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Abstract 
 
At the beginning of the new millennium, the financial 

services market is experiencing a fundamental shift. More 
transparent and global markets through new means of 
communication on the one hand and better informed and 
more demanding customers on the other hand have led to 
a dramatically intensified competition. One way to cir-
cumvent cost-leadership competition is to offer individu-
alized financial planning consulting services. In this con-
tribution, a model to formalize financial problems and 
solutions under risk as an essential requirement for an IT-
based financial planning process is presented, that – once 
implemented – may help to increase the quality of the 
consultation and decision support on the one hand and 
lower costs due to process improvements on the other 
hand. 

 
1. Introduction 

 
Due to the trend towards one-stop-shopping in the private 
and retail banking segments, the number of products that 
may be offered by a personal financial advisor as solu-
tions to a customer’s problem increased dramatically 
making it increasingly hard to find a superior solution. In 
addition, competition has intensified and customers have 
become more demanding. Thus, financial services provid-
ers struggle with a more difficult solution process and at 
the same time with shrinking margins. In recent years, 
many financial services providers have already found 
financial planning as a strategy to gain a sustainable com-
petitive advantage at least in the customer segment of 
high net worth individuals. 

To broaden the scope of financial planning and to offer 
this service to private banking and affluent customers, 
however, the process has to be much leaner in terms of 
time to come to recommendations for a specific customer. 
From a finance perspective the analysis and planning 

phase in the financial planning process, i.e. the phase 
where the recommendations are developed, is the most 
complex and demanding one. In fact, financial services 
providers offering financial planning services usually put 
a team of analysts and other experts at the task to opti-
mize the global financial situation of a specific customer. 
This is a very human resources intense way of dealing 
with the problem, however, particularly in the domain of 
high net worth individuals the problems are generally of 
such a high complexity that IT may just support some 
tasks of these experts in that phase. With respect to pri-
vate banking and affluent customers, the problem domain 
is simpler on average and often in a more structured form. 
This makes financial planning for these customer groups a 
compelling case for an appropriate system support. An 
underlying requirement to support this process with IT is 
a common language that can translate and represent the 
needs of the customer on the one hand (financial prob-
lem) and on the other hand financial products that are 
available to satisfy these needs (financial solution). In this 
contribution first steps to include uncertainty and risk in 
such a language and the solution process is proposed. 

The remainder of the paper is organized as follows. In 
the next section related research is briefly discussed. 
Sec. 3 discusses the proposed problem solution process. 
Sec. 4 presents the basic model without risky cash flows. 
Sec. 5 covers starting points to include uncertainty and 
risk in the model. The model’s applicability and limita-
tions are discussed in Sec. 7. The main findings are 
briefly summarized in Sec. 8. 

 
2. Related research 
 
The basic idea of the presented model is based on works 
due to Hax in the 70s (see e.g. [11]). The main common-
ness between these enterprise modeling approaches and 
the model presented here is that both apply linear equa-
tions and matrix algebra. However, the pretension in the 



model presented here is a much more modest one. In the 
abortive enterprise modeling approaches the pretension 
was to model the problem completely. In this contribution 
it is acknowledged that the problem cannot be determined 
exactly in the interaction between customer and the finan-
cial consultant. Moreover, due to the complexity of the 
problem as well as the solution space, finding a globally 
optimal solution to a customer’s problem is also not the 
objective here. The presented model builds on [25] and 
particularly extends Will’s work with respect to the for-
malization of risk. A different approach to formalize and 
solve a customer’s financial problems is based on graph 
theoretical tools (stochastic flows-with-gains approach) 
[9]. Monte Carlo Simulation to solve problems in the 
financial planning context is suggested by e.g. [18]. For a 
review on cash flow models see [10]. From the technical 
point of view, the approach presented here is particularly 
compatible with [5], [6], [21]. [16] deals with decision 
support tools in financial planning, however, their system 
is just able to offer “what if?” and “how to achieve?” 
analysis but no optimization. A financial decision support 
system (DSS) is also presented in [19]. The focus there is 
on the consideration of the investor’s unique requirements 
and personal characteristics in the DSS and is just imple-
mented in a prototype for the stock-selection decision. 

In the following, our problem solution process is dis-
cussed as a basis for the model presented afterwards. 
 
3. Problem Solution Process in Financial 
Planning 

 
Once the data of a customer are gathered for a financial 
planning service, the real challenge is to come to sound 
recommendations with respect to the customer’s situation. 
In the recording phase all assets and expected cash flows 
from salaries for instance as well as objectives and needs 
that will result in an alteration of the financial situation of 
the customer are gathered. Based on these data, interpret-
ing the desired cash flows as restrictions, such as a con-
stant minimal income to cover life expenditures, an opti-
mization process is triggered. The result ideally is a trans-
formed cash flow stream based on the cash flow restric-
tions of the customer that optimizes a specified objective 
function. From a mathematical point of view it is a linear 
or non-linear optimization problem subject to constraints. 
The objective function in combination with these con-
straints – both provided by the customer – are called the 
customer’s financial problem. 

