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Abstract

Enterprises have been attracted by the capability
of blockchains to provide a single source of truth
for workloads that span companies, geographies, and
clouds while retaining the independence of each party’s
IT operations. However, so far production applications
have remained rare, stymied by technical limitations
of existing blockchain technologies and challenges with
their integration into enterprises’ IT systems. In
this paper, we collect enterprises’ requirements on
distributed ledgers for data sharing and integration
from a technical perspective, argue that they are
not sufficiently addressed by available blockchain
frameworks, and propose a novel distributed ledger
design that is “serverless”, i.e., built on cloud-native
resources. We evaluate its qualitative and quantitative
properties and give evidence that enterprises already
heavily reliant on cloud service providers would
consider such an approach acceptable, particularly if
it offers ease of deployment, low transactional cost
structure, and a combination of latency and scalability
aligned with real-time IT application needs.

1. Introduction

Data, particularly transactional data housed in
various flavors of databases, powers the vast majority
of modern IT applications. Historically, the bulk of that
data was produced and consumed by the owner of the
data. However, the growing complexity of supply and
logistics chains, the “consumerization” of IT bringing
ever-higher expectations for real-time information and
automated decision making, and the trend towards
simplified software as a service (SaaS) deployments
are all causing data to migrate outside a company’s

four walls. Classic mechanisms to provide trustworthy,
high-fidelity data representation and query results, such
as centralized databases offering ACID transactions and
SQL query languages, fail when a considerable fraction
of data resides elsewhere, accessible only through batch
files or by polling third-party APIs, making it potentially
inconsistent, incomplete, and out of date. Blockchain
technologies appeared to offer a compelling solution to
this challenge: A technology that could simultaneously
erect a single source of truth in the form of a distributed
ledger capable of spanning companies, clouds, and
geographical boundaries, while still preserving each
individual participant’s control over its own technology
stack, including deployment, authentication, security,
and compliance needs.

Distributed ledgers used to create distributed,
multi-party databases with ACID semantics have a
lengthy research history. As far back as the 1980s,
researchers investigated crash fault tolerant (CFT) and
Byzantine fault tolerant (BFT) state machine replication
in order to achieve reliable distributed systems in the
presence of failures or adversaries [1]. The security of
these systems was based on an election mechanism in
a permissioned setting (two- or three-phase commit),
where the identities of all participants or at least
their total number was known. Although the first,
merely crash-fault tolerant solutions such as Paxos
were soon improved, e.g., through Byzantine-fault
tolerant protocols such as PBFT [2], direct adoption of
distributed ledger technologies (DLTs) by enterprises
remained rare until recently, although indirect usage
in the form of public cloud databases that make use
of permissioned consensus and Paxos variants became
commonplace as cloud adoption has grown [3].

The original Bitcoin whitepaper [4] popularized
a permissionless DLT combined with Sybil attack
prevention for the purposes of value storage
and transfer that has come to be known as a
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cryptocurrency. Ethereum expanded on the simple
“value transfer” interpreter in Bitcoin with a Turing
complete computational engine or Smart Contract
platform [5]. Ethereum garnered attention outside
the cryptocurrency and speculative financial market
communities through its self-marketing as the “world
computer”. Enterprises and private sector consortia
eager for solutions to the inconsistencies, omissions,
and high manual reconciliation costs of data silos
looked to Ethereum and its variants as a possible
solution. At the same time, information systems
researchers were attracted by applications of DLT
that promised businesses considerable improvements
in terms of interoperability, traceability, provenance,
distributed control, accountability, and transparency [6]
by providing a neutral digital infrastructure for
cross-organizational processes [7]. Unfortunately, the
duplication of computation and storage on every node
in the network [8] as well as the need for economic
incentives imply low throughput, high latency, and
significant transaction costs [9] and thus make the
public permissionless blockchains a non-starter for the
vast majority of enterprise use cases, even ignoring
potential concerns about exposing their data to the
world [10].

