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Abstract

Distributed Ledger Technologies (DLT) promise
to revolutionize business ecosystems by permitting
secure transactions without intermediaries. A widely
recognized challenge that inhibits the uptake of DLT is
scalability and performance. Hence, quantifying
key metrics such as throughput and latency is
crucial for designing DLT-based infrastructures,
applications, and ecosystems. However, current
benchmarking frameworks for blockchains' do not
cover the whole benchmarking process; impeding
transparent comparisons of different DLT networks.
In this paper, we present the Distributed Ledger
Performance Scan (DLPS), an open-source® framework
for end-to-end performance characterizations of
blockchains, addressing the need to transparently
and automatically evaluate the performance of highly
customizable configurations. We describe our new
framework and argue that it significantly improves
existing DLT benchmarking solutions. To demonstrate
the capabilities of the DLPS, we also summarize the
main results obtained from a series of experiments that
we have conducted with it, giving a first comprehensive
comparison of essential scalability properties of several
commonly used enterprise blockchains.

Istrictly speaking, blockchains are a subset of Distributed Ledger
Technologies (DLT), but in this work, we will use the terms
interchangeably since all distributed ledgers we investigated are
blockchains

2the DLPS is available at https://github.com/
DLPS-Framework
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1. Introduction

DLT are expected to play an important role in
tomorrow’s IT landscape [1]. Nakamoto introduced
the first blockchain, Bitcoin, in 2008 and established a
Peer-to-Peer (P2P) digital currency without the need for
trusted intermediaries such as banks [2]. Buterin et al.
then extended the scope of blockchain technology
from financial transactions to the execution of general
process logic and implemented respective capabilities
in Ethereum [3]. This finally realized a vision
first communicated by Szabo, where so-called Smart
Contracts (SCs) could be concluded digitally and on a
P2P basis, without any trusted intermediary [4]. Since
then, a large number of blockchain-based use cases have
emerged, outreaching the financial sector [5, 6].

To secure a Distributed Ledger (DL) without
a distinguished administrator against malicious
behavior, storing data and performing operations
on the ledger is performed redundantly on all
participating nodes. A suitable tamper-sensitive data
structure (often Merkle-trees) and usage of public-key
cryptography make retrospective manipulations easily
detectable and allow for secure authentication [7].
A consensus mechanism, a mixture of economic
incentives and cryptographic methods, ensures that
the presupposed benevolent majority agrees on which
transactions to operate. Redundancy and the additional
overhead caused by the consensus mechanism, however,
lead to a significantly decreased performance of DLs
when compared to centrally managed databases [7].
This makes building decentralized applications very
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challenging as established DLT networks usually cannot
elastically scale on demand [8]. Therefore, an in-depth
understanding of DLT performance becomes essential,
as the performance poses a key aspect for the viability
of emerging decentralized applications.

To address the performance requirements of
enterprise blockchain solutions, permissioned DLs
have been developed. They restrict participation,
allowing for other types of consensus mechanisms that
generally exhibit finality and lower latency. Moreover,
in an enterprise scenario, hardware and bandwidth
restrictions are less relevant than in a permissionless
system. However, enterprise [T-systems must also meet
high performance requirements, and throughput of
permissioned DLT still lags significantly behind that of
their centralized counterparts. Consequently, research
considers performance a major obstacle for productive
usage of enterprise DLT implementations [9].

Unfortunately, literature only provides limited
knowledge regarding the performance of enterprise
blockchain solutions, and for the few currently available
results, we also discovered quite different performance
results. Moreover, blockchain implementations
have already become heterogeneous and are
quickly evolving, so no generally acknowledged
benchmarking tool has been established to comprise
all of these particularities. Moreover, existing work
on benchmarking does not provide clear definitions of
key metrics such as throughput and latency, and do not
specify the algorithms that they use to measure these
key metrics, which leads to a lack of transparency and
reproducibility.

In this paper, we address this research gap by
presenting a transparent and highly flexible, open-source
framework for obtaining reliable performance data of
several enterprise DLT solutions. It was implemented
in an iterative approach within an enterprise project that
needed reliable performance comparisons to support the
choice of enterprise blockchain technology for their use
case. We argue that the DLPS covers the deficiencies of
existing approaches and allows to measure well-defined
quantitative key performance indicators of different
DLT with a universal, comprehensive and transparent
benchmarking algorithm. We also present and discuss
the results of a first systematic scalability comparison of
the DLT that we have already integrated to compare our
framework with previous solutions and to demonstrate
that the DLPS is applicable to a variety of technologies.
To the best of our knowledge, the range of investigated
DLT and also the variety of network sizes that we tested
is, so far, unique.

The remainder of this paper is structured as follows:
Sec. 2 gives an introduction to essential background

concepts and presents some of the permissioned
DLT that we have already integrated into the DLPS.
Sec. 3 provides an overview of existing work on
benchmarking permissioned DLT and sketches their
main shortcomings. We then introduce the DLPS in
Sec. 4. In Sec. 5, we present and discuss the main results
of our exemplary scalability and performance analyses
in order to demonstrate the capabilities of the DLPS. We
conclude with a summary and our plans for future work
in Sec. 6.

2. Background
2.1. Consensus mechanisms

For permissionless blockchains, which constitute the
technology behind cryptocurrencies, the most common
consensus mechanisms are Proof-of-Work (PoW) and
Proof-of-Stake (PoS). They tie voting power in the
system to some scarce resource — energy in PoW and
capital in PoS — to defend the system against Sybil
attacks. These consensus mechanisms generally exhibit
high latency and do not provide finality, implying that
even after some nodes have performed a particular
transaction, one has to wait minutes to hours before
the probability that this transaction will be replaced
is sufficiently small [10]. Moreover, PoW is very
energy-intensive [11]. For permissioned blockchains,
voting-based consensus mechanisms are applicable
because participation in consensus is restricted. These
consensus mechanisms provide finality and also much
lower latency, but are only viable for small-scale
networks.

In most voting-based consensus mechanisms, the
participants (i.e., nodes) usually agree on a common
leader, which proposes new transactions and distributes
them to the other nodes called followers. In a consensus
mechanism that exhibits Crash Fault Tolerance (CFT),
the other nodes will realize a crash of their leader and
elect a new leader. However, the followers blindly rely
on their leader as long as it is active, so a malicious
leader can be problematic. Prominent examples for a
CFT consensus mechanism are Kafka and RAFT [12].
Since leader election needs a majority vote, a network
must be of at least size 2f+1 to handle f crashing nodes.

By contrast, consensus mechanisms with Byzantine
Fault Tolerance (BFT) can deal not only with crashes
but also with arbitrary malicious behavior.  Like
CFT protocols, an elected leader proposes new blocks,
while multiple cross-checks ensure consistency among
the non-faulty nodes. Therefore, the communication
overhead of a BFT protocol grows faster in the
number of nodes than for a CFT protocol. In
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general, the best case accomplishable is that a
network of size 3f+1 can deal with f malicious
nodes [13]. Popular implementations are Practical BFT
(PBFT) [14], Istanbul BFT (IBFT) [15], and Redundant
BFT (RBFT) [16]. RBFT is an advancement of PBFT
which offers very reliable performance also under the
actual presence of malicious behaviour [16].

Proof-of-Authority (PoA) consensus mechanisms
have been implemented to achieve an approximation
to CFT or BFT at less overhead. Prominent examples
thereof are Clique, and Aura [17]. They generally use
a simplified leader election and leave out different steps
thereafter as compared to PBFT protocols. In [17], the
authors question whether these consensus mechanisms
are adequate for blockchains because they cannot
guarantee data consistency among all non-faulty nodes
(known as safety).

A large variety of other consensus mechanisms
exists, but so far, these have had only little adoption.
One that should be mentioned in this paper is Proof of
Elapsed Time (PoET), which uses trusted hardware (the
Intel SGX) to establish tamper-proof random number
generation for nodes, which then determines who may
publish the next block. It claims to offer solid
performance even in permissioned networks with a
larger number of validators [18].

2.2. Permissioned Blockchains

We now give a short overview of the permissioned
blockchain systems currently integrated in the DLPS.
All of them are open-source, and — apart from
Indy — provide means to implement Turing-complete
transaction logic, also know as SCs. Table 1 summarizes
these DLT and some of their characteristics at the time
that we conducted our experiments presented in Sec. 5.

DLT \ Consensus SC Languages Version
Eth. (Geth) PoA (Clique) Solidity 1.9.8
Eth. (Parity) PoA (Aura) Solidity 2.5.10
Fabric Solo, Kafka, RAFT Go, Javascript 144
Indy RBFT - 1.12.0
Quorum RAFT, IBFT Solidity 230
Sawtooth RAFT, PBFT, PoET,  Go, Python, . . . 1.2

Table 1. Comparison of the DLT that we integrated
in the DLPS and evaluated in the experiments.

Ethereum was the first public blockchain which
supported SCs, enabling guaranteed and tamper-proof
execution of program code [19] in the so-called
Ethereum Virtual Machine (EVM). It is developed
by the Ethereum foundation. = While the popular
public chain currently uses PoW, Private Ethereum
Networks have been developed on which one can

capitalize on other consensus mechanisms. The two
most popular Ethereum clients for private networks
on which we focus in this work, Geth and Parity,
use the PoA consensus mechanisms Clique and Aura
respectively [17].

Fabric is a framework for building private
permissioned blockchains. Fabric is special among
other DLT architectures for one main reason: Most
blockchains (both permissionless and permissioned
ones) use a so-called validate-order-execute
paradigm [20]: They first check whether a transaction is
legitimate (validate), then agree on the transactions and
their sequential arrangement in the next block through
consensus (order), and finally apply the transactions
on their local ledger through the blockchain’s state
transition function (execute). By contrast, Fabric entails
an execute-order-validate paradigm: At first, according
to a so-called endorsement policy, a subset of the nodes
simulates the outcome of performing a transaction
and signs it (execute). The client collects the required
endorsements (specified by the SC that, for example,
three out of five nodes need to agree) and hands them
to the ordering service, which collects the transactions,
checks whether the endorsement policy is satisfied, puts
them in blocks, and distributes the blocks to all nodes
(order). Finally, when nodes apply the transactions to
their ledger, they have to check for read-write collisions
as simulations are not necessarily ordered (validate). By
this design, the degree of redundancy can be customized
according to the needs of each SC [20]. Fabric currently
offers 3 different kinds of consensus: Solo (i.e., a single
ordering node, mainly intended for testing purposes),
Kafka, and RAFT. It also supports different databases
for the transaction log and the current world state,
namely, LevelDB and CouchDB [21].

Indy is a public permissioned blockchain.
Participation in consensus is thus restricted while
read access is not. Indy is developed mainly for
specific purposes in identity management and hence
optimized for reading operations because they will
occur much more frequently. Therefore, all transactions
are signed by all nodes and include a timestamp such
that querying from a single node is still sufficient to rule
out undetected malicious answers. Indy runs Plenum
as a consensus mechanism, which is a slightly adapted
version of RBFT. In contrast to all the other blockchains
presented here, Indy does not support arbitrary SCs,
but only a basic set of transactions related to identity
management [22].

Quorum is a private permissioned blockchain
project led by J.P. Morgan. It originates from
Ethereum but aims to allow for business applications
that are not feasible on the public main net due to
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performance restrictions. Quorum supports RAFT and
IBFT consensus mechanism [23].

Sawtooth is another permissioned blockchain
project similar to Fabric, Sawtooth separates between
the application and core system level, allowing using
different programming languages for SC development.
Sawtooth supports multiple consensus mechanisms,
namely RAFT, PBFT, and PoET, which one can even
switch at runtime [18].

3. Related Work

The performance of permissionless blockchains can
be monitored by analyzing publicly accessible data,
and their architecture is not customizable for a specific
use case. Consequently, there is only limited need
to conduct benchmarking in the context of use case
technology selection and optimization. By contrast,
benchmarks for permissioned DLT are desperately
needed for enterprises in designing decentralized
applications. Originally, we intended to collect
available performance results or existing benchmarking
frameworks to decide for a specific permissioned
network in an enterprise project. For this purpose,
we conducted a literature research for the search
string “(blockchain OR distributed ledger technology)
AND (performance OR throughput OR latency) AND
(benchmarking OR measurement OR evaluation OR
analysis)” on the Google Scholar, ACM DL, and IEEE
Explore databases. @~ We found that there are two
existing frameworks, and most articles that study the
performance of specific blockchains refer to one of
these.

The first systematic benchmarking framework for
permissioned blockchains was Blockbench. It relies
on established YCSB and Smallbank benchmarks and
integrates private Ethereum (Geth and Parity), Fabric,
and Quorum. The framework is open-source and
modular and provides smart contracts to evaluate
different workloads. Nevertheless, beyond reacting to
some blockchain-related updates, there have not been
significant advancements since 2017. Dinh et al. [24]
use Blockbench for an in-depth comparison of the
performance of Geth, Parity, and a by 2019 outdated
version of Fabric.

The other prominent available framework is Caliper.
It was originally developed to benchmark only DLT
of the Hyperledger project, but now also integrates
Ethereum-based DLT. Caliper contains different basic
SCs, which trigger particularly CPU- or i/o-heavy
transactions.  These experiments are valuable for
grasping different characteristics of performance.

In our literature review, we found that while
there have been valuable performance measurements
on various permissioned DLT, the data is highly
fragmented over various contributions, and none of the
papers we encountered gives a full description of their
benchmarking process or setup. Consequently, the lack
of a fully transparent description of how performance
metrics were obtained leads to a serious lack of
comparability across different works. [25] structure
some of the related work that we found in our literature
review, and already from this subset it gets evident that
benchmarking data is highly fragmented across multiple
works, the results generally vary significantly, and it
is particularly to compare the results. In our opinion,
the reason is that yet no benchmarking framework
is sufficiently standardized to provide comparability,
highly customizable, and at the same time, ease of
use. For example, none of the publications from
our literature review provides a precise description
of the overall definitions and assumptions underlying
the measurements of the key performance indicators
throughput and latency. Also, they leave the setup
of blockchain and client nodes to the user, which
both raises the hurdle to start benchmarking and also
impairs comparability because different benchmarks
happen on different infrastructures. Integrating several
DLT in a single framework is a huge challenge
because blockchain technologies are quickly evolving,
which often implies shortcomings in the documentation,
stability issues, and difficulties in getting familiar with
the technology and starting a functioning test network.
This is particularly important when conceptualizing
enterprise blockchain architectures, in which parameters
such as the number of nodes or the block-time could
be tuned according to requirements, and a tool that
allows testing the performance for different choices
of parameters would make things much easier for the
engineers.

Driven by the motivation to improve DLT
benchmarking and build a standardized framework that
is easily accessible and useful to a broad community,
as well as to obtain reliable comparisons of DLT
performance for enterprises striving to adopt DLT
solutions, we took this challenge and implemented the
DLPS as an end-to-end pipeline with fully automatic
node and client setup, benchmarking, and evaluation.
This brings the advantage of built-in scalability of
the network size in experiments, as well as an easy
setup for researchers and practitioners who are not
experts in each of the integrated DLT. At every point,
we implemented the blockchain network in the way
suggested in the respective development repository, with
a client-node architecture that seemed close to how one
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would implement it in reality (e.g., the provided SDK
or popular software such as web3 for Ethereum-like
blockchains). Inspired by the functionality of Caliper,
we have also integrated different workloads. Currently,
we offer doNothing (empty workload), writeData
(writing a single key-value pair), matrixMultiplication
(CPU-heavy workload), and writeMuchData (i/o- heavy
workload).

While the benchmarking process itself is
standardized, the blockchain, node, and SC
functionalities are highly configurable through a
single config file, thus providing highly customizable
workloads and configurations while maintaining a
standardized benchmarking process. By defining and
implementing the intuitive benchmarking logic as
described in Sec. 4 and using a realistic client-node
setup as well as developing representative workloads
that capture the characteristics of many real-world use
cases, we also naturally adopt standard best practices
for computer systems evaluation [26,27].

4. The Distributed Ledger Performance
Scan

4.1. Definition of key metrics

Following most of the related work referenced in
Sec. 3, we focus on the key performance indicators
throughput and latency. Since we could not find a clear
definition of these metrics in any of the related work, we
start with developing precise definitions, on top of which
we can implement a generic algorithm to measure them.

Generally speaking, if we send requests at a
certain frequency froq to a DL, this will result in
a corresponding response rate fresp = fresp(freq)
of successfully performed transactions. We define
maximum sustainable throughput f as the maximum
reachable rate fi.sp which the blockchain can reliably
process over a longer period (e.g., one minute) when we
try different request rates freq:

f = max{fresp(freq) : freq > O} (D)

Latency [ is generally defined as the average time
between sending a request and receiving confirmation
that it was operated on a sufficient number of nodes
(e.g., on at least 2/3 of all nodes). This quantity may
depend on the load which the system is currently facing,
80! = I( freq)- We define latency (at stress) as latency at
precisely the request rate at which we attain maximum
sustainable throughput (see (1)):

fresP(freq) = f 2

where

[ = l(freq)

50

requests
linear(requests): y = 25.02 + 0.2
—— responses

40

linear(responses): y = 24.62 — 5.1

301
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Cumulative number of transactions
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Figure 1. Sending requests to a DLT and getting
responses.

The approach which we have just sketched relies
on a few assumptions. For example, we assume that
throughput depends only on f,.q, While a real system
will exhibit time-dependent fluctuations. Furthermore,
f,eq is not well-defined if f,csp does not have a unique
maximum. However, the results of our experiments,
which we describe later, suggest that actually, the reality
is quite close to our simplification, and — not surprisingly
— that f ~ freq. The highest fresp is thus achieved
when the request rate matches the maximum sustainable
throughput.

To measure f, we implemented the following
algorithm: We start sending requests from some clients
to some blockchain nodes at a fixed total frequency freq
for a certain duration. For each of the asynchronous
requests, we record both the time the client sends
it and the time the associated response confirming
its execution arrives at the client. Fig. 1 displays
data obtained from sending requests to a small Fabric
network. It illustrates that by plotting the cumulative
number of requests resp. responses against time,
we can define fioq and fresp as the slope of their
corresponding linear regressions: Indeed, differences
Ay on the y-axis in a period Az correspond to the
number of transactions sent resp. completed in this
period, so the slope % is precisely the corresponding
request resp. response rate. This definition is very
robust because it is insensitive to a few outliers. In the
picture, we observe that froq = fresp. Note also that in
Fig. 1, responses are received in batches of around 10
transactions, representing new, confirmed blocks.

As long as the linear regressions of request and
response curves are parallel (i.e., fresp(freq) & freq)s
the average time between sending and receiving a
transaction is given by the shift between the intercepts
of the two regressions with the z-axis (this is a short
computation). In Fig. 1, latency is therefore given by
approx. 0.2s. However, if fresp(freq) # freq» due
to a potentially growing queue, the former definition
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of latency in terms of average delay depends on the
duration of the experiment while the latter does not. We
therefore define latency [( fieq) as the shift between the
z-intercepts of the regressions y; = f; - « + t; where

i € {req,resp}:

t t
U freq) = 72 — =2 3)
( Q) freq fresp

As long as the blockchain can handle the rate of
requests, the two regressions will stay approximately
parallel. fresp(freq) is monotonically increasing and
close to the diagonal of the first quadrant. However,
successively increasing froq, at some point, the
blockchain will not be able to keep up with the rate
of requests anymore. Due to overload or congestion,
we then expect that further increasing froq will
decrease fresp. We can approximate f experimentally
by successively increasing fioq until the regression
slopes freq and fresp diverge, and, by (1), obtain an
approximation for f by taking the maximum value for
fresp Over all these trials. Fig. 2 shows one example
for such a ramping series of measurements where we
successively increase froq by 25 tx/s. As expected, after
a range where fiosp & freq, throughput first stagnates
and then declines. Further increasing fioq causes a
drop in efficiency, the ratio of successfully operated
transactions. Therefore, we can reasonably state that
the maximum sustainable throughput f is approximately
200 tx/s in Figure 2.

] 0.25 + 100
200 I
\ —_
a \ B
2 F0.20 teo &
£ 150 &
& w a
< 015 = 60 =
[ > o
w1001 \ % O
9 \ F0.10 £ r40 3
S effectivity Yo _ - - s
& 50 —8— throughput 3
& -»- max. CPU [0.05 20 %
=&~ latency
0 v v v v T —-0.00 L0
0 50 100 150 200 250 300
Request rate fioq (tx/s)

Figure 2. Ramping and localization logic

To find the bottleneck responsible for the bound on
throughput, we monitor the most relevant resource stats
on nodes and clients. Here, for simplicity, we only
discuss CPU usage on blockchain nodes. As expected,
CPU usage is increasing in froq and, therefore, with
stress posed on the blockchain, it might well be the
limiting resource in this case. On the other hand, the
chart depicting latency seems surprising at first: One
might assume that latency is also increasing in freq.
However, since responses are bundled in blocks, the

creation of which is normally triggered by timeouts or
reaching a certain number of pending transactions, it
seems reasonable that for higher f.q, more blocks are
produced per time and therefore the green staircase in
Fig. 1 gets finer and moves closer to the request curve.
Obviously, single transactions show a latency of only
0.1s, and in Fig. 2, we can see that this is also close
to the minimum overall latency at fr.q ~ 150. If we
further increase feq, the stress on the system dominates
and — in line with intuition — latency increases until
we reach freq ~ 200. For fioq > 200, we then see
an unexpected drop in latency. However, we relativize
this since, due to congestion and growing instability
resulting from significant overload, the assumption that
the response curve is close to a straight line turns out to
be wrong. Hence, the derivation of latency is no more
meaningful in this regime.

The heuristics and observations described above
suggest an intuitive algorithm to efficiently determine f
and [ fora given DLT system. We have implemented this
algorithm in the DLPS and display a simplification of
the flowchart in Fig. 3. Before starting our experiment,
we define parameters that are fixed throughout the whole
benchmarking process, such as the duration of a single
measurement period. We also specify an initial request
frequency base and a step (25 tx/s in Figure 2) by which
we increase froq Whenever the blockchain kept pace
in the last trial. We have multiple criteria based on
which we can decide whether or not a blockchain kept
pace. The most crucial one ensures that f,.s, may not
significantly deviate from freq:

fresp
frcq

— 1‘ <4, for reasonably small §.  (4)

Moreover, we ensure that the response curve is actually
close to a straight line by requiring that the coefficient
of determination for the response curve is close to 1. To
account for fluctuations in the system, we repeat a single
trial multiple times if the blockchain cannot keep up
according to our decision rule, because we do not want
pure coincidence to stop a series as depicted in Figure 2
as long as we have not reached f . We also require that
a few (e.g., more than 3) successive increases of freq
have happened during the ramping series because since
we want to measure maximum sustainable throughput,
we also have to rule out that by coincidence, the system
managed to deal with a very high rate for the duration.

Finally, when we have completed a ramping series,
we run another ramping series with base and step
suitably adjusted. We distinguish localization runs,
in which we choose base and step to get a higher
resolution in the region around freq from the last
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Localization loop:
Start with default
base and step

2l

Ramping loop:
Start with
freq = base

Send requests
at rate fuq
for duration;

Choose base
and step for next
localization run

Try again with
same froq

Log transaction-
and system-related
data;

Collect and

yes evaluate all data

Figure 3. The benchmarking process flowchart.

ramping series (and significantly smaller values in kind
the last series failed), and repetition runs in which we
use the last value for base and step from a series of
localization runs multiple times to obtain a statistically
valid result. During all measurements, the DLPS
uses established software for monitoring resources on
both nodes and clients such as overall and single-core
CPU usage (mpstat), memory (vmstat), disk utilization
(iostat), network latencies (ping), and network traffic
(ifstat).

4.2. Technical architecture

The DLPS framework consists of three Python
packages to coordinate nodes and clients, trigger
benchmarking functionalities, and aggregate and
structure corresponding data. Fig. 4 shows the technical
architecture of the DLPS.

The package BlockchainFormation contains
configurable and fully automatic startup-, restart-,
and shutdown scripts for different permissioned
blockchains. Since we want to offer highly customizable
benchmarks, our NodeHandler launches and connects

BlockchainFormation:

DAppFormation
Automatic setup of DApps

(DAppHandler }

pecific:
(for each blockchain)
Smart Contract
installation

Figure 4. Architecture of the DLPS.

ChainLab
Benchmarking Tools

Measuring Evaluating

Automatic startup of blockchains

Blockchain_Specifics
(for each blockchain)

Connect nodes
and clients

to virtual machines in Amazon Web Services (AWS)
such that we can create and benchmark DLT networks
of arbitrary size. However, the functionality could
easily be extended to other cloud service providers
or computing clusters, since the DLPS only relies on
running ssh and scp-commands on the nodes. We have
already implemented private Ethereum (with Geth and
Parity client), Fabric, Indy, Quorum, and Sawtooth.
Our NodeHandler integrates all these specifics and
orchestrates the network startup.

The second repository, DAppFormation, consists
of the required client-side functionalities. They serve
to implement the blockchain-specific parts of the
client setup, namely connecting client and blockchain
networks. Moreover, for every blockchain, the
associated clients wrap SC requests such that we can
trigger the sending of requests at a specific rate f,oq With
a single script which is independent of the underlying
blockchain.

All immediate functionalities for performance
evaluation, in turn, are then integrated in ChainLab.
Due to our wrappers in DAppFormation, we can
implement the benchmarking logic (see Fig. 3) as
well as the evaluation of our measurements in a
blockchain-agnostic way.  This design makes our
benchmarking framework applicable to general DLT
with a client-node architecture. Integrating another
blockchain merely requires setting up startup scripts
for both nodes and clients as well as the wrapper
which serves to make the SC method calls from
the benchmarking script blockchain-agnostic.  The
modular approach also allows for applying changes or
extensions to the current frameworks at minimal effort
and immediate impact on all tests within the framework.
Finally, to make the data tidy and accessible, we stick
to Wickham [28] and provide a method to aggregate all
measurements and their corresponding setup parameters
into a single CSV file.

5. Performance Characterization
5.1. Experimental setup

To illustrate the universal applicability of the DLPS,
we applied our framework to ten different network
architectures for the five DLT presented in Sec. 2. We
investigated network sizes of 1, 2, 4, 8, 16, 32, and 64
nodes, and used 32 clients distributed equally among
the nodes in each setup. As workload, we chose
a simple fundamental functionality on DLs, namely
writing a single key-value pair into the ledger. This is
the writeData basic workload mentioned in Sec. 3, with
a key space of size 10* and a value space of size 107.
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We generally used cloud instances from the AWS m5
series because they balance CPU, memory, and network
capabilities, all of which we consider relevant for a DLT
node. For the nodes, we decided to use m5.2xlarge
instances in AWS in all experiments, which have
8 vCPUs and 16 GiB of RAM. For the configuration
of the generic benchmarking process flow, we generally
specified the following settings (see Sec. 4). However,
in some cases we had to make minor modifications
to account for particularities of the setup, but these
adaptions do not bring any bias to the results to the best
knowledge of the authors.

* The duration of a measurement with fixed freq
was 20s.

* To decide whether freq = fresp, We chose § = 0.05
in (4). We also specified a minimum coefficient of
determination R? of 0.98, except for cases (generally,
low throughput or large blocks) where the staircase
was naturally very coarse. Generally, an R? value
below our threshold occurred only rarely.

* We allowed for two retries in case fresp % freq before
breaking the ramping loop, and three consecutive
rampings were required for a valid ramping series.

e In the localization runs, we used a success base
rate of 80 % of the last ramping series’ maximum
throughput, with a step size of 4 %, and 50 % of resp.
4 % in case of a failure.

* We conducted three localization runs, followed by
three repetition runs (see Sec. 4).

All remaining parameters which completely determine
the benchmarking process are included in the config
files for the benchmarks and available in the DLPS
repository, among the results associated with the
measurements presented here. Thereby, we address one
of the key issues that led to the implementation of the
DLPS: The benchmarking process is transparent, and
by repeating the experiments with the provided
configuration files, our results are completely
reproducible.

5.2. Experiment results

With the results from the experiments presented in
Sec. 5.1, we can give a thorough scalability analysis
for these DLT from a single standardized tool. Also,
the range of investigated network sizes and in particular
networks with 64 nodes are — to the best of our
knowledge — unique in existing literature. Fig. 5 depicts
our results for maximum sustainable throughput f . Only
the results of the three repetition runs went into the
evaluation of each experiment. Each data point is
the mean of these three results, with the shaded area
specifying standard deviation.
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Figure 5. Results of our scalability analysis for
different DLT networks

We benchmarked private Ethereum with Geth and
Parity PoA consensus and Quorum with IBFT and
RAFT consensus. For Geth, Parity, and IBFT, we
selected the minimum possible block time of 1s, and
for RAFT the default block time of 50ms. Overall,
Quorum with RAFT and IBFT consensus perform best
for small networks, while Geth and Parity scale better
for larger networks. The highest maximum sustainable
throughputs f are 236344 tx/s for 4-node Quorum
with RAFT consensus and 1350£60tx/s for 4-node
Quorum with IBFT consensus. For Geth, we observe
maximum f of 1010+£50tx/s at 8 nodes, while Parity
reaches its maximum at 16 nodes with 710£70 tx/s. For
all network sizes, RAFT has a higher f than IBFT, and
Geth has higher f than Parity. The latter result makes
sense because Aura consensus is more complex than
Clique consensus in Geth. Our results on throughput
for Parity are significantly higher than these of Dinh
et al. [24], who obtain a peak throughput of 46 tx/s
and a latency of 3s for Parity on an 8-node 8-client
Parity network using Blockbench. On the other hand,
Baliga et al.’s [23] results on Quorum using Caliper are
similar to our findings with the DLPS: Although they
do not reach f because they had a limited number
of clients and therefore bounded frcq, their evaluation
suggests that throughput with RAFT is over 2 000 tx/s,
and for IBFT around 2 000 tx/s. They also use hardware
similar to the m5.2xlarge instances in our experiments,
however, their cores had 3.6 GHz while the m5 instances
only allow up to 3.1 GHz, indicating that the differences
might stem from the experimental setup.

As described in Sec. 2, Fabric separates the
consensus layer (ordering service) from the rest of the
system and offers customizable consensus options by
specifying a SC’s endorsement policy. Therefore, no
canonical n-node setup exists to compare to the other
DLT benchmarked. Consequently, we defined different
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architectures®: (a) 1-Org, where we impose a trivial
endorsement policy meaning that only a single node has
to simulate the outcome of a transaction, and the SOLO
orderer, (b) 4-Org, where, according to our endorsement
policy, at least 4 nodes have to simulate and sign each
transaction, and a separate 4-node RAFT network as
ordering service, (c) n-Org, where all nodes need to
endorse every transaction, and the ordering service is an
equally sized RAFT network. In our opinion, the 4-Org
case might be quite close to what one would implement
in production, whereas 1-Org is the ideal case for
performance but not really distributed, and n-Org is a
worst case for performance and maybe the closest to
the other networks in terms of consensus. We generally
used CouchDB (CDB) as database because its support
for complex queries makes it very suitable for enterprise
DLT solutions. To compare it with LevelDB (LDB),
we investigated the 1-Org setup in both cases. In the
1-Org settings, we disabled encrypted messaging among
the network (TLS), while enabling it in the 4-Org and
n-Org case. Our first observation is that throughput of
the 1-Org setup with LDB, which peaks at 3 180+£80 tx/s
for n=8, is approximately twice the performance of the
1-Org setup with CDB for large n, which reaches a
maximum of f = 1410190 tx/s for n=64. Spot checks
with better hardware and LDB also showed that our
results are compatible with the ones of Androulaki et
al., who measured more than 3 000 tx/s in these setups
with a smart contract similarly complex as the writeData
we used. Moreover, for both 1-Org setups and the 4-Org
setup, we see that the overall shape of the curve seems
like a saturation curve. Indeed, the ordering service does
not change when we increase the number of nodes, but
the number of potential endorsers increases. Hence, the
endorsing tasks are split among more workers. On the
other hand, the maximum download and validation rate
for a node, which receives the blocks from the ordering
service, poses an upper bound on throughput, which is
independent on n as long as the ordering service itself
is not the bottleneck. In contrast, we do not observe
that saturation-like behaviour for the n-Org setup since
here, the total endorsement workload increases like the
number of nodes. This also explains why for small n, f
is quite stable.

As highlighted in Sec. 2, Indy does not
support arbitrary SCs, so we could not define a
writeData workload as straightforward as for the
other frameworks. We decided to define issuance

30rg is short for organizations: Due to the execute-order-validate
paradigm, there are not only nodes (called peers in Fabric), but also
clients and orderers that have an important role. It is intuitive to think
about collections of these as orgs, e.g., one org might run an orderer,
4 peers and 8 clients, then they can trust a transaction if only one of
their peers endorsed it, and contribute their own orderer to the CFT
ordering service

of a credential schema consisting of a single,
random-number key as writeData transaction because
this is a very simple on-chain write operation. For
Indy and Sawtooth, we observe that f (n) is generally
decreasing, which meets expectations for three-round
consensus in RBFT resp. PBFT. Indy shows almost
constant f for n < 16, with a maximum of f =
11242 tx/s for n=2. For n >16, f approximately halves
for each subsequent doubling of the number of nodes,
suggesting that our results truly display the overhead
of BFT-like consensus. The latency of Indy is around
3s. We found no other benchmarks on Indy to compare
with in our literature review and also when explicitly
searching for performance results on Indy.

Although we also integrated Sawtooth with
PoET and RAFT consensus in the DLPS, we only
systematically benchmarked Sawtooth with PBFT
consensus as RAFT setup turned out to crash frequently,
and spot checking experiments for PoET consensus
suggested that f is well below 30 tx/s in this case. PBFT
consensus in Sawtooth requires at least 4 nodes, and
for n=64, we could not manage to set up a network that
was running stable. We obtained a maximum of only
f = 60.54+0.5tx/s for n=4, and [ grows from around
1.6 s for n=4 to 3 s for n=32. We noticed considerable
performance improvements alongside the update to
version 1.2 in October 2019: With version 1.0, we had
never observed more than 8 tx/s, which is close to what
Shi et al. [18] measured for version 1.0. Moreover,
frequent crashes had made systematic benchmarks
almost impossible with this version.

6. Conclusion and Future Work

In this paper, we highlighted the current need for
a transparent and universal framework to characterize
the performance of DLT. To address this, we
designed and implemented the DLPS for determining
key metrics and benchmarking applications end-to-end.
The framework enables the creation of well-defined
benchmarks (see [29]) due to four reasons. It is
transparent, because we give clear definitions of
latency and throughput as well as a description and
implementation of the algorithm for measuring these.
We offer configurability by supporting the automatic
benchmarking of highly customizable architectures
and parametrizing the benchmarking algorithm. By
publishing the results of our measurements as well as
our source code, one can easily reproduce the results
(repeatability). Finally, the DLPS is extensible as its
modular implementation (see Fig. 4) allows the addition
of new DLT as well as adaptions of the benchmarking
logic with reasonable effort. To demonstrate the
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applicability of the DLPS to a large subset of DLT,
we conducted an in-depth study of performance and
scalability properties of ten architectures for five
permissioned DLT on a broad range of network sizes

(cf. Fig. 5).

We plan to utilize the extensibility of

our framework to develop the DLPS further, including
the integration of additional DLT, such as Corda, and
maintaining support for updates on the DLT that we have
already included. We will further extend the parameters
that one can choose, and provide further tools for
evaluating the gathered data, hence further reducing the
hurdle to establishing the DLPS as a standard tool to
measure DLT performance.
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