increasing number of attempts to steal, manipulate or deny
the use of data. Further, data-driven value chains involve in-
tegrating data into products and services and sharing them
with external partners and in-house, which leads to new vul-
nerabilities and increases the attack surface. Moreover, the
increasing dependency of products and services, as well as
the value chains themselves, on data can lead to considerable
damage when data breaches do occur. The increasing profes-
sionalism of hacker attacks and exponential increases in the
quantity of malicious software (BSI 2016) should also be tak-
en into account.

To protect their data in an appropriate manner, companies
need to assess the IT security risks that arise as a result of the
shift towards data-driven value creation and derive adequate
security measures. Various frameworks, such as the NIST cy-
bersecurity framework, and standards, such as the ISO/IEC
27000 series and — on a national level — the German IT-
Grundschutz, have emerged, providing guidance to organiza-
tions working to identify and manage cybersecurity risks. An
integral part of these efforts is risk assessment and
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management in the case of a security breach. Therefore, data
must be assessed from both a value and a security perspective
in order to enable an economically well-founded evaluation
and the prioritization of mitigation measures.

To date, however, it has been extremely challenging to
quantitatively assess the risk of data breach. This is largely
due to the multitude of parameters that need to be taken into
consideration. Moreover, a large research gap exists in the
literature between data and value creation, despite the fact that
scholars and practitioners have paid significant interest to
data-based value creation, particularly in the context of big
data (Ekbia et al. 2015; Lim et al. 2017; Ostromet et al.
2015; ur Rehman et al. 2016; Yaqoob et al. 2016). While
existing studies identify the use of data as a key success factor
in customer satisfaction and have discussed the positive ef-
fects of integrating data into services and products, these stud-
ies fail to offer guidance on quantifying data in terms of value
contribution or affiliated IT security risks. Hence, although
existing security standards and frameworks require the value
of data to be determined with respect to their importance for
key business processes, these standards and frameworks pro-
vide no further guidance on how to perform this assessment.
The result is that a majority of companies still face the chal-
lenge of identifying which of their current and future data
contribute to value creation (the so-called ‘crown jewels’)
and are critical from a security perspective, and thus need to
be protected.

In order to bridge this research gap, we develop a model to
1) assist the identification of data types involved in value
creation and their allocation to individual value activities,
and 2) assess them from an IT security risk perspective. This
allows users to assess the integration of data types into the
value creation process in terms of both their individual value
contribution and the associated IT security risks. Our model
also helps users to identify a company’s ‘crown jewels’ — that
is, their most valuable data — and allows them to simulate and
assess potential future value creation in different business
models, e.g. with a shift from a product-centric value creation
towards the increased integration of information-intensive ser-
vices. Therefore, the objective of our approach is to lay the
groundwork for data assessment in relation to value creation,
guiding companies in the identification of appropriate IT se-
curity investment strategies and bridging the existing research
gap by connecting data and value creation from an IT security
perspective.

The remainder of this paper is organized as follows: Firstly,
we provide a brief overview of existing literature related to
data-driven value creation and data security. We then intro-
duce the underlying methodology and develop the model for
value chain analysis and the calculation of the Probability
Weighted Risk Indicator for risk analysis in data-driven value
creation. Next, we illustrate the applicability of the model with
two real-world use-cases before conducting a more general
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evaluation. We conclude by discussing the results and impli-
cations for companies’ IT security investment strategies and
providing an outlook for further research.

Literature review
Data-driven value creation

A traditional and widely acknowledged concept for modeling
value creation is the value chain developed by Porter (1985),
which states that, within the course of value creation, a com-
pany performs value creation activities to “design, produce,
market, deliver and support its product” (Porter 1985, p.36).
The primary activities (i.e., inbound logistics, operations, out-
bound logistics, marketing, as well as sales and services) are
“involved in the physical creation of the product and its sale
and transfer to the buyer as well as after-sale assistance”
(Porter 1985, p. 38). While the primary activities each repre-
sent one step in the process of value creation, supporting
activities (i.e., procurement, technology development, human
resource management, and firm infrastructure) provide sup-
port for primary activities and for each other. Therefore, they
can be associated with a specific value activity and with the
entire value chain.

However, digitalization forces traditional manufacturers to
deliver smart, connected products and services, which disrupts
the traditional value chains and leads to changes to existing
value activities (e.g., marketing, or sales and services) and a
need for new activities (e.g., product data analytics and secu-
rity) (Porter and Heppelmann 2014). Moreover, in the past
decades, there has been a shift from hierarchical, integrated,
sequential supply chains toward strategic partnerships with
external entities, which has resulted in fragmented networks
(Bitran et al. 2007) and ecosystems. Digitally-enabled net-
works, in particular, have increased in popularity as new dig-
ital technologies fundamentally reshape traditional business
models into modular processes that are globally distributed
and cross-functional (Sambamurthy et al. 2003; Straub and
Watson 2001; Wheeler 2002).

Various approaches can be used to describe these new busi-
ness models, networks, and ecosystems. For example, the E3-
value business model is a well-known approach used to de-
scribe e-business models (Liu and Jia 2010; Shoukry et al.
2019). It considers actors (e.g., a company or a person), mar-
ket segments (i.c., segments with common properties), value
activities (i.e., processes which add value), value objects (e.g.,
services or money), value ports (i.e., port used to provide or
request value objects), value interfaces (i.e., a service offered
to or requested from a value activity), and value exchanges
(i.e., the potential trading of value objects between two con-
nected value ports) (Liu and Jia 2010). Liu and Jia (2010)
show how this model can be used for an IoT-based drug
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supply chain by defining nine value activities for eight actors,
whereby the actor “drug manufacturer” has only one generic
value activity: producing and selling drugs. Papert and Pflaum
(2017) develop an ecosystem model for the realization of IoT
services in supply chain management. They define 19 roles
and their value contribution, including the role of “product
manufacturer” which has only one generic value contribution:
the provision of physical objects for smart products.

In sum, we can state that recent research mainly focuses on
modeling value creation in ecosystems wherein a manufactur-
er is only one of several actors. Although this reflects the
increasing fragmentation of value creation in digitized ecosys-
tems and helps to describe the interrelationships between val-
ue creation partners, it means that the value creation activities
of individual actors are only described at a higher level of
granularity. This limits the applicability of these approaches
in relation to our concrete research goal, as we aim to allocate
value creation-relevant data types to individual value activi-
ties. Therefore, we require a more nuanced view of value
activities from a company perspective, as offered by more
traditional approaches such as that developed by Porter
(1985).

With the shift to digital, data-driven business models, a
profound understanding of data-driven value creation has be-
come essential in the modern, data-rich economy. However,
despite the growing body of research on data-driven value
creation — particularly in the context of big data — there still
exists a notable shortage of research that takes a holistic ap-
proach to examining the links between data and value creation
(Ekbia et al. 2015; Lim et al. 2017; Ostromet et al. 2015; ur
Rehman et al. 2016; Yaqoob et al. 2016). In general, existing
research agrees that big data and big data analytics (BDA) can
create business value (for a more detailed literature review see,
e.g., Akter and Wamba 2016; Giinther et al. 2017) by provid-
ing transactional, informational, and strategic benefits (Akter
and Wamba 2016; Wixom et al. 2013). Moreover, empirical
studies confirm that using BDA can be beneficial for compa-
nies. For example, Chen et al. (2015) provide empirical evi-
dence of the impact BDA has on business growth. Swanson
(2001) finds a significant positive relationship between the use
of data-based proactive maintenance strategies, such as pre-
dictive maintenance, and overall company performance rates.
Yoo et al. (2014) show how hospitals enable medical practi-
tioners and hospital administrators to enhance the quality of
their services through the collection and analysis of operation-
al data. These studies identify the use of data as a key success
factor when it comes to customer satisfaction and discuss the
positive effects of integrating data into services and products.