Consequently, enterprises have generally found
more success with permissioned blockchain networks
in various sectors, e.g., in improving data exchange and
traceability in automotive supply chains [11]. Popular
open-source implementations of permissioned DLTs
include private Ethereum networks such as Quorum,
and Hyperledger Fabric [12]. Permissioned blockchains
provide many advantages over permissionless
blockchains for enterprises, including higher
performance, predictable costs and the support of data
confidentiality features “off-the-shelf”. Despite these
relative advantages, the performance of permissioned
blockchains still remains orders of magnitude lower
than “centralized” database technologies [13], and – as
we will argue in this paper – the costs and complexities
associated with setting up and maintaining DLTs for
enterprises are significant.

We posit that many of the limitations regarding
performance, complexity, and cost in existing enterprise
distributed ledger implementations are driven by
their reliance on a server-based deployment model
and suggest an intriguing alternative: a distributed
ledger in which each node is built using “serverless”
infrastructure [14], thus benefiting from the economic
and scaling advantages of massive multi-tenanted
implementations that expose inter-machine parallelism
opportunities unavailable to prior techniques. Our
approach offers the performance and “form fit” of a

cloud-based SQL or NoSQL database approach while
retaining the decentralized aspect of a permissioned
blockchain in the form of segregated accounts
containing individually owned resources, in exchange
for giving up the ability to run nodes outside of a public
cloud setting.

The remainder of this paper is structured as
follows: In section 2 we briefly review serverless
architectures and survey related work. Section 3 derives
common enterprise requirements for blockchains used
for data integration purposes. In section 4, we
present the main components and characteristics of our
serverless blockchain architecture. We then evaluate
our implementation from a qualitative and quantitative
perspective in sections 5 and 6. We summarize
our observations and avenues for further research in
section 7.

2. Background

2.1. Serverless computing

Surveys of serverless offerings and research describe
cloud-based compute, storage, queuing, application
programming interface (API) hosting, and workflow
(choreography) services that offer access to effectively
unbounded storage and compute power coupled with
a pay-per-call cost structure and latency on the order
of 8-10 ms [15]. The massively multi-tenanted nature
of these services provides an alternative to blockchain
algorithms constrained to using a single server per node:
Effectively, such a system can “dispatch” thousands
of virtual machines in single digit milliseconds, each
one verifying or applying an individual transaction
within a block. Coupled to the massively parallel
front ends of NoSQL databases and blob storage,
end-to-end processing and storage parallelism enables
individual blockchain nodes to escape the confines
of vertical scaling and the prohibitive cost dynamics
of scaling each node to peak needs at all times.
Reconstructing consensus out of these building blocks
exposes multi-machine parallelism opportunities not
available in extant blockchain approaches, particularly
as conventional consensus algorithms also consider the
machine on which they run to be an atomic unit of trust
and network identity.

The term “serverless” has entered the lexicon
to denote services and architectures that rely on
fully managed cloud services [16]. Compared to
older application construction methodologies in which
companies rent servers from cloud service providers
(CSPs) such as Amazon Web Services (AWS), Azure,
or Google, serverless architectures rely on the use of



services that hide the presence of servers beyond an
abstraction layer [14]. AWS Lambda, a serverless
cloud computing service introduced in November 2014,
initiated much of the current interest in the category.
Lambda works by multi-tenanting both at the fleet and
the individual machine level, placing hypervisors around
each workload. Computations are invoked by HTTPS
requests and routed to a (possibly preexisting) container
by a low single-digit millisecond bin packing router that
is tenant aware. Cloud function services from other
CSPs work similarly. Serverless CSP services, and
the applications constructed using them, are typically
differentiated along several dimensions of interest to our
analysis:

• Intrinsically fault tolerant: The “gold standard”
for a highly available (99.9 – 99.99 % uptime)
system is 3-way redundancy across spatially isolated
data centers – what AWS refers to as availability
zones (AZs). Serverless offerings hence build fault
tolerance into their implementation, so the service
as delivered to the application includes redundancy
by design. By contrast, each participant in a
conventional blockchain would need to own and
operate at least three nodes themselves, just to ensure
an equivalent availability outcome.

• Scale-per-request: With a conventional architecture,
scaling up the operational capability of a system
requires either vertical or horizontal scaling
techniques; i.e., either “rent a bigger box” or “rent
more boxes”. Serverless services manage that scaling
behind the scenes, typically relying on massively
multi-tenanted fleets, which provides the illusion
of essentially limitless scaling driven exclusively
through making requests to the service’s API.