Though the identification of the (financial) problem is 
a demanding task, the generation of the solution is charac-
terized by at least the same level of complexity. On the 
one hand it is the task to transform vague and often quali-
tative needs in quantitative requirements considering cash 
flows, on the other hand it is the sheer uncountable num-
ber of products with often various parameters that can be 
included in the solution process to determine an optimal 

solution to the customer’s problem. Talking about this 
solution process, apparently a global top-down optimiza-
tion approach in form of an algorithm leading to a guaran-
teed optimal solution will hardly exist. In literature top-
down approaches just exist in specific product domains. 
Examples are Markowitz’s portfolio theory (cf. [17], 
optimization through selection) or the design of the dis-
count in a mortgage loan (cf. [26], optimization through 
configuration). Nevertheless these optimization ap-
proaches are usually still subject to a number of restrictive 
assumptions.1 In contrast to the availability of top-down 
domain specific optimization knowledge, top-down com-
bination knowledge is rare and generally remains on a 
simple and abstract level.2 

Therefore, the process to determine a good solution has 
to be tackled from a different and a much more modest 
side. If a globally optimal process is not available, it 
might be advantageous to combine two or more locally 
optimized products to form a globally superior solution. 
Particularly if the principle of value additivity3 holds, 
locally optimized solutions can be simply summed to 
form a solution for the customer, which is from a mathe-
matical point of view a very nice feature. A heuristic 
approach4 that enables both the search for and the integra-
tion of partial solutions in a bottom-up approach as well 
as the utilization of available top-down combination 
knowledge is presented in the following. But first the term 
“financial solution” has to be defined in more detail. 

A financial solution consists of a single financial prod-
uct or a bundle of financial products. If a solution satisfies 
all constraints, it is called a feasible solution. Note that a 
feasible solution is by no means also a superior solution 
upfront. A feasible solution just satisfies all formulated 
constraints. In an additional step, the superior solution has 
to be identified applying the objective function to a set of 
feasible solutions that were generated during the solution 
process. Thus, a superior solution is defined as the best 
solution from a set of feasible solutions with respect to the 
objective function. The term “superior solution” is used 
intentionally instead of “optimal solution” to make clear 
that the superior solution hopefully will be near the (theo-
                                                           

1  For instance Markowitz portfolio models generally assume discrete 
returns as normally distributed. However, there is a lot empirical evi-
dence that this assumption is not realistic. Cf. [3] for a discussion of the 
impact if log returns are fat tailed. 
2  An example might be the CAPM, which includes a risk free invest-
ment opportunity (Tobin separation). As an approximation for this risk 
free investment opportunity often Treasury bills are considered (cf. [4]). 
However, there are Treasury bills with different maturities as well as 
different interest rates and thus with different liquidity effects for the 
customer. These unique characteristics of each Treasury bill are not 
captured in the CAPM. 
3  Cf. [4]. 
4  On problem solution algorithms cf. e.g. [8], [13], on heuristic ap-
proaches cf. e.g. [12], [15] and [20]. The approach presented here be-
longs to the group of exact heuristic methods, which are suited for an 
implementation in an information system due to the fact that the prob-
lem may be poorly structured but it is well-defined; cf. [8]. 



retically) optimal solution however there is no guarantee 
that the heuristic ensures that an optimal solution is found.  

If no global optimum can be easily determined top-
down, at least knowledge about a local optimum within a 
specific product domain can be incorporated bottom-up in 
a (global) solution. In these cases it can be advantageous 
to include partial solutions intentionally even if they are 
not feasible. The residual problem that generally remains 
if such locally optimized solutions are integrated in the 
overall solution can be solved in another solution step. 
Two or more combined partial solutions may solve the 
(global) problem. One iteration in the process of the de-
termination of a solution is called a partial solution proc-
ess step.  

But the proposed heuristic does not only provide for a 
bottom-up approach but also for the opportunity to inte-
grate top-down combination knowledge. If such knowl-
edge exits and a problem or partial problem is identified 
as one where top-down combination knowledge is present 
and can be applied, the system has to recognize that fact 
and trigger a separation of the problem into partial prob-
lems – if necessary.5 This part of the solution process is 
called a process of recognition (top-down) as opposed to 
the process of search6 for another partial solution (bot-
tom-up).7 In conjunction the solution process is a hybrid 
process of search and recognition8. This way of produc-
ing superior solutions has a number of merits: 9 
• Established local combination and optimization knowl-

edge is incorporated into the solution process. Thus, 
knowledge that is already available can be utilized. 

• New innovative solutions – solutions that no one would 
have thought of upfront – can be found due to the itera-
tive process of search. 

• Since a set of feasible solutions is generated during the 
solution process, the financial advisor has a number of 
solutions that may be presented to the customer. This 
has at least two advantages: First, the customer has a 
choice and that is generally already associated with util-
ity. Instead, if a global top-down solution could be de-
termined, just one solution would be offered. Second, a 
financial solution just considers quantitative factors, but 
a decision of a customer will be made based on quanti-
tative as well as qualitative considerations. Thus, a cus-
tomer might choose intentionally a second or third best 

                                                           

5  For instance in the ALLFIWIB project this has been realized by an 
autonomous so-called combination agent; cf. [6]. Combination knowl-
edge will not be covered here, since the formulation and solution of 
customer problems that take uncertainty and risk into account are the 
focus at this point. 
6  This is also denoted as learning by discovery, see [15] and [12]. 
7  Note that the process of recognition and the process of search are not 
separated in a way that either it is searched or available combination 
knowledge is applied but the solution process can be a combination of 
both. 
8  Cf. e.g. [6]. 
9  Cf. e.g. [25]. 

solution from a quantitative point of view. 

The problem solution process and the interrelations of 
the above described terms partial solution, residual prob-
lem, objective function, superior solution and financial 
problem are illustrated in Fig. 1. 
 

 Financial Problem  
(objective function and set of constraints) 

Feasible solution  
(financial product  
or bundle of  
financial products  
that satisfies all  
constraints) 

Unfeasible solution 
(with respect to  
initial problem) 

Residual problem 

Unfeasible solution  
(with respect to  
residual problem) 

Residual problem 

Feasible solution  
(solves residual 
problem) 

Solution alternative 1 Solution alternative 2 

Application of objective function on solution alternatives

Superior solution (best value of objective function) 

Set of  
feasible  
solutions 

 
Figure 1. Schematic problem solution process10 

 
A basic requirement for such a solution process being 

implemented is the formal representation of problems as 
well as solutions. As Will (cf. [25]) showed, it is advanta-
geous to model problems as well as solutions as cash 
flows. Using a formal way of representing problems fa-
cilitates the use of an appropriate application that may 
help to find a superior solution. Therefore, an objective 
has to be translated into a form where the problem is 
characterized by a desired cash flow stream. The follow-
ing simple example shall illustrate a typical customer 
problem.11 

 
Example 1: Mr. Smith wants to undertake a longer journey in 
two years. Therefore, he plans to invest today and in one year 
10,000 Euro each. His objective is to maximize the repayment in 
two years. 

 
However, future cash flows are usually not certain but 

inherently affiliated with risk. This holds true on the one 
hand for investment products such as bonds, stocks or 

                                                           

10  The general process pattern is taken from [21] and has been modi-
fied. In the graph the process of recognition is not illustrated, since it 
will not be the focus in this contribution. 
11  Obviously this is a very simple example in comparison to real world 
financial planning problems. Still, it shall suffice here in order to illus-
trate the model. The example will be continued throughout this contribu-
tion. 



funds. On the other hand, a customer is hardly able to 
formulate an exact cash flow requirement in 25 years 
from now. However, he might be able to state at least a 
minimal payment that he will need. Or he might be able to 
set a maximum cash outflow that he is willing to bear.  

 
Example 2: Mr. Smith not only wants to maximize the repay-
ment in two years but he demands at least 22,000 Euro as a 
minimal repayment. 

 
Another less restrictive constraint would be that a 

specified cash inflow has to be exceeded with a specified 
probability. Equally, a specified cash outflow must not be 
exceeded with a specified probability.  

 
Example 3: Mr. Smith expects a repayment of more than 22,000 
Euro with a probability of 90%. 

 
Example 2 and Example 3 illustrate two different ap-

proaches of formulating uncertain constraints. In decision 
science Example 2 would be called a situation under 
uncertainty. There are no probabilities associated with 
different states of the world. The situation in Example 3 
would be called a situation under risk. Objective or sub-
jective probabilities can be assigned to each state of the 
world. Instead of using the expression “state of the world” 
in the following, the expression “scenario” will be used. 
In a meeting with a customer often “best-”, “average-”, 
and “worst-”scenarios are used to visualize uncertainty or 
risk in a financial planning situation. 

But it is not only the customer who has desires that 
cannot be expressed by fixed or arbitrary cash flows but 
also financial products inherently contain risk. The level 
of future payments is – depending on the type of security 
or contract – generally not certain but inherently affiliated 
with risk. Increased return is usually combined with in-
creased risk of an investment.12 To configure superior 
solutions, it is important to also consider risky securities 
in the solution process, thus the model shall also be capa-
ble of taking this fact into account. 

Having described the perspective on financial prob-
lems and solutions, in the following the basic model is 
presented. 

 
4. Basic Model13 

 
4.1 Assumptions 

 
In the following basic assumptions and notation are intro-
duced to lay the ground and define the restrictions for the 
proposed (mathematical) formulation of the solution 
process. 

 

                                                           

12  Cf. e.g. [22]. 
13  This section is mainly based on [25]. 

(AF) Framework: Future states of the world are denoted 
as scenarios. In each scenario j = 1,..., m there are certain 
payments14 at each point in time t = 1,..., n.15 

(AS) Solution: Solutions are represented as (n x 1)-
column vectors, where each row marks a cash inflow 
(positive) or a cash outflow (negative) at a specific point 
in time t. The solution vector jas�  is an aggregation of 
l = 1,…, b partial solutions of a solution alternative 
a ∈ IN+ for each point in time t in a scenario j, hence an 
aggregation of the partial solution vectors jals� , thus 

�
=

=
b

l

jalja

1
ss �� . sal denotes the set of all scenario-specific 

partial solution vectors of partial solution l, thus 
{ }malalalals sss �

�

��

,,, 21= . sa denotes the set of all scenario-
specific solution vectors of a solution alternative a, thus 

{ }maaaas sss �

�

��

,,, 21= .  

(APr) Problem: The equality and inequality constraints 
of the optimization problem are modeled using a (n x n) 
problem matrix16 Pj and a (n x 1) problem vector jp� .17 If 

a problem cannot be solved after a first solution step 
(l = 1) a residual problem remains denoted by the residual 
problem vector )1( +ljap�  within a solution alternative als  
and solution step l in scenario j.  

(AV) Value additivity: All cash flow streams are based 
on the principle of value additivity, i.e. “the value of the 
whole is equal to the sum of the values of the parts”.18 
That has to be true for within a partial solution as well as 
across partial solutions, i.e. cash flow streams can be 
summed.19 
 
Example 420: There are three scenarios (best (j = 1), average 
(j = 2), and worst (j = 3)). An investment today of 10,000 Euro 
in a fund with European bonds, that is sold two years from now 
yields 12,000 Euro in the best, 11,000 Euro in the average, and 
9,000 Euro in the worst case. This situation may be a partial 
solution s11 (l = 1), that can be combined with other partial 
solutions to form a solution alternative (a = 1)  

                                                           

14  Within a scenario payments are assumed to be certain. 
15  In the following, pre or after tax payments will not be explicitly 
distinguished. 
16  The problem matrix is in case of certainty and uncertainty independ-
ent of scenarios, i.e. Pj will be the same for all scenarios. However, in 
case of risk this changes. Therefore, the problem matrix is already 
introduced as scenario specific at this point. 
17  See Eq. (1) and Eq. (5) to see how the coefficients form a set of 
linear equations that can be gathered in a problem matrix and in a prob-
lem vector. 
18  Cf. [4]. 
19  Note that if the marginal tax rate is an endogenous variable, a simple 
aggregation of two or more after tax payment streams is not possible; cf. 
[25]. Therefore, in the following it is implicitly assumed that the inves-
tor’s marginal tax rate is exogenously given. 
20  In this and all following examples, the three zeros for thousand are 
omitted in vectors and matrices for reasons of clarity and simplicity. 
Hence, for instance 10 means 10,000 in a vector or matrix. 
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4.2 The Financial Problem 

 
As mentioned above, the financial problem consists of an 
objective function subject to a number of constraints. A 
feasible solution has to satisfy all constraints. These con-
straints can be represented in a system of linear equations 
– one equation for each point in time t:  

011 =+++++++ ′′
j

t
jal

n
j

tn
jal

t
j

tt
jal

t
j

tt
jalj

t psPsPsPsP ���

 (1) 

If the coefficients j
tiP  and j

tp  are appropriately chosen, 

the following desired cash flow streams can be formal-
ized:21 
• Fixed payment (Case I): Let k denote the desired value 

of a payment at time t then only solutions sal are feasi-
ble if and only if payment jal

ts  has the value k ∈ IR 

across all scenarios (see Example 1). This can be repre-
sented in the following way:  

mjkp
mjtiniPP

j
t

j
ti

j
tt

,,1for 

,,1; ;,,1for 0 ,1

�

��

==

=≠==−=  

Rearranging Eq. (1) yields ks jal
t = . 

• Arbitrary payment (Case II)22: Feasible are all solutions 
sal independent of the value of the payment jal

ts . Conse-

quently  

mjp
mjniP

j
t

j
ti

,,1for 0

,,1;,,1for 0

�

��

==

===  

Rearranging Eq. (1) yields 00 =jal
ts , which is always 

true. 
• Desired payment is a multiple of a preceded payment 

(Case III): Let t’ denote the preceded point in time 
(t’ < t), then all solutions sal are feasible if and only if 

jal
ts  has the value jal

ts '⋅α , α ∈ IR, across all scenarios. 

Thus,  

mjp
mjtitiniPPP

j
t

j
ti

j
tt

j
tt

,,1for 0

,,1;; ;,,1for 0 , ,1

�

��

==

=′≠≠===−= ′ α

Rearranging Eq. (1) yields jal
t

jal
t ss '⋅= α .  

For each point in time t a constraint in form of the 
cases (I) – (III) can be formulated and results in n equa-
tions in the form of Eq. (1). All coefficients j

tiP  and j
tp  

                                                           

21  Constraints in the form of the following Cases I – III and later on 
also Cases IV and V have to be satisfied, of course, for the global solu-
tion sa. However, since upfront it is not known whether the first solution 
process step will yield a feasible solution, sa is replaced by sal in the 
following. 
22  This case is particularly useful if investment problems have to be 
formulated where the future cash inflows are known but not the amount 
that has to be invested. 

can be summarized in the problem matrix Pj and the prob-
lem vector jp� , respectively. Thus, for each of the m sce-
narios there is one problem matrix and one problem vec-
tor. A solution is feasible if and only if it satisfies all 
constraints, i.e. if Eq. (2) holds true. 
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Example 5: Mr. Smith financial problem based on Example 1 
can be formalized using the above notation. Taking into account 
that Example 1 assumed just one scenario (situation under cer-
tainty), thus j = m = 1, the system of equations according to Eq. 
(1) can be summarized in a problem matrix and problem vector 
(see Eq. (2)) 
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4.3 Formulation and Solution of Residual 
Problems 

 
As already mentioned above, it may often be advanta-
geous to utilize local optimization knowledge to configure 
or select a partial solution that does not solve the initial 
problem entirely but yields a residual problem. Such a 
partial solution is called an unfeasible solution.  

Let s11 denote an unfeasible solution. Apparently, a 
partial solution s12 that solves the residual problem consti-
tutes a global solution s1 which solves the initial problem. 
The respective problem vector is determined using Eq. 
(3).  

( ) jaljaljlja psPp ���

+=+ :1  (3) 

Generally, the problem vector ( )1+ljap�  refers to the re-

sidual problem that remains after l partial solution process 
steps. To be precise, jalp�  has to be set equal to the initial 

problem vector for the first partial solution process step 
(l = 1), thus 

1for : == ljjal pp ��  (4) 

Suppose Eq. (2) yields the zero vector then the solution 
process is terminated. If Eq. (2) does not yield the zero 
vector another iteration using problem vector ( )1+ljap�  
(Eq. (3)) can be performed integrating another partial 
solution sl + 1. This process can be iterated either until 
there is no residual problem anymore or a specified stop-
ping rule fires, leading to a termination of this solution 
process without a feasible solution. A stopping rule may 



be that either a specified CPU time or a specified number 
of financial products (or product groups) to solve the 
problem is exceeded. Especially the latter rule strongly 
depends on the sophistication level of the customer. There 
the customer model briefly touched on above comes into 
play again. To provide tailored solutions, knowledge 
about the customer has to be used in the solution genera-
tion process. 

After the basic model has been introduced, the center 
of interest will now be the inclusion of uncertainty into 
the model. 

 
5. Model under Uncertainty 

 
To formalize desired cash flows of customers that include 
a minimal cash inflow or a maximal cash outflow (see 
Example 2) another case has to be introduced that leads to 
inequalities in the system of linear equations. Uncer-
tainty23 is captured providing for m > 1 different scenar-
ios.24 Even though there is knowledge about different 
scenarios, there are no subjective or objective probabili-
ties that may be assigned to each of the scenarios. 

 
5.1 The Financial Problem 

 
A constraint in the form of an inequality at point in time t 
may be formalized using m inequalities of the following 
type: 

011 ≤+++ j
t
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j
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jalj
t psPsP �

 (5) 

Accordingly, the so-called inequality constraint can be 
described as follows.  
• Desired payment is a minimum cash inflow or a maxi-

mum cash outflow (Case IV): Let v denote the desired 
minimum or maximum payment, then all solutions sal 
are feasible if jal

ts  has at least the value v across all sce-

narios.25 Thus,  

mjvp
mjtiniPP

j
t

j
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j
tt

,,1for 

,,1; ;,,1for 0 ,1

�

��

==

=≠==−=  

Rearranging Eq. (5) yields vs jal
t ≥  for all scenarios j. 

Since there may now be equalities in the form of 
Eq. (1) as well as inequalities in the form of Eq. (5), a 

                                                           

23  Uncertainty is defined as the absence of knowledge for the decision 
maker about the probability distribution on states of the world. This does 
not necessarily mean that these probabilities are not available at all. It 
just states that a decision maker has no knowledge and no subjective 
expectation about these probabilities. This separation is originally due to 
[14]. Though this separation is still widely used, it is criticized e.g. in 
[2]. 
24  Cf. e.g. [24]. 
25  This case makes also sense in the model under certainty, i.e. if there 
is just one scenario. The solution process cannot be performed using Eq. 
(2) but the two step solution process using Eq. (6) – (8) has to be ap-
plied. 

(1 x n)-inequality row vector Tu�  has to be introduced to 
distinguish between fixed payments on the one hand 
(Cases I and III) and minimum, maximum or arbitrary 
payments on the other hand (Cases II and IV). Therefore, 
for each payment according to the Cases I and III ut is set 
to one (ut = 1). For the other two cases ut is set to zero 
(ut = 0).26 

Even though the coefficients can be gathered again in 
the problem matrix Pj and the problem vector jp� , there 
are now two steps necessary to check whether all con-
straints according to the Cases I – IV are satisfied. In a 
first step it is checked whether the inequalities hold true. 
In a second step it is checked whether fixed payment 
requirements are satisfied. These two steps have to be 
performed for each scenario. 

 
Step 1: To check whether the inequalities of the con-
straints are satisfied (Case IV), the left hand side of (6) 
has to be smaller or equal to the zero vector. 

0psP
�

��

≤+ jaljalj  (6) 

Here, all constraints are considered to be inequalities 
and it is checked whether at least the desired cash inflow 
or at most the desired cash outflow holds true for the 
respective solution.  

 
Step 2: Further, using the inequality vector the fixed 
payment constraints (Cases I and III) are checked. Let Eij 
denote the (n x n) matrix that has all elements equal to 
zero except for the (i,j)-th’s element which is equal to one 
and let i

�

 denote the (n x 1) vector that has elements equal 
to one. K denotes the (n x n) matrix which is yielded by a 
right hand sided multiplication of the left hand side of 
Eq. (2) with the inequality vector Tu� . 

( ) KupsP =+ Tjaljalj ���  (7) 

Using Eq. (7) it can be checked whether all fixed pay-
ment constraints are satisfied.  

0
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��

=�
�

�
�
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�
�

=

iKEE
n

t
tttt

 (8) 

5.2 Formulation and Solution of Residual 
Problems 

 
If one of these two steps described above is not satisfied, 
Eq. (3) yields the residual problem. The initial problem 
matrix Pj and the inequality vector Tu�  are not altered and 
can be used for the next partial solution process step.  

 
                                                           

26 If there are several different desired payments at one point in time, 
Case IV is more binding than Cases I and III, and these for their part are 
more binding than Case II. Hence, Case II is overwritten by Cases I and 
III, and these are overwritten by Case IV. This can occur if a customer 
mentally distinguishes several financial problems. 



6. Model under Risk27 
 

Though introducing different scenarios into the consulting 
and solution process marks a significant improvement 
compared to the status quo, scenarios without scenario 
probabilities will not suffice for a number of financing 
and especially investment problems. 

From the perspective of the customer inequality con-
straints (Case IV) may be too restrictive since a payment 
must not fall below a specified value. To make sure that 
this specified value is reached at all costs, the customer 
may have to sacrifice a lot of potential return. Especially 
in the context of financial planning services, the used 
“best” and “worst” scenarios are often very unlikely com-
pared to the “average” scenario, since they are usually 
based on historical data and mark the worst and best pos-
sible outcome over a couple of years or even decades. In 
addition, generally speaking at least subjective probabili-
ties for scenarios can be obtained from historical data for 
most traded securities. From the perspective of the solu-
tion and decision process, all relevant information that is 
accessible (without prohibitive costs) should be included 
in the process to improve the quality of the decision. 
 
6.1 The Financial Problem 

 
The solution process is more difficult compared to the 
models under certainty and uncertainty. In contrast to the 
constraints of Case I to IV a probability constraint can not 
be formalized using linear equations or inequalities be-
cause it does not address a specific cash flow at one point 
in time t but a discrete random variable characterized by 
all scenario specific cash flows at one point in time t and 
the probabilities of the scenarios. Thus, the solution proc-
ess considering probability constraints could not be per-
formed solely by matrix algebra and another assumption 
is necessary. 
 
(AD) Distribution function and scenario probabilities: 
The payment at time t within a (global) solution sa is a 
discrete probability variable denoted by a

tS . The corre-

sponding distribution function is denoted by ( )xa
tF . Let wj 

denote the probability of occurrence of scenario j, with 

jww j

j

j ∀≥=� 0;1 . This probability is assumed to be 

constant in time and independent of all partial solutions sal 
and all other solution alternatives. 

                                                           

27  The model under risk below distinguishes itself just by the introduc-
tion of probabilities of occurrence for each scenario. Thus, risk is cap-
tured in a discrete function. There is no separation between systematic 
and unsystematic risk [4]. The focus is again to ensure minimum cash 
inflows or maximum cash outflows, i.e. the shortfall risk remains the 
center of interest. Other risk parameters such as beta, volatility, residual 
volatility, correlation coefficient, tracking error are at least not covered 
in the constraints. 

To capture cases that are similar to the one described in 
Example 3, another two cases have to be introduced: 
• Desired payment is a maximum cash outflow with a 

maximal probability (Case Va): If vt denotes the desired 
maximum cash outflow at time t with the maximal 
probability v

tw , then all solutions sa are feasible if and 

only if   
( ) ( ) v

tt
a

t
v
tt

a
t wvwvSW ≤⇔≤≤ F . 

( )t
a
t vSW ≤  denotes the probability that a

tS  yields a 

value that is equal to or below vt. Even though probabil-
ity constraints are checked without using matrix alge-
bra, the coefficients of the problem matrix and the 
problem vector still have to be set to zero for further 
calculations, thus  

mjp
mjniP

j
t

j
ti

,,1for 0

,,1;,,1for 0

�

��

==

===  

Rearranging Eq. (1) yields 00 =jal
ts , which is always 

true. 
• Desired payment is a minimum cash inflow with a 

minimal probability (Case Vb): If vt denotes the desired 
minimum cash inflow at time t with the minimal prob-
ability *v

tw , then all solutions sa are feasible if and only 

if 

( ) ( )
���

v
tw

v
tt

a
t

v
tt

a
t wvwvSW ** 1F −≤⇔≥> . 

Obviously, Case Vb can be transformed into a formula-
tion analogously to Case Va. Analogously to Case Va, 
the coefficients of the problem matrix and the problem 
vector are set to zero.  

mjp

mjniP
j

t

j
ti

,,1for 0

,,1;,,1for 0

�

��

==

===  

Rearranging Eq. (1) yields 00 =jal
ts , which is always 

true. 

To check a solution sa on feasibility with respect to a 
formulated probability constraint at a time t, first the 
distribution function ( )xa

tF  has to be calculated. Solution 

sa comprises all partial solutions sal that have been inte-
grated in sa so far on the way to find a feasible solution 
after l partial solution process steps. A separated calcula-
tion for partial solutions, like in Sec. 4.2 and Sec. 5.2 does 
not suffice here anymore. 

Each solution alternative a
ts  at time t is characterized 

by its payments ja
ts  in the various scenarios j and the 

respective probabilities of occurrence wj. Summarizing 
the payments and the respective probabilities into a tupel, 
a solution for time t (the discrete probability variable) can 
be written as 

( ) ( ) ( )[ ]mma
t

a
t

a
t

a
t wswswsS ;...;; 2211=  (9) 

To calculate the distribution function, first, the row of 
tupels has to be sorted ascending dependent on the value 



of the payment ja
ts . The respective sorting function is 

denoted by Θ. After the sorting, the resulting tupels have 
the form ( )ctct

a
ct jws ,,, ;; , where c denotes the rank among 

the tupels after the sorting took place and jt,c denotes the 
rank according to the scenarios before sorting. The coeffi-
cient t in wt,c reflects for which point in time the sorting 
took place. 

( ) ( ) ( )[ ]
( ) ( )[ ]mtmt

a
mttt

a
t

mma
t

a
t

a
t

jwsjws
wswsws

,,,1,1,1,

2211

 ; ;... ; ;

 ;... ; ; =Θ  (10) 

Having sorted the tupels, now an accumulation of the 
probabilities is necessary to get the distribution function. 
This operation is denoted by Φ. 

Apparently, the constraint ( ) v
tt

a
t wv ≤F  is satisfied if 

point ( )v
tt wv ;  is located on or above the distribution func-

tion. To check whether the probability constraints are 
satisfied at time t the first tupel ( )*** ;; ttt jws  has to be con-

sidered where the cumulated probability is above v
tw . 

Thus, a condition of the form ( ) v
t

a
t wx ≤F  is satisfied if and 

only if *
tsx < . That is, for ( ) v

tt
a
t wv ≤F  to hold, the follow-

ing statement has to be true. 

0** >−⇔< tttt vssv  (11) 

Like in the simpler cases mentioned above, there may 
remain residual problems to be solved (see e.g. Example 
6). How can a residual problem formally be described?  

 
6.2 Formulation and Solution of Residual 
Problems 

 
If the condition 0* >− tt vs  (Eq. 11) is not true, this is 

equivalent to the statement that the solution so far pro-
vides for a payment that is too low in scenario *

tj  at time 

t. Therefore, for another partial solution ( )1+ljas  at time t in 
scenario *

tj  the following condition – ε being some mar-

ginal value like 0.01 Euro – has to be true:  

( ) ( ) ( ) ε+−≥⇔−−> ++ *1*1 **

tt
laj

ttt
laj

t svsvss tt  (12) 

Apparently, Eq. (12) corresponds to Case IV and the 
constraints formulated there. However, in contrast to Case 
IV the constraint for a minimum cash inflow and a maxi-
mum cash outflow is limited to a specific scenario here. 
Therefore, scenario specific problem matrices Pjal have to 
be introduced that are dependent not only on the scenario 
but also on the solution alternative a and the partial solu-
tion process step l. The integration of a residual problem 
into the scenario specific problem matrix and problem 
vector is accomplished by an adaptation matrix Ajal and 
adaptation vector jala� . 

• For each point in time t without a probability constraint 
and for each point in time t with a satisfied probability 
constraint the elements of the adaptation matrix Ajal and 
adaptation vector jala

�  are set to zero.  
jiaA jal

t
jal

ti ,0;0 ∀==  

• For each point in time t with a probability constraint 
that is not satisfied, the elements of the adaptation ma-
trix Ajal and adaptation vector jala

�  have to be altered 
according to the following rules   

**

*

0;

,0;0;1

t
jal

ttt
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t

t
jal

ti
alj

ti
alj

ti

jjasva

ijjAtiAA
*
t

*
t

*
t

≠∀=+−=

≠∀=≠∀=−=

ε
 

Thus, the residual problem vector can be calculated as 

jaljaljaljal)ja(l apsPp ����

++=+1  (13) 

and the corresponding adapted problem matrix as28 
jalj)ja(l APP +=+1  (14) 

In contrast to Sec. 4.3 and Sec. 5.2 it is not sufficient 
here to check whether another partial solution just satis-
fies the constraints of the residual problem. Instead, it is 
inevitable to check the constraints also based on the com-
plete aggregated solution, since the last integrated partial 
solution may alter the ranking of the tupels in Eq. (10) 
and thus may yield a different result based on Eq. (11). 

 
Example 6: The probability constraint of Mr. Smith in Example 
3 – to receive more than 22,000 Euro after two years (v3 = 22) 
with a probability of at least 90% ( 9.0

*

3 =vw ) – corresponds to 

Case Vb and can formally be written as 
( ) ( ) . 1.09.0122F9.022

3

33 =−≤⇔≥>
���

vw

aaSW   

Mr. Smith is offered a funds investing in European stocks as a 
first (partial) solution (l = 1) within a solution alternative s21 
(a = 2). The funds is expected to yield 35,000 Euro with 25% 
probability in the “best” (w1 = 0.25), 25,000 Euro with 60% 
probability in the “average” (w2 = 0.6), and 18,000 Euro with 
15% probability in the “worst” scenario (w3 = 0.15) in 2 years. 
Probability variable 2

3S  at time t = 3 can be written as 

( )( )( )[ ]15.0 ;186.0 ;2525.0 ;35 3321
3

2221
3

1121
3 ====== wswsws . Sort-

ing this expression yields 
( )( )( )[ ] ( )( )( )[ ]1 0.25; ;352 0.6; ;253 0.15; ;1815.0 ;186.0 ;2525.0 ;35 =Θ . 

Cumulating these probabilities yields 
( )( )( )[ ] ( )( )( )[ ]1 1; ;352 0.75; ;253 0.15; ;181 0.25; ;352 0.6; ;253 0.15; ;18 =Φ . 

This offered solution has to be checked on the probability 
constraint of Mr. Smith from Example 3. The relevant tupel is 
( )3;15.0;18 *

3
*
3

*
3 === jws  and the probability constraint is 

( )1.0;22 33 == vwv  at time t = 3. The point ( )1.0;22 33 == vwv , 

representing the probability constraint, is obviously located 
below the distribution function ( )x2

3F . Thus, the probability 

constraint is not satisfied. Formally, Eq. (11) yields 

                                                           

28  Note that in Eq. (14) it is always the initial problem matrix Pj that is 
used to determine the problem matrix for the solution step (l+1). 



0422183
*
3 ≤−=−=− vs .  

Apparently, another partial solution (l = 2) s22 has to provide 
in the “worst” scenario a cash inflow after two years (t = 3) that 
is greater than 4,000 Euro (v3 = 4), i.e. ε+≥⇔> 44 322

3
322
3 ss

29 

The constraints concerning the two fixed payments today (t = 1) 
and in one year (t = 2) were satisfied. To formally determine the 
residual problem, first the adaptation matrices Aj21 and vectors 

21ja�  have to be determined. 
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Thus, the problem matrices P1 and P2 equal the initial problem 
matrix (see Example 5), whereas P3 is altered. 
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The problem vectors in the “best” and “average” scenario for the 
residual problem are   
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Obviously, the constraints concerning the fixed payments are 
satisfied in these scenarios. For the problem vector in the 
“worst” scenario Eq. (19) yields 
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A feasible solution for the residual problem has to satisfy Eq. (6) 
and Eq. (8). A possible partial solution s22 (l = 2) for this resid-
ual problem is to sell a futures contract with a maturity of two 
years30 and the following payment streams  
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It can be easily shown that this partial solution satisfies Eq. (6) 
as well as Eq. (8) and solves the residual problem. However, this 
does not need to mean in turn that also a global solution has 
been found. The probability constraint has to be checked using 
the (global) solution s2. The new probability variable 2

3S  of 

solution s2 can be described as ( )( )( )[ ]15.0;236.0;2525.0;272
3 =S . 

Sorting these tupels using Eq. (10) yields 
( )( )( )[ ]1;25.0;272;6.0;253;15.0;232

3 =ΘS . Now the probabilities 

have to be accumulated using Eq. (11): 

                                                           

29  For reasons of clarity the marginal variable is not shown in the 
vectors and matrices below but is only used at the end of the calculation 
to check whether the constraint is satisfied. 
30  Abstracting form margin payments, clearing fees, etc., there are no 
real cash inflows or outflows before maturity associated with the pur-
chase of a futures contract. On futures contracts see e.g. (Steiner and 
Bruns 2000) or (Brealey and Myers 1996). 

( ) ( )( )( )[ ]1;1;272;75.0;253;15.0;232
3 =ΘΦ S .The relevant tupel for the 

check on feasibility is (23;0.15;3). Apparently, 
ε≥=−=− 122233

*
3 vs . Thus, the global solution satisfies all 

constraints and solution s2 is a feasible solution. 
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So far, just the conditions to check a probability con-

straint have been discussed in this section. However, there 
may also be desired payment streams in a setting with 
scenarios and a probability distribution on these scenarios 
that correspond to the Cases I to IV. To check a solution 
not only on the probability but on all constraints presented 
above, the following conditions have to be satisfied in 
order to call a solution a feasible solution. 
• Check equality and inequality constraints: 

• Step 1: Check inequality constraints of the  
(residual) problem using the last partial solution sal. 

• Step 2: Check equality constraints of the (residual) 
problem using the last partial solution sal. 

• Check probability constraint: Calculate the distribution 
functions of solution sa for each necessary scenario j 
and point in time t.  

If and only if both checks are satisfied with respect to 
the last partial solution sal and the complete solution sa, 
the solution is a feasible solution sa. 