However, there exists a research gap regarding the mecha-
nisms behind these benefits, in other words, how different
activities and resources (i.e., data) need to work together in
order to create value (Lim et al. 2018). Akter and Wamba
(2016) specify four types of big data that can be used to create

value in e-commerce: transaction or business activity data;
click-stream data; video data, and voice data. Porter and
Heppelmann (2014) show product data to be fundamental
for value creation. For example, analyzing product usage
and performance data improves the after-sale service (e.g.,
through predictive maintenance) and marketing (e.g., custom-
ized offerings) (Porter and Heppelmann 2014). Based on the
idea that value is created with the use of information and by
applying information within a process, Lim et al. (2018) de-
signed the “Data-Value Chain” in the context of information-
intensive services (IIS). Their intention is to provide a com-
prehensive framework to analyze the overall spectrum of data-
based value creation. While the study does important ground-
work for understanding the transformation of data into value,
the authors fail to provide answers as to how one might ade-
quately measure the value of data or the contribution such data
makes to the overall value created.

IT security risks

One widely studied concept relating to information security
threats is the distinction between unauthorized information
release (confidentiality), unauthorized information modifica-
tion (integrity), and unauthorized denial of use (availability).
The three are collectively known as the ‘CIA triad’ (e.g.
Anderson 1972; BSI 2016; Saltzer and Schroeder 1975) and
are considered to be the basic protection goals of information
security. In response to the constant and dynamic development
of both information technology and information security
threats, the CIA triad has been refined and extended through-
out the years. However, our literature review shows that, until
now, there has been no agreed-upon set of goals exceeding the
CIA triad.

As data-driven products and services continue to change
existing business models, information security gains new sig-
nificance. This rising significance is evident in the exponential
growth in the number of security threats (BSI 2016) resulting
in increased costs in the event of a successful breach. For
example, Grobauer et al. (2011) outline that, in cloud comput-
ing, the threat not only comes from the emergence of new
vulnerabilities but also from the enhancement of well-
established vulnerabilities. Based on estimations by
Information Week and PricewaterhouseCoopers LLP in
2000, computer viruses and hacking took a “$1.6 trillion toll
on the worldwide economy and $266 billion in the U.S alone”
that year (Denning 2000). Thus, further research on the value
of data is needed with a particular focus on the criticality of
data and the impact of IT security breaches.

Quantifying the exact impact of an IT security breach is
highly challenging due to the multitude of parameters that
must be considered. The cost of an IT breach does not only
involve the short-term cost incurring during the period of the
breach, such as lost business, decreased productivity due to
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the unavailability of necessary resources, and so forth
(D’Amico 2000). In addition to these obvious costs, long-
term costs are incurred, such as costs related to customers
who lost faith in the company and switched to competitors,
legal liabilities, etc.. However, these long-term costs are often
difficult to estimate (Cavusoglu et al. 2004a). Consequently,
most existing studies fail to adequately quantify the economic
impact that IT security breaches have on companies, as these
studies are based on self-reported company data, undermining
the credibility of estimations due to a widespread tendency
among companies to under-report the actual financial impact
or not to report it at all (Garg et al. 2003).

One approach commonly used in such research is an event-
study methodology based on Fama et al. (1969), which is used
to analyze abnormal returns during a pre-determined period of
time around the event in question. This methodology is highly
popular in the accounting and finance literature (e.g. Friedman
and Singh 1989; Koh and Venkatraman 1991). However, it has
produced divergent results when applied to IT security
breaches. Goel and Shawky (2008) analyzed the impact of
168 security breach incidents on the market value of publicly
traded companies, and present evidence that such announce-
ments led to a 1% reduction in market value during the days
prior to and after the security breach. Cavusoglu et al. (2004a)
reported an average reduction of 2.1%, translating into an av-
erage loss of $1.65 billion in market capitalization per incident.
Garg et al. (2003) conducted a similar study which focused on
only 22 events, but which analyzed the security breaches, clas-
sifying each as one of four major incident types (web site de-
facement, DoS, theft of customer information, theft of credit
card information). The study indicates that theft of credit card
information has the most severe impact on market value, with
an average fall in share price of 9.3% on the day of the an-
nouncement and a significant fall of 15% over a three-day
period. Overall, their research demonstrates that such events
have a much higher impact than is indicated by other studies.

A different approach was taken by Longstaff et al. (2002),
who developed a Hierarchical Holographic Model (HHM) to
assess security risks of IT, based on the idea of integrating
both exogenous and endogenous events into the risk analysis.
By doing so, they aimed to achieve a more holistic approach
for modeling complex systems which, as their approach high-
lights, are both interdependent and interconnected.
Complementing these impact studies, research into the opti-
mal investment strategies for IT security also emerged (e.g.
Gordon and Loeb 2002). Cavusoglu et al. (2004b) developed
a conceptual framework focusing on the optimal level of in-
formation security investments, which takes account of the
criticality of information and the associated loss of such crit-
icality. They conclude that organizations should concentrate
on the protection of information with midrange vulnerabil-
ities, as the benefits of protecting highly vulnerable informa-
tion might not justify the inordinate associated expenses.
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However, the approach taken in the majority of the existing
literature is too generic to identify the vulnerability of specific
data or the loss associated with this vulnerability, as most
studies take a holistic approach rather than mapping IT secu-
rity risks to the data itself. The result is that these approaches
offer companies no guidance on how to identify their ‘crown
jewels’ — that is, those pieces of data particularly worthy of
protection — or on how to evaluate and reduce their risk
exposure.

With data-based services revolutionizing the ways in which
companies conduct business and create value, it is important
to consider changes in both value creation and the risk land-
scape in order to protect emerging data-related crown jewels.
However, recent research lacks approaches which can be used
to measure the value contribution of data or analyze the asso-
ciated IT security risks in data-driven value chains.
Nevertheless, it is essential to find quantification approaches
which can be used to manage the risk of data breaches as — in
the context of risk management — risk identification, risk anal-
ysis, and risk evaluation are integral parts of risk assessment
(Purdy 2010). Our objective, therefore, is to address this re-
search gap by providing a modeling approach that links indi-
vidual business data to value creation activities and enables
the user to assess each data type in terms of its criticality and
potential loss in case of a successful security breach. By
distinguishing individual data types and their contribution to
a company’s value creation, data types are made comparable.
When carrying out simulations of potential changes in future
value creation, these data types are also made intertemporally
comparable by the early identification of a shift in the
company’s crown jewels. This lays the groundwork for a thor-
ough analysis of a company’s current and future IT risk land-
scape and indicates possibilities for the adjustment of IT secu-
rity investment strategy.

Model
Methodology

Our approach is largely based on the Noy and McGuinness’
(2001) method of ‘ontology development’ and on ‘normative
analytical modeling’ as outlined by, for example, Meredith
et al. (1989). We used ontology development to structure the
development process of our model and to determine the
model’s key parameters. Following the normative analytical
modeling approach, we developed a key measure for quanti-
fying IT security risks.

Within the scope of this paper, we understand ontologies as
“explicit specifications of conceptualizations” (Gruber, 1993,
p- 199), meaning a formal and declarative representation of an
abstract, simplified view of a real-world problem or situation.
There have been many empirical studies concerning the
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proper development of ontologies. The method applied within
the scope of this paper follows the approach presented by Noy
and McGuinness (2001), who developed a seven-step guide
for the development of ontologies. The advantage of this ap-
proach is that it stringently structures the development process
of an artifact and thus offers valuable guidance. Table 1 shows
how our approach follows their guidelines.

Normative analytical modeling captures the essentials of a
decision problem, using mathematical representations to pro-
duce a prescriptive result. Such analyses provide support
when structuring decision problems and resolving trade-offs
among different criteria against a given target function. They
also enable the user to make informed choices about the avail-
able options (Keeney and Raiffa 1993). Based on the classes
and their properties derived through ontology development,
we primarily follow Meredith et al. (1989) in developing a
model for IT security risk analysis in data-driven value chains.
We host two evaluative workshops with industry experts in
order to validate the model’s applicability.

Model development
In our model, we provide a two-phase approach. In the first

phase, we derive an instrument for a value chain analysis that
enables the identification of strategically important value

activities within a company and the most important data types
affiliated with these activities. In the second phase, we provide
a procedure for IT security risk analysis based on the value
chain developed in phase 1 to measure the value contribution
of value activities and the associated data, and their security-
related criticality.

Phase 1: Value chain analysis

In order to properly assess the value contribution and critical-
ity of data types, a company must first identify its strategically
important value activities and their affiliated data types.

Assumption 1: Value activities Despite the development of
more sophisticated value creation networks in recent years,
we base our model on the nine value activities of Porter
(1985). This enables us to measure value creation and so keep
complexity manageable within a first modeling approach.
Thus, we define a Value Activity VA; with i=1, ..., n as an
activity that is either directly involved in the value creation of
the company or supports it.

In the context of data-driven value creation, Arcondara
et al. (2017) also use the value chain by Porter (1985) to
illustrate a big-data-enabled value chain. They state that pri-
mary activities generate real-time data, which is screened and

Table 1 Reference overview of

ontology development 1) Determine the domain and

scope of
the ontology

2) Consider reusing existing
ontologies

3) Enumerate all important
terms in
the ontology

4) Define the classes and the
class hierarchy

5) Define the properties (slots)
of classes

6) Define the facets of the slots

7) Create instances

The scope and intention of this model have already been
declared in the Introduction.

Existing ontologies could not be found.

As this paper focuses on the identification of value-adding
data types and their respective risk-relevant properties,
we did not conduct this step to the required extent when
developing a domain ontology but rather focused on the
steps 4) to 7). Therefore, our model is based solely on the
results of our literature review.

Value Activities, with two subclasses — ‘Primary’ and ‘Support’
Activities — and further subclasses within these. The subclasses
of Primary Activities are: Inbound Logistics, Operations,
Outbound Logistics, Marketing & Sales, and Service. The
subclasses of Supporting Activities are: Firm Infrastructure,
Human Resource Management, Procurement, and
Technical Development.

Data, with the subclasses (= data types) Logistic Data, R&D
Data, Production Data, Distribution Data, Customer Data,
IT Data, Financial Data, Personnel Data, and Strategic
Planning Data.

Six properties have been identified overall. For the superclass
Value Activities, these include the intrinsic property Value Contribution VC;
as well as the two types of inverse inter-class relations “generates” and
“uses”. The intrinsic and extrinsic properties value contribution vcy;, criti-
cality ky;, partners pj;, and server interfaces s; were allocated to the super-
class Data.

All intrinsic and extrinsic properties defined are single cardinality
slots, meaning they can only have one value at a time.

Instances are created in the Section “Model Evaluation”.
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processed according to the company’s strategy so as to facil-
itate supportive activities. Via this process, companies create
knowledge that they utilize to support their daily operations
and management. Nonetheless, we are aware that Porter’s
(1985) value chain can probably not depict all of the idiosyn-
crasies of value creation in highly digitalized and connected
companies nor within digitalized business models. However,
we can use the value chain as a starting point for describing the
value activities of classic manufacturing companies that re-
flect the potential shift from a product-centric to a service-
centric world. The value chain also helps to bridge the re-
search gap on connecting data types to a company’s value
activities in order to evaluate the impact that IT security
breaches have on overall value creation. It is important to
stress, however, that the value chain should not be understood
as a strict sequential flow. Taking trends such as vertical and
horizontal integration into account, the value activities should
instead be seen as individual modules which can be used to
map a company’s individual value creation processes.
Moreover, companies can use other value activities for [oT-
based networks or supply chains, where the focus on value
creation extends beyond the boundaries of a manufacturer and
includes other actors. For example, Liu and Jia (2010) define
nine value activities for eight actors in an IoT-based drug
supply chain, whereby the actor “drug manufacturer” has
one generic value activity: producing and selling drugs.
Papert and Pflaum (2017) define 19 roles and their value con-
tribution, whereby the role “product manufacturer” also has
only one generic value contribution: providing physical ob-
jects for smart products. When modeling more generic value
activities, companies must be aware that they may lose infor-
mation at such aggregation levels. Furthermore, while Porter
(1985) understood Services to be of a physical nature, e.g.
maintenance or on-site installation, in the context of this paper
we understand Services to also include data-driven services.

Assumption 2: Data types In order to link data with the value
creation of a company, we need to identify the data types that
contribute to value creation. Within the scope of this work,
‘data’ is defined as a set of qualitative and quantitative vari-
ables which exist in different forms and carry specific infor-
mation that can be collected and analyzed. As addressed in the
Literature Review, the prior research lacks concepts which
define data types relevant to value creation. According to
Peffers et al. (2007), this means we must follow a combined
research approach.

In a first step, we draw on the insights gained from a large
industry consulting project, which provide us with an initial
indication of potential data types. The aim of the project was
to develop a framework for the financial evaluation of IT
security risks and a well-founded, future-oriented portfolio
of mitigation measure, and included, among other things, risk
assessments of different types of data. In a second step, we
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evaluate the selected data types using the literature on value
activities along the value chain, e.g., the literature on data-
driven inbound logistics or manufacturing. Finally, we identi-
fy the following nine key data types by grouping the data
types derived from both practice and research: Logistic
Data, R&D Data, Production Data, Distribution Data,
Customer Data, IT Data, Financial Data, Personnel Data,
and Strategic Planning Data.

To the best of our knowledge, consistent definitions of
these data types have not been established in the existing lit-
erature. Therefore, within the scope of this paper, these nine
data types are defined as summarized in Table 2. Thus, we
define a Data Type D; withj=1, ..., m as a key data type that
contributes to the value creation of a company. We are aware
that these data types are generic and contain multiple sub-
categories which may differ in their characteristics.
Therefore, further individual specifications are needed for
each company, which will also prevent the overlapping of data
types within sub-categories. However, we abstain from a more
detailed mapping in our first modeling approach in order to
limit complexity.

Assumption 3: Allocation of Data Types to Value Activities
Each Value Activity VA; “uses and creates information, such
as buyer data (order entry), performance parameters (testing),
and product failure statistics” (Porter 1985, p.38). As Data has
been defined as variables in various forms carrying informa-
tion, the two inter-class relations “generates” rg;; € {0, 1} and
“uses” ru; € {0, 1} shall be assigned to each individual VA;.
Variable rg;; is a binary integer describing whether the Data D;
is created by Value Activity VA;, thereby taking the value 1 if
Value Activity VA; creates Data D;, and 0 otherwise. An exam-
ple could be Customer Data, which is generated during the
Value Activity Marketing and Sales, e.g., within the scope of
market research, as well as during Customer Services, e.g., in
the form of user data. Variable ru; is also a binary integer,
describing whether the Data D; is used by Value Activity
VA,, thereby taking the value 1 if Value Activity VA, uses
Data D;, and 0 otherwise. An example could be Strategic
Planning Data, which is used during the Value Activity HR
in order to develop capabilities necessary in the future. Both
are inversely related as they depend on the value of another
slot (Noy and McGuinness 2001).

The distinction between “generate” and “use” has to be
considered in the subsequent risk analysis (phase 2) as, ac-
cording to the CIA principle, a data type which is not available
after an IT security breach would primarily affect activities
that “use” this data. A confidentiality incident, however,
would affect both using and generating activities as hackers
can access data in both cases. Regarding the intended use of
this model, only combinations of i=1, ...,nandj=1, ..., m
are considered, if their ru;=1, ergo the Data D; is used in
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Table 2 Overview of defined data types

Name Definition

Sources

Logistic Data

Data associated with receiving, storing, and issuing production-relevant inputs (e.g., supplier

Desrochers et al. 1992

information, delivery status information, inventory information, route planning, vehicle fleet

information, and so forth).
R&D Data

Data involved in and generated during an organization’s efforts to either optimize a product

Griliches 2007

and/or process or get an innovation ready for the market.

Production Data

Data associated with or generated during the transformation of inputs into the final product (e.g.,

Leecetal. 2014

process information, information about the product, the machine park, equipment

maintenance, and quality testing).
Distribution Data

Data involved in and generated during the collection, storage, and distribution of final goods to

Gaynor et al. 2004

customers (e.g., warehousing and inventory information of finished goods, retailer
information, distribution channel characteristics, delivery route planning, vehicle fleet

information, and order processing information).
Data related to or associated with the final customer and end-user of the product (e.g., personally

Customer Data

Linoff and Berry 2011

identifiable information; information generated by sources such as customer service requests,
mobile applications, social media networks, purchasing preferences and history; online

browsing data).
IT Data

Data related to the technical infrastructure of a company, comprising of hardware, software, and

Jeffery and Leliveld 2004

networks; IT development and any kind of coding generated or used within a company’s

operations.
Financial Data

Data related to financial transactions, financial property, and financial analysis (e.g., payment

Merton 1976

information; accounting details such as balance sheets, profit and loss statements, cash flow

analysis, and stock information).
Personnel Data

Data associated with activities related to or involved in the recruitment, hiring, training,

Harter et al. 2002

development, compensation, and dismissal of staff (e.g., training material, professional
development strategies, and compensation schemes).

Strategic Planning Data

Data related to or generated during a company’s process of determining the company vision or

Schwenk 1995

identifying associated goals and objectives (e.g., a company’s expansion and investment
plans, vision statements, and business plan; actual state analysis, market and trend analysis).

Value Activity VA;. Figure 1 illustrates a template assisting the
proposed value chain analysis.

Phase 2: Risk analysis

In this phase, we provide the key figures for quantifying IT
security risks for the value activities and data types derived in
phase 1. Therefore, we first define four properties of Data
which focus on attributes relevant from an IT security risk
perspective, in order to consider the criticality of individual
data. In order to focus on the most salient properties, extensive
simplification is needed. Therefore, the following three ques-
tions should be answered:

1. What is the Data’s value and its contribution to the
company’s success?

2. How critical is the Data? What would be the conse-
quences if the Data was leaked, compromised, or made
(temporarily) unavailable?

3. What does the company’s risk landscape look like and
how many potential points of attack exist?

These questions are in line with the recommendations of
the ISO/IEC 27002: 2005, which state that companies
should classify their information by sensitivity, criticality,

and its significance for the company’s value contribution.
Based on these questions, we then determine four proper-
ties — of which two cover the potential points of attack — to
be incorporated into developing an indicator for measuring
the risks for Data.

Assumption 3.1: Value contribution The concept of Value
Activities was developed by Porter (1985) in order to system-
atically examine and analyze the activities a company per-
forms in its attempts to gain competitive advantage. This im-
plies the need to identify important activities and their contri-
bution to the overall value creation. On this basis, we define
Value Contribution VC,€R{ as the value contributed by the
Value Activity VA; to the total value created throughout a
company’s operation. It is important to stress that we neglect
the value contributed by physical activities and solely focus on
the value added by the use of data in activities. Thereby, value
contribution VC; is a cardinal value expressed in monetary
units with

7 1VC; = Total value (TV). (1)

Analogously, each Data D; makes a value contribution vc;;
within the Value Activity VA,. The value contribution of the

Value Activity shall further be the sum of the value contributed
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Primary Activities

Supporting Activities

Outbound
Logistics

Marketing and

Inbound Logistics Sales

Operations

Technical
Development

. Fi
Customer Services m Procurement HR
Infrastructure

generate use generate| use generate use |generate use

Data Type

generate use generate use generate use generate generate use

Logistic Data

R&D Data

Production Data

Distribution Data

Customer Data

IT Data

Personnel Data

Financial Data

Strategic Data

Fig. 1 Inter-class relations overview

by the individual data types used in this activity. Thereby,
value contribution vc;€R; is a cardinal value expressed in
monetary units with

Z;f’:lvcﬁ:VC,-,for alli =1,2,...,n. (2)

This only holds up on the assumption that the overall value
contribution solely reflects the data-driven added value and
neglects the value added by physical components.

Assumption 3.2: Criticality The second property is criticality
k;; €[0, 1], measuring the criticality of Data D; in Value
Activity VA;. The most common approach when characterizing
the criticality of critical infrastructures is “to assess the impact
level in the presence of security-related threats” (Theoharidou
et al. 2009, p. 36). As discussed above, the CIA triad is a
popular conceptual model for information security threats.
Therefore, in order to determine the criticality value, each data
type should be analyzed with regard to this concept. Thereby,
a higher impact from a security threat leads to a higher criti-
cality value. Hence, three parameters should be considered
when allotting the criticality value: the impact of a confiden-
tiality breach cj;, an integrity breach iy, and an availability
breach aj; of Data D; in Value Activity VA;. According to the
CIA principle, all three indicators hold cardinal values be-
tween 0 (minimal risk) and 1 (maximal risk). Under the as-
sumption of equal weighting among these three parameters,
the final value for crificality is per definition within this paper
the maximum of the three parameters as seen in (3) resulting
in

(3)

kj; = max { ¢, iji, aji }.

Assumption 3.3: Potential points of attack In relation to the
potential points of attack, factors both internal and external to
the company are considered due to the constantly increasing
use of cloud services and both horizontal and vertical integra-
tion in times of digitalization. Furthermore, the use of malware
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to attack both software and hardware has increased over the
past years (BSI 2016, p. 18-21). To address this trend, within
this paper the properties parmers p;; € No{p;il p;i € N, p;i =0}
and internal server interfaces s;; € No{s;|s;;€ N, s;>0} are
defined as potential points of attack. As sharing information
with collaboration partners leads to a simultaneous expansion
of'a company’s potential attack surface, the property partners
pji describes the number of partners the Data D; is shared with
within Value Activity VA,, representing the company-external
view of attack points. Server interfaces s;; follows the same
logic from a company’s internal view. By storing the same
information on multiple server interfaces, a company distrib-
utes its IT security risk for each data type, as a security breach
on one server might not result in a complete loss or unautho-
rized modification of data. On the other hand, this strategy
increases the number of attack points as the data is then ac-
cessible from not only one but multiple servers in the case of a
successful security breach.

We are aware that defining four data properties relevant to
risk analysis cannot cover the wide range of possible proper-
ties. However, the selected properties can help to characterize
the risk contribution of the data without losing validity in real-
life application. Thus, the properties for every data type in
every value activity can be expressed in vectors like

VCji
Piji
Sji

Dj; = (4)

Assumption 4: Probability weighted risk Indicator Based on
the identified value activities, data types, and their respective
IT security-relevant properties, in the next step, we provide a
key figure for measuring the IT security risks of data types.
For risk measurement, expected loss (EL) is a common key
figure (Sonnenreich et al. 2006). It is usually defined as prob-
ability of default (PD) times impact of default (1), in other words

EL=PD x 1. (5)



Value of data meets IT security — assessing IT security risks in data-driven value chains

However, until now, determining expected loss resulting
from data security breaches has been extremely challenging
due to the multitude of parameters which must be considered,
as we discussed in the literature review. Therefore, we drew on
the idea of the EL to develop an ‘impact indicator’ which,
based on the value contribution and criticality of a particular
data type, can be used to estimate potential damage. This also
allows the user to make different data types comparable in
order to allocate adequate IT security measures. For this com-
parison, we adjust the EL and introduce a Probability
Weighted Risk Indicator (PWRI) in order to perform the risk
analysis.

Firstly, we calculate an impact indicator X;; measuring the
impact of a successful security breach regarding Data D;; (rg-
j=1lorru;=1).

VCji

2 veii

5= (ot ) v 0

j=1"ji

with « being an internal weighting factor determined by
the company signifying the importance of either value con-
tribution or criticality. Thus, with « < 0.5 (&> 0.5) the val-
ue contribution of the data type is more (less) important
than the data type’s IT security-related criticality. This for-
mula implies that the risk indicator of a security breach
regarding the Data D; used in Value Activity VA; is the
product of the overall Value Contribution VC; of that
Value Activity VA; and a weighted average of the data’s
value contribution and criticality regarding that specific
activity. Thus, we expand the concept of EL by introducing
parameters reflecting both the value and criticality of the
respective data type. In the model developed here, value
contribution and criticality are modeled to be independent.
We are aware that, in practice, this might not always be the
case, as a higher value contribution may correlate with the
data type’s criticality. As this does not always necessarily
hold (e.g., IT Data might have a low value contribution,
but a high criticality due to its widespread use to support
the value creation process), we abstain from modeling a
correlation.

The next step in calculating the PWR/ is to define the threat
probability (TP) of the impact indicator Xj;. As elaborated in
the model development, the attack surface of a data type is
addressed by the internal and external points of attack, the
quantity of which are represented by p;; and s;;. Further, within
the scope of this paper, 7, is defined as the probability of one
of the external points of attack being successfully compro-
mised per year, and 7 is defined as the probability of one of
the internal points of attack being successfully compromised
per year. Using the best-practice security approach of IT seg-
mentation (Binz et al. 2012), differentiated values for 7, and
7, might be assigned depending on the respective security
level of the interface used, but we have chosen not to do so

in this study for reasons of simplification. Finally, the proba-
bility that one or more external points of attack are being
compromised can be expressed as the counter probability that
no external point of attack has been successfully breached:

TPy, = 1-(1-m,)"". (7)

The probability that one or more internal points of attack
are being compromised within a given time period 7Py, can
be determined analogously. Therefore, the overall threat prob-
ability 7P; can be defined as

TPy = 1-(1-m, )" + 1-(1-m,)% . (8)

Now that the impact indicator X;; and the threat probability
TP, of that impact have been defined, we can follow the
mathematical logic of the EL calculation and determine the
PWRI; as follows:

PWRI; = Xj; x (1-(1-m,)") + Xji x (1-(1-m)%) . (9)

The PWRI; gives an indication of the expected potential
loss in the case of a successful security breach of data type Dj
being used in the Value Activity VA;.

In order to compare the different data types and determine
adequate security measures, the overall PWRI of Data D; must
be considered. To maintain the simplicity of the model, the
overall PWRI of Data D; can be calculated as follows:

PWRIjZZ?ZIPWRIji,fOI‘j:1,2,...,m. (10)

Companies can use these calculations from the model in
order to compare different data types within their company
and so determine the crown jewels and their exposure and
can then allocate adequate measures to reduce risk.

Furthermore, this model and its implications can be used to
forecast IT security risks that reflect changes in the IT security
landscape, e.g., due to the emergence of new digital business
models. To do so, the time component ¢ € N, must be intro-
duced. A company must identify its current situation ¢ = 0, fill
the values of the property slots accordingly, and calculate the
PWRI.

PWRIJ":O:z;':lPWRIﬁ’:”,fOI'j:1,2,...,1’11. (11)

In the next step, the company must determine a prospective
business model that reflects its strategic vision, repeat the val-
ue chain analysis and calculate the new PWRI for ¢+ /

PWRI;,, = Y" PWRI;  forj=12,...,m. (12)

By comparing PWRI;_ and PWRI,  , adequate measures

can be deduced, depending on the delta APWRI;

APWRI;=PWRI; —PWRI;  forj=12,.,m  (13)
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A positive APWRI; indicates an increase in the damage
expected to result from a security breach regarding the Data
D;, and hence indicates the increasing importance of effective-
ly protecting this data type. Analogously, a negative APWRI;
indicates decrease in the damage predicted in the case of a
security breach regarding the Data D;. The early identification
of future needs will enable the company to invest in the nec-
essary security measures and ensure tailored data protection.
Of course, this is a simplified approach to determining the
impact of IT security breaches and thus should merely be used
as an indicator. However, our approach is an important first
step towards quantifying data and its contribution to both val-
ue creation and risk.

Evaluation
Model application

In order to test the practical intelligibility and applicability of
our model, we evaluated it in interviews with experts from two
manufacturing companies. To gain different perspectives, we
selected two companies that differ in their organizational set-
up, industry and their level of digitalization maturity. We con-
ducted qualitative, semi-structured group interviews (Myers
and Newman 2007) with experts involved in the business IT
solutions of each company. These experts have a deep under-
standing of their company’s value creation processes and the
associated activities, and, thus, have a well-balanced expertise
of IT and business know-how.

The first company (C1) is a corporation that operates inter-
nationally with approximately 15,000 employees around the
world and annual sales of around 2 billion Euros. The compa-
ny produces specialty glass and glass-ceramics for a variety of
industries and considers itself an innovative, international
leading technology group with a sole focus on B2B-interac-
tions. We interviewed C1’s director of business services and
solutions (experience >10 years), the head of process technol-
ogy (experience >20 years), and an IT Infrastructure &
Security manager (experience >5 years). Interviewing execu-
tives from both the operational, value creation perspective and
the IT perspective ensured credible results. To date, C1 has
relied on integrated IT solutions to monitor and control pro-
duction processes, yet the product itself does not feature fur-
ther applications that make it a ‘smart product’, nor is it likely
to feature such applications in the future. Instead, C1 is in-
creasingly searching for additional information-intensive ser-
vices to complement their products and generate additional
value for the customer.

The second company (C2) is a multinational corporation
with approximately 27,000 employees worldwide and annual
sales of approximately 4.4 billion Euros. The company
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develops and manufactures products, systems, software, and
services for the construction and energy industries, catering
mainly to professional end-users (B2C). We interviewed C2’s
head of security and risk management IT (experience
>10 years), head of IT enterprise risk management (experience
>20 years), and an IT Infrastructure & Security manager (ex-
perience >10 years).

After a short presentation on the developed model, the un-
derlying assumptions and its intended use, the interviews were
structured around the two phases of the model development,
consisting of an interactive value chain analysis followed by a
risk analysis. Moderated by us, each workshop took place at
the experts’ site and lasted approximately 3 h. For simplifica-
tion and to aid facilitation, we defined three categories (low
(1), medium (2), and high (3)) representing the underlying
parameters of the risk analysis. This provided us with a uni-
form scale for facilitating communication and parameteriza-
tion in the workshops. The distinctive characteristics of these
categories can be seen in Table 3. For further, more in-depth
analysis, companies can use precise values in place of the
scale provided in Table 3.

Results phase 1: Value chain analysis

The objective of the value chain analysis is to first identify the
main value activities involved in a company’s value creation
and allocate the data types associated with these activities
accordingly. As each activity uses a multitude of data, we
focus on the most salient and important data types, limiting
the allocation to a maximum of three data types per relation-
ship, where possible. For C1, the experts identified the most
heavily-used data types to be Logistic Data, Production Data,
Financial Data, and Customer Data, each being among the
most salient data types used within the four value activities.
This is in line with C1’s strong focus on manufacturing. As
production and input supply are closely linked and mutually
dependent, production planning must be coordinated with the
availability of necessary inputs for optimal operational activ-
ities. Furthermore, Customer Data is required during produc-
tion for customer-specific features and the customer-specific
issue of a quality certificate. Figure 2 depicts the full data
allocation of phase 1 conducted by the experts at Cl,
complemented by the value contribution of the value activities
identified in phase 2.

In comparison, due to C2’s orientation towards B2C-inter-
actions, the experts identified Production Data, Distribution
Data, and Financial Data as the data types most heavily-used
to better cater to individual customer needs. During the value
chain analysis, a need for more differentiated data types in
order to achieve more sound results was expressed by experts
from both companies. However, both companies’ experts val-
idated the real-world fidelity of the identified data types and
value activities, agreeing that the model covers all relevant
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Table 3

Distinctive characteristics of underlying parameterization categories

Low (1)

Medium (2)

High (3)

Value contribution Mere support process

Criticality

Confidentiality Data partially publicly accessible

Integrity Manipulated data is identified
and output revised quickly

Availability Irregular data accessing

Point of attacks

External partners Only internal data storage

Internal server interfaces Marginal data usage by
services/applications.
Access via company

intranet only

Standard process
(generates value, no
core competency)

For internal use only, widely
accessible to all employees

Manipulated data is identified
or output revised quickly

Near-time data usage

Access to a few selected
business partners

Occasional data usage by
services/applications.
Access via intranet only

Core competency, main value driver

Strictly confidential internal data

Manipulated data cannot be identified
quickly and output cannot be revised

Real-time data usage

Shared access with a multitude
of external partners

Regular, widespread data usage
through diverse services/applications

constellations that typically occur in their companies. They
also confirmed that the specifications of the model are intelli-
gible for industry experts.

Results phase 2: Risk analysis

The risk analysis was conducted in a three-step process.
Firstly, the industry experts used the categories low (1),
medium (2), and high (3) — as displayed in Table 3 — to
weight the identified main value activities according to
each activity’s contribution to the overall value. Based
on these weighting factors, the relative contribution of
each value activity was calculated to enable a better com-
parison. For a comprehensive overview of the weighted
value contribution per value activity, refer to Fig. 2. For
C1, the interviewees identified Operations and Technical
Development as the value activities with the highest value
contribution, accounting for almost 40% of the company’s
value creation. This is in line with C1’s business model,

which focuses on manufacturing and innovation.
Secondly, the experts conducted the parametrization of
the identified IT security-relevant risk properties, resulting
in a risk property vector for each data type per value
activity.

In a third step, we used this parametrization to evaluate
each data type by means of the previously introduced PWRI.
For simplification and facilitation purposes, the underlying
parameters are again categorized into low (1), medium (2),
and high (3), as displayed in Table 3. Furthermore, «, the
weighting factor for the impact of a data type’s value contri-
bution and criticality, is pre-set to 0.5, and the probabilities of
a successful IT security breach per year for internal and exter-
nal attack points both pre-set to 5%. For simplification, we
decided to only base our evaluation on data types with the
label “use’” within all activities and to exclude the “generate”
column in Fig. 2. These intrinsic values are determined only as
an example, and we are aware that they are otherwise
company-specific and need to be adapted for individual use

Primary Activities Supporting Activities

Inbound Logistics Operations O;t;gg?: Markse;izsg and Customer Services In fralzltrrﬁlcture Procurement HR De’f;}:l]:;iaeln t
Data Type generate| use [generate| use [generate| use [generate| use |generate| use |generate| use |generate| use |generate| use |generate| use
Logistic Data X X X X X X
R&D Data X X X X
Production Data X X X X X X
Distribution Data X X X X X
Customer Data X X X X X X
IT Data X X X X
Personnel Data X X
Financial Data X X X X X X X X X X
Strategic Data X X X X X
Value Contribution 2 3 2 1 2 1 1 3
'Weighted Value
Contribution VCi 0.1250 0.1875 0.1250 0.0625 0.0625 0.1250 0.0625 0.0625 0.1875

Fig. 2 Value chain analysis results at C1
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Table 4 Underlying model parameters

Low (1) Medium (2) High (3)
Value contribution 0.1 0.5 1
Criticality 0.1 0.5 1
External partners 0 1 5
Internal server interfaces 1 2 10

cases. For the values applied within the analysis, please refer
to Table 4.

Applying these pre-set categories to the risk property vec-
tors of each data type per value activity resulted in 27 vectors at
C1 and 26 vectors at C2. To take potential future changes in
their respective business model into account, we also can-
vassed the industry expert’s expectations on future develop-
ments, resulting in an additional 27 (26) vectors at C1 (C2). In
order to quantify and compare data types, we inserted the in-
formation collected from the experts at C1 and C2 into our
model and calculated the impact of a successful security breach
as a function of the data type’s value contribution and critical-
ity, as well as the threat probability for each data type depen-
dent on the data type’s dispersion. We then inserted the infor-
mation of value contribution and criticality into formula (6) to
calculate the impact indicator Xj; and the information collected
from internal and external partners into formula (8) in order to
calculate the threat probability TP;;. Plugging these results into
formula (10), we determined the PWRI per both Data D; and
the Value Activities VA; An exemplary risk property vector,
including results of Operations at C1, is presented in Table 5.

Result analysis

In this section, we show how results yielded from our model
can be analyzed and interpreted. In a first step, a company can
identify its data-related crown jewels via the calculated impact
indicator Xj;. As the impact consists of both the data type’s
weighted proportional value contribution and criticality, a
higher X;; implies a greater significance in terms of the

Table 5

company’s value creation. Using this information, companies
can determine measures to secure their data crown jewels.
According to our model, for C1, Financial Data, Production
Data, and Customer Data have the highest impact indicator,
together accounting for 50% of the overall impact indicated.
For all three data types, this can be explained by the high
criticality associated with these data types. Thereby, confiden-
tiality is the key criticality-driving factor for Financial Data
and Customer Data, as these are subject to strict privacy pol-
icies and large fines are imposed in cases of unauthorized
disclosure. The key criticality-driving factor of Production
Data is integrity, as the C1’s products are subject to strict
quality specifications which determine the stability and safety
of the product when in use. In terms of crown jewels, the
analysis yielded the same results for C2.

Companies can also rank data types in an integrated man-
ner by comparing the calculated PWRI,. According to our
model, at C1, the data types with the highest PWRI; are IT
Data (PWRI=0.041), Financial Data (PWRI=0.027),
Production Data (PWRI=0.026), and Logistic Data
(PWRI=0.025), which together make up 70% of the overall
PWRI, with IT Data alone holding a surprisingly large share of
25% (see Fig. 3, grey bars). Financial Data, Production Data,
and Logistic Data yielded very similar results with a delta
smaller than 0.2% of the overall share. The high PWRI; for
IT Data is mainly driven by its application within Firm
Infrastructure, as IT Data does not only contribute significant
value and is highly critical but, more importantly, is widely
distributed both internally and externally, resulting in an ex-
ceptionally high threat probability. The same holds for
Logistic Data, which is widely shared with external partners
in both Inbound Logistics and Procurement, resulting in a
relatively high overall threat probability for this data type. In
contrast, Customer Data, despite having a high impact value,
is generally kept in-house and shared with a minimal number
of parties, resulting in a significantly lower threat probability
and therefore a lower overall PWRI.

For C2, however, Customer Data (PWRI=0.036) yielded
by far the highest PWRI, being nearly twice as high as the

Operations risk property vector at C1 (Only “Use”, model input values in brackets)

Logistic Data

Production Data

Customer Data

Current values  Exp. future values

Current values

Exp. future values ~ Current values  Exp. future values

Value contribution 1(0.1) 1(0.1) 3(D)
Criticality 2(0.5) 2 (0.5) 3(1)
External partners 1(0) 1(0) 1(0)
Internal server interfaces 1(1) 1(1) 2(Q2)
Impact indicator Xji 0.019 0.019 0.061
TPijj 0.05 0.05 0.098
PWRIji 0.001 0.001 0.006

3(1) 3(1) 3(1)
3(1) 2(0.5) 2(0.5)
1 (0) 1(0) 2(1)
3(10) 1(1) 2Q2)
0.061 0.045 0.045
0.401 0.05 0.148
0.024 0.002 0.007
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Fig. 3 Shift in threat landscape

due to business model changes at Strategic Data
C; R&D Data

Personnel Data

Distribution Data
Customer Data
Logistic Data
Production Data
Financial Data
IT Data

(=1

second most critical data type, IT Data (PWRI=0.018). In
addition to a high impact, Customer Data is widely distributed
and shared with a large number of internal and external
parties, resulting in an exceptionally high threat probability
and therefore a high overall PWRI. The same applies to IT
Data and Distribution Data (PWRI=0.012), both of which
yield a high threat probability due to their widespread distri-
bution among internal and external partners. The widespread
distribution of these three data types can be explained by C2’s
business model, which focuses on B2C-interactions and offers
a wide range of IT-enabled services complementing the phys-
ical products they offer their customers. For full results of the
PWRI ranking refer to Table 6.

Another benefit of our model is that it offers an integrated
view of a company’s value activities, which the user can ac-
cess by looking at the activity’s cumulative PWRI. Intuitively,
it might seem that the activities which make the highest
contribution to the company’s value creation will be at
most at risk from IT security-related attacks. However, accord-
ing to our model, this is not the case at C1. While Firm
Infrastructure, Inbound Logistics, and Services represent the
top three with regard to their respective PWRI, the experts
identified them as contributors of a medium or even low level
of value. This can again be traced back to the data distribution
in these activities, as they all feature data types widely shared
with external and internal parties, offering a wide range of
potential attack targets. This insight helps to raise companies’

0.01 0.02 0.03 0.04 0.05 0.06

PWRI

B Exp. future values ® Current values

awareness of their potential weak links in their value creation
process as viewed from an IT security perspective. At C2, the
results did not deviate as strongly from the sole value contri-
bution perspective.

Finally, our model can be used to analyze changes in the IT
security risk landscape that may result from predicted future
shifts in business models (i.c., stronger integration of
information-intensive services, increased integration of smart
products and smart solutions, etc.). According to the experts at
Cl1, these shifts are primarily expected to affect manufacturing
processes and distribution activities, with changes predicted to
include the increased integration of smart solutions for better
data analysis, individualized production, and transparency in
relation to the customer, resulting in a significant rise in the
threat probability for Production Data and Customer Data. It
also predicts that R&D Data will be affected by a significant
increase in the level of threat, which can be traced back to
the increasing need to establish new collaborations in order to
enhance IT innovations. This implies an increasing need
for integrated security measures which take complex
collaboration-based ecosystems into account. Figure 3 (red
bars) illustrates the shift for C1. In contrast, having already
reached a high digitalization maturity level, C2 does not expect
a noticeable change to its business model in the coming years.
Therefore, C2 aims to achieve an overall increase in the value
contribution made by each data type, rather than a shift in the
nature of the value contribution or criticality of these data types.

Table 6 PRWI ranking at C1 and

2 Data Type PWRI ranking at C1 Data Type PWRI ranking at C2
1 IT Data 0.041 1 Customer Data 0.036
2 Financial Data 0.027 2 IT Data 0.018
3 Production Data 0.026 3 Distribution Data 0.012
4 Logistic Data 0.025 4 Financial Data 0.010
5 Customer Data 0.018 5 Logistic Data 0.009
6 Distribution Data 0.013 6 Personnel Data 0.007
7 Personnel Data 0.007 7 Production Data 0.005
8 R&D Data 0.007 8 R&D Data 0.003
9 Strategic Data 0.004 9 Strategic Data 0.001
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As our analysis of the results shows, our model supports
the assessments of the value contribution and criticality of
each data type. Thereby, our aim is not to provide a model
for calculating the exact loss that would be incurred in the case
of a security breach for each data type, but rather to determine
a key figure for comparing and ranking data types in an inte-
grated manner. By distinguishing individual data types and
their contribution to a company’s value creation, data types
become both intra-temporally and inter-temporally compara-
ble, which enables the simulation and assessment of potential
future developments. Furthermore, critical value activities and
a company’s crown jewels can be identified. Finally, compa-
nies can use such analysis as a first step in adjusting their IT
security investment strategies in response to future changes in
the threat landscape.

Model evaluation

We agree with Nickerson et al. (2013) that a useful model
must be concise, robust, comprehensive, extendible, and ex-
planatory. Within the model evaluation, academic focus-group
members (one distinguished and one associate professor, and
six research assistants, excluding the authors) and the
interviewed industry experts confirmed the utility of the mod-
el in terms of the named conditions.

‘We can confirm that our model is concise (i.c., it involves a
limited number of terms and characteristics for reasons of
simplicity) (Nickerson et al. 2013) as it contains nine key
value creation activities and nine key data types, which can
be linked through two types of inter-class relations in the value
creation analysis. Additionally, our model limits the number
of key figures for risk analysis to the Probability Weighted
Risk Indicator, which draws on four IT security risk charac-
teristics describing data types. While providing a simplified
version of reality, the model should help to minimize the cog-
nitive demands placed on decision-makers and help to over-
come the difficulties of application (Nickerson et al. 2013),
which is what our model does. The experts confirmed that
both Porter’s approach and the data types identified represent
an adequate initial structuring approach. At the same time,
they noted that a fine-granular view of the data types is nec-
essary on a case-by-case basis. Moreover, they pointed out
that the broad categories of the identified data types may lead
to the potential overlapping of data within subcategories.

Secondly, we can confirm that our model is robust (i.e., it
includes enough terms and characteristics to clearly differen-
tiate the objects of interest) and comprehensive (i.e., it is com-
plete in that it includes of all relevant terms and characteris-
tics) (Nickerson et al. 2013), as it enables the analysis and
comparison of different data types in terms of their value con-
tributions and risk properties. It also enables the user to con-
sider various use cases through different model parametriza-
tion. The interviewed experts confirmed that the model
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provides transparency about value creation activities, data
types and the dependencies between them, and that it makes
the data types comparable in terms of their value contributions
and risk properties. The experts also acknowledged that the
structure of our model covers the essential terms and charac-
teristics and that they do not miss further elements.
Additionally, we can confirm that the model is extendible
(i.e., there are no restrictions on its future extension)
(Nickerson et al. 2013), as it allows the inclusion of further
value creation activities, data types, and/or IT security risk
characteristics. Finally, our model is explanatory (i.e., it en-
ables the instantiation of real-world use cases) (Nickerson
etal. 2013), as illustrated in the subsection Model Application.

Conclusion

Digitalization forces companies to reevaluate their business
models and shift to data-driven alternatives. For manufactur-
ing companies, in particular, this leads to extensive changes in
value creation processes and in IT security risk landscapes. If
they are to successfully protect their newly emerged, data-
based crown jewels, companies must be able to identify the
data that contribute to their value creation, both at present and
in the future, and assess the associated IT security risks.
Despite the extensive body of research on IT security and
data-driven value creation, approaches that link these disci-
plines and measure both the value contribution and associated
IT security risks of data in an integrated manner are still
missing.

Our approach aims to contribute to the closure of this re-
search gap and support companies in their analysis of the IT
security risks in their data-driven value chains. With this goal
in mind, we provide a two-step approach. The first step, com-
prising a value chain analysis, enables the user to identify
strategically important value activities and data types generat-
ed or used for these activities today and in the future. In the
second step, comprised of an integrated risk analysis, we de-
termine the Probability Weighted Risk Indicator; a key figure
for assessing the value contribution and associated IT security
risks of different data types. Among other things, our model
provides companies with guidance on the identification and
exposure of their crown jewels and makes different data types
comparable. We invited research and industry experts to eval-
uate our model in order to confirm its real-world fidelity, ap-
plicability, and usability.

Our approach contributes to both research and practice.
From an academic perspective, we lay important groundwork
at the interface of I'T security and data-driven value creation by
combining these two research streams to develop an integrated
modeling approach for IT security risk analysis. In particular,
our study complements existing IT security frameworks such
as the NIST cybersecurity framework and standards such as



Value of data meets IT security — assessing IT security risks in data-driven value chains

ISO/IEC 27000 series or, on a national level, the German IT-
Grundschutz. These frameworks, however, only address the
need for a quantitative risk assessment of the involved assets —
in this case, the respective data types — and provide no con-
crete guidance for implementation. Our work, on the other
hand, provides an approach for analyzing different data types
from both a value creation and security risk perspective and
enables a quantitative assessment of the underlying data type.

In practice, our approach can be used to help companies
identify valuable assets in order to allocate scarce IT security
budgets in an economically sounds manner. In particular, it
can be used for various analyses, e.g., to analyze the current
state of value creation by identifying the most important value
activities and data types — that is, the crown jewels of the
company. Practitioners can also use the model to carry out
an integrated assessment of potential strategic business model
developments and the associated shifts in value creation. The
application of our model is thus a first step toward identifying
potential IT security risks associated with these shifts, in that it
enables the analysis of different data types in current and fu-
ture value creation. This allows the user to identify the most
critical data types and initiate discussions on mitigation mea-
sures. The model has the same advantages for project owners,
who can use our approach to evaluate new project solutions
involving innovation or digitalization in order to illustrate the
impact of their project solutions on the current value contribu-
tion and associated IT security risks of the data involved.
Practitioners could further adjust our approach to assess a
company’s idiosyncrasies, such as stronger IT security guide-
lines, by changing or expanding the model parameters.

Despite providing novel insights into IT security risk anal-
ysis of data-driven value chains, our approach has some lim-
itations which could be used as a starting point for further
investigations. As we could not find any approaches that an-
alyze both the value contribution and IT security properties of
data types, we could not compare our results with the results
of other models. And, although we evaluated our model with
experts from two companies to illustrate its applicability in
practice, further empirical evaluation of the model in a given
organizational context might help to strengthen our findings
(Meredith et al. 1989; Wacker 1998). We chose to draw on
Porter’s (1985) approach to value creation as a first step in the
development of value activities. Researchers might use this as
a starting point when further developing the approach present-
ed here, or as a means to evaluate alternatives and identify
value activities within more complex interdependent value
creation networks.

We also derived key data types used in the value creation
process from literature and evaluated them with industry ex-
perts. Future research might focus on other methods for iden-
tifying key data types, such as surveys or empirical investiga-
tions, in order to ensure the generalizability of key data types.
As the data types identified here fall into broad categories, the

potential overlapping of data within subcategories is not ad-
dressed, nor are the different degrees of criticality of that data.
One additional research path could, therefore, focus on split-
ting the identified key data types into more detailed sub-data
types in order to enable a more fine-grained analysis. This
would allow practitioners to consider mitigation measures in
more detail, and to identify, for example, which specific sys-
tems they should restrict access to, and which employees may
need a higher degree of vetting or more advanced training.

Moreover, for the risk analysis, we define a risk indicator
based on the concept of excepted loss and consider four key
properties of Data used to calculate the risk indicator.
Investigations focusing on other appropriate risk parameters
and measurement approaches would provide further valuable
insights. For simplification and facilitation purposes, in the
risk analysis with practitioners we classified the underlying
parameters as low (1), medium (2), or high (3). However,
assessments based on such simplified categories could be con-
sidered subjective, and additional research could help to better
estimate these model parameters.

Another point for researchers to consider is that our model
has, so far, been used as a one-period model only, hence all
decisions and outcomes have occurred simultaneously. Thus,
dynamic aspects, such as spillover effects from a successful
breach in one value activity to another have not been consid-
ered and might yet be incorporated into the model.
Furthermore, our model does not consider interdependencies
and spread effects within the value chain and risk analysis.
Further investigations on how these aspects can be incorpo-
rated into the approach could be helpful. Despite these limita-
tions, our approach serves as an important first step toward IT
risk analysis in data-driven value chains, and as a starting
point for further investigations in this area.
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