• Pay-per-request: Serverless offerings typically
charge on a per-request basis (rather than
a time-based rental fee), and thus unlike
infrastructure-based architectures they “turn off”
completely, generating no costs when not in use [14].
Given that typical enterprise fleets only achieve
around 18 % utilization [17], this can represent a
significant improvement in costs and also energy
consumption.

2.2. Related work

Researchers have already started to analyze the
tradeoffs and challenges that come with blockchain
adoption from a technical [9] and organizational
perspective [18]. Moreover, work like [19] focused on
structuring standardization, performance, and regulatory
requirements and developed strategies to address

associated challenges. Recently, publications have
analyzed the business-related challenges in specific
application areas, such as supply chains [20]. [21]
discusses challenges of DLT adoption from the
perspective of enterprises from a review of literature
based on a weighted average score. However,
to our knowledge, so far no large-scale study
involving enterprises has been conducted to determine
enterprises’ requirements on integrating distributed
ledger technologies in their IT infrastructure.

To locate additional related work that aims to
propose a serverless blockchain design, we applied
the search term “serverless AND (blockchain OR
distributed ledger)” in the arXiv, ACM digital library,
Google scholar, and IEEE Xplore databases. We
found that [22] suggested an architecture in which
some computational tasks for the Hyperledger Sawtooth
blockchain can be shifted to AWS Lambda. Beyond
this, [23] uses a serverless approach in another sense,
namely shifting computational work in the context of a
blockchain to a user’s personal devices. Finally, [24] use
AWS Lambda for the client side, sending requests to a
Fabric network for a performance analysis. Recently,
a cryptographically verifiable SQL Database for Azure
has been proposed [25] that has some similarities with
the storage layer of the serverless blockchain that we
propose; however, this service is restricted to a single
account and hence does not explore consensus-related
topics that could support the synchronization of data
across multiple accounts. Consequently, we found
no work that suggests an architecture for or creates a
fully functional distributed ledger based on serverless
components.

3. Business requirements for blockchains

To collect requirements for enterprise blockchains
for data sharing and integration from practitioners,
we interviewed 1,092 companies having at least some
prior public cloud experience in person from 2017
through 2019. They spanned enterprises, SMBs, and
startups and represent verticals such as automotive,
financial services, consumer packaged goods, food &
beverage, travel & hospitality, media & entertainment,
agriculture, IT, telecom and semiconductors, and public
sector. Over 95 % purchased services from AWS
and over 91 % spent at least $50,000 per month on
cloud services. 98 % of interviewed companies were
for-profit and nearly two thirds were enterprises. All
interviews were 60 minutes or more in duration and
included both structured feedback and free-form inquiry
regarding data sharing and application construction
requirements, intended use cases for blockchain or
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ledger-like offerings, and – where applicable – reasons
for adopting or abandoning blockchain technology. We
did not select interviewees specifically for success or
failure of DLT projects, but all of our interviewees had
expressed interest in, or were actively involved with, a
DLT project.

Capability Requirements

Decentrali-
zation

Each participant must be able to maintain a
legally and operationally independent copy of all
data and metadata without reliance on another
company’s IT organization.

(Multi-)Cloud
Deployment

DLTs used for data integration purposes must
be deployable to public clouds in order to
integrate with existing IT security and operations.
Each node must also be able to make an
independent decision with respect to the choice of
CSP, enabling participants to achieve low-latency
interconnect with other resources and services in
that CSP.

Elastic Scaling
on Demand

The DLT must support flexible and effectively
instantaneous scalability to accommodate
enterprise IT workloads, which may vary
unpredictably. A cost structure that scales
linearly (versus being scaled perpetually to peak
capacity) is a positive differentiator.

Unlimited
Storage

Enterprises expect DLTs used as data storage and
integration solutions to operate without limits on
any form of storage (file, blob, database size,
etc.).

Fault Tolerance
and High
Availability

99.99 % availability is the standard for enterprise
contracts, with mission critical and financial
systems often requiring 99.999 % uptime.
Having the DLT provide this capability
intrinsically with no additional cost, deployment
complexity, or maintenance on the part of the
user is a positive differentiator.

Ease of
Deployment

Conventional blockchain deployments often
demand non-trivial staffing to configure, deploy,
and maintain. Schema-driven definition (similar
to conventional database tