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Abstract—Incontinence patients suffering from neurogenic
bladder dysfunction lack information about the filling level of
their urinary bladder. A real-time prediction of the filling level of
their bladder could support them managing their daily routines.
In this study, we developed a system that predicts the bladder
filling level based on user-tracked fluid intake. The system collects
and analyzes the data to predict the current filling level of the
bladder. Displayed in an app, users can optimize their micturition
frequency receiving an alert when a critical level is reached. In
the same way users can compare the predicted- and their target
filling level.

Index Terms—app, chronic disease management, data analyt-
ics, eHealth, inContAlert, incontinence, prediction

I. INTRODUCTION AND MOTIVATION

Neurogenic bladder dysfunction is a disease that affects,
for example, people suffering from Multiple Sclerosis or
Paraplegia. Respective patients do not feel the filling of their
bladder anymore. They must empty their bladder according to
manual drinking or time protocols and a good guess, how full
their bladder is [5]. The body, however, does not process the
fluids consumed in a way that patients could always empty
their bladder the same time-span after an intake and expect
the same amount to be urinated. The processing of fluids
is affected by drinking and eating intakes, as well as fluid
loss through, for example, breathing, sweating, dejection, and
micturition. Depending on different parameters such as time
of the day, physical state, and hydration status, the speed and
amount of fluid processed through the body differs [2].

If patients do not empty their bladder in time, they run
the risk of an uncontrolled loss of urine. Additionally and
even worse, an overfilled bladder can cause a backflow of
the urine and consequent damage of the kidneys. Reducing
these risks, patients tend to empty their bladder in a high
frequency (i.e., after three hours) regardless of whether the
bladder is full or not. The bladder, in contrast, needs to be
filled up regularly to not degenerate. Summarized, the missing
knowledge of patients on how full their bladder is leads to the
risk of uncontrolled loss of urine, damage to the kidneys, and

a degenerating bladder. All of this leads to stigmatization of
the patients [9], is health threatening, and reduces a patient’s
quality of life [4] [7].

II. EXPERIMENTAL SETUP

Digital technology and advanced analytics can help to derive
the real-time filling level of the bladder. Such health-tech could
provide the information needed for improving micturition
management. The study aims at predicting the filling level
of the urinary bladder of a person as accurate as possible by
recording hydration-relevant processes of the body. To develop
such a system, we derived requirements for the software
application and the data used for the measurement [3]. Data
must be collected as continuously and thoroughly as possible.
Data generation must be integrated into the daily routines of
the test persons in a simple way to prevent fragmentary data
[8]. Other options are to track the intake and loss through
an observing person, or to fully-automate the tracking on the
base of sensors monitoring intake and loss to reduce the risk
of logging mistakes. Staffing an observing person would have
compromised the convenience of our experiment. Deploying
an extensive sensor-based monitoring system, again, was not
feasible as such setting cannot be used in the real-world. For
this reason, we decided to develop a smartphone app as a
medium for convenient recording of fluid intake, such as eating
and drinking, and fluid loss, such as micturition or heavy
physical activity [2]. Fig. 1 shows the user interface of above
mentioned app with three different logging options.

Qualitative and quantitative options exist to track fluid
intake and loss. To minimize random effects within our exper-
imental setup, we determined the conditions for the manual
data collection precisely. Fluid intake and micturition were
recorded with measuring jugs that had a tolerance range of
10 ml each. To assure comparable conditions, every proband
logged the amount of fluid intake at the moment the intake
happened. The weight loss of sweating due to physical ac-
tivity was determined by a before-and-after comparison. The
experiments were limited to males without bladder dysfunction
between 20 and 30 years of age. Besides, we supposed that
every proband emptied the bladder fully so that no fluid re-978-1-7281-6215-7/20/$31.00 ©2020 European Union



Figure 1: Graphical User Interface with the Functionalities Micturition Tracking, Fluid Intake, Food Intake

mained in the bladder. All probands were constrained to drink
exclusively non-alcoholic beverages and respect a normal diet.
Each participant logged data during the same seven complete
days. The daily routines of the persons did not include any
strenuous physical work, and they were in the same city to
ensure a comparable environment. As the experimental days
were not subsequent, the logging began just after the first
micturition of a day to have a common starting point.

III. DATA ANALYSIS

A. Mathematical Foundation

To derive the filling level of the urinary bladder, we mathe-
matically described the filling by the Gaussian curve [1] Θ(x)
(c.f., Formula (1)), where µ is set to be the mean delay and
σ to be the standard deviation. We optimized the variables µ
and σ for the first test person and applied them to the others.

Θ(x) =
1

σ
√

2π
e−

1
2 (
x−µ
σ )2 (1)

B. Implementation

The kidneys start to process the fluid intake to urine after a
certain time delay. During this delay no fluid is processed in
the mathematical model. After µ - 3*σ minutes the processing
by the Gaussian curve starts and urine enters the bladder. In
our experimental setting we found that µ was in the range
of [40; 60] minutes and σ in the range of [3; 6] minutes for
all probands. Every minute the integral over the curve is
evaluated, until the overall integral of the Gaussian is equal
to the amount of fluid taken in. For every proband a fixed
amount of fluid loss for each minute was deducted. This value

was determined experimentally to be per minute in the range
of [0; 0.4] ml for all probands.

Every fluid intake causes a Gaussian curve based on the
Formula (1) to be processed with the above mentioned delay.
Similarly the food intake induces a Gaussian curve Θ(x)
to be processed with a time delay but it was found to be
irrelevant for the prediction accuracy. Further, food intake
should influence the fluid absorption by a certain delay, but we
found that this does not influence the prediction significantly.
The sport data accounted for an additional deduct on top of
the natural fluid loss per minute. Depending on the intensity,
we experimentally determined an additional loss between the
range of [5;30] ml per minute for low intensity, [5;30] ml
per minute for medium intensity, and [5;30] ml per minute for
high intensity. In the case of dehydration as a result of sport or
natural loss, the negative balance had to be first balanced out
by fluid intake before the algorithm started again to process
the fluid intake to urine.

Every time a micturition takes place, the bladder filling level
is reset to 0 ml. The filling level still increases after a micturi-
tion in the case that remaining fluid is still being processed
[1]. To account for natural filling restrictions through kidney
capacities, we limited the maximum filling rate of the bladder
to the range of [4;8] ml per min. Each day, we analyzed
the environment and adapted the parameters influenced by
the environment, such as the loss of fluid that is influenced
by the environmental temperature. We adapted the parameters
manually as an automated adaptation of influencing variables
was out of scope for our study. Fig. 2 depicts the exemplary
filling curve of the bladder of a proband during the course of a
day. The bladder fills according to the Gaussian Curve Θ and



Figure 2: Predictions of the Filling Curves of the Bladder a Proband During the Course of a Day

our predetermined parameters, and empties when a micturition
takes place. Multiple Gaussian curves can overlap and add up
onto each other accounting for the deformed lines in Fig. 2.

C. Evaluation

To evaluate the model, our algorithm compares the predicted
filling level with the amount of urine collected by the probands
in the measuring jug. Using four days (i.e., test days) of the
first proband, we determined experimentally which parameters
resembled the reality best. To validate our assumptions, we
applied the so-determined parameters to the remaining days
(i.e., validation days) of the first and all other probands. We
then calculated the relative error η of the validation data set.
Hereby, η is calculated using Formula (2) where δtrue is the
value measured by the probands and δpred is the prediction
made by the algorithm:

η =
δtrue − δpred

δtrue
(2)

η of a validation day of one proband was calculated using
the mean of each η of all micturitions during that day.
Furthermore, η of all validation days of one person was
calculated using the mean of all the η of all validation days for
this proband. After adjusting parameters to be optimal within
their ranges for a respective day, η of the test days was .29.
After applying these specific parameters to the validation days,
an η of .33 was found for the proband whose data was partially
used for the test days. When applied to all the other probands,
η was .49.

The test day with the best prediction for one proband
reached an η of .0709. Optimizing the validation days with
the ranges found in the test days resulted in a mean η of 0.38
for all test persons.

IV. CONCLUSION

We developed a system, which predicts the bladder filling
level based on user-tracked fluid intake and loss. The system
collects and analyzes the data to predict the current filling
level of the bladder. We showed that with an individual

calibration acceptable relative prediction errors of less than
10 % are possible. Displayed in an app, users can optimize
their micturition frequency comparing the predicted and their
target filling level. For patients who must rely on such a
system to manage their daily routines, the predictive system
can add great value. Variables of disturbance seem to be the
environment leading to altered loss of fluids and the proband-
dependent tracking due to possible logging mistakes. Future
research is invited to validate our findings with additional data,
and to develop systems of fully-automated tracking of fluid
intake and loss. Furthermore, examining the environmental
factors influencing the processing of fluids in the body is
a promising path to further explain deviations and finally
improve the prediction.
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