It has just been shown formally how feasible solutions 
can be generated in case of fixed, arbitrary, minimum and 
maximum payments as well as minimum payments with a 
minimal probability and maximum payments with a 
maximal probability.  

 
7. Discussion and Limitations of the Model 

 
The model contributes to an improvement in the quality 
of the consultation process in at least two ways: First, due 
to the obligatory starting point of the process with the 
financial problem of the customer, a product centric view 
can be circumvented. Second, the model fosters the inte-
gration of already existent local optimization knowledge. 
Thus, applications that have already been developed for a 
local optimization can still be used if the implementation 
provides for a sufficient modularization. 

Talking about the convergence towards a superior so-
lution, so far the model has not been implemented in the 
form presented above. Thus, no empirical tests could be 
carried out, whether a convergence can be expected. 
However, there are reasons for hope that the hybrid rec-
ognition and search process converges towards qualita-
tively good solutions. First, combination knowledge that 
is already available can be incorporated in the solution 
process. Thus, at least standard solutions that are widely 
offered today will be generated and in so far the model 



will at least ensure the status quo of the quality of rec-
ommendations in the financial services sector today. Sec-
ond, if the principle of value additivity holds, it should be 
possible to generate feasible solutions that are favorable 
with respect to an evaluation function. If the net present 
value (NPV) is applied as objective function, suppose two 
locally optimized partial solutions have been generated 
that together do not satisfy the constraints but generate a 
substantially positive NPV. The third partial solution just 
aims at solving the residual problem. Even if this third 
partial solution generates a slightly negative NPV, the 
integrated global solution will most likely still provide for 
a positive NPV. Third, in the ALLFIWIB project already 
mentioned above, it could be shown in a prototypical 
implementation that superior solutions are generated and 
can be expected using this approach. Though in the ALL-
FIWIB project just the case of certainty has been covered, 
since the algebra is not significantly more complicated the 
empirical evidence might be a cautious proxy for the 
convergence towards a superior solution of the model 
under uncertainty or risk. Nevertheless, this issue is cer-
tainly still an open research question. 

Besides the question of convergence, there are another 
two broad issues that limit the above model to some ex-
tent. First, the representation of risk can be criticized. 
Especially the constraints that can be formulated by the 
customer concerning minimum cash inflows or maximum 
cash outflows – eventually with a specific probability – 
just capture shortfall risks but do not take into account 
any chances. Applying an appropriate decision rule, this 
situation can be relaxed. If the decision rule takes into 
account also chances as opposed to just focusing on the 
downside risk, a well balanced decision can be safe-
guarded. Talking about the shortfall risk, it can be faulted 
that it is not combined with the actual shortfall loss, once 
the shortfall situation occurs.31 This is a major deficiency 
but could be integrated relatively easy into the model. In 
addition, the probabilities of occurrence were assumed to 
be constant in time, across all scenarios and across all 
solutions. This may be in some instances an oversimplifi-
cation, however, the introduction of time-specific prob-
abilities into the model would not pose a big difficulty. 
Knowledge about correlation of two or more financial 
products that may be used in an optimization process can 
only be implicitly used between two payment streams. 
Thus, the opportunity of risk diversification can hardly be 
formalized between different partial solutions. Neverthe-
less, correlation can be accounted for explicitly within a 
partial solution. In a setting where partial solutions are 
calculated and proposed by independent software agents 
that represent a specific product domain, e.g. stocks, this 
does not pose a prohibitive setback for the model. Impor-
tant diversification effects can be captured by this way. 
                                                           

31  A detailed representation and criticism of the shortfall risk can be 
found in [1]. 

But, to broaden the scope to the global financial situation 
of the customer is still an open research issue that should 
be focused on in future research efforts. The issue of risk 
diversification is the connection to the second major limi-
tation of the model. 

Value additivity is the basic underlying of this model, 
which builds on the simple additivity of partial solutions, 
i.e. their payment streams, to form a global solution for a 
customer problem. The total value of a solution is the sum 
of its parts, i.e. its partial solutions. Along the same lines, 
a problem can be decoupled in partial problem compo-
nents if necessary. Brealey and Myers (cf. [4]) nicely 
point out and show that given a perfect capital market, a 
firm’s total value is just the sum of its parts. Thus, the 
value additivity principle holds: Investors are not willing 
to pay extra for diversification effects since they can di-
versify in their own portfolio. But the model was devel-
oped to work on the level of the customer, hence, where 
diversification has to be performed and should be an im-
portant issue. As already mentioned above, locally, i.e. 
concerning partial solutions, diversification can be con-
veniently taken into account, globally not yet. Analo-
gously the constant marginal tax rate may in a number of 
cases constitute an oversimplification. It is well imagin-
able that a partial solution generates such high tax de-
ductible amounts that the marginal tax rate would be 
lowered after the integration of this partial solution. How-
ever, this would most likely have effects on all partial 
solutions already integrated and also on the efficiency of 
the initial portfolio. 
 
8. Conclusion 

 
A model has been presented that allows for the inclusion 
of uncertainty and risk into the formulation of financial 
problems by the customer as well as in the solution proc-
ess, i.e. intelligently bundling financial products to form a 
superior solution for a specific customer problem. The 
presented formal model is just a first step to better incor-
porate risk in the financial planning process and facilitate 
the use of IT for the solution generation process. Espe-
cially customer groups with comparably structured prob-
lems and a limited problem domain such as the Affluent 
segment may benefit substantially by an IT enabled finan-
cial planning concerning the solution generation process. 
Today, they cannot be serviced appropriately due to the 
prohibitive high costs, but tomorrow supported by ade-
quate applications in combination with well-trained staff 
this may become a sustainable competitive advantage. 
Future research conducted at the Competence Center IT & 
Financial Services at the University of Augsburg 
(http://www.wi-if.de) will focus on these issues. 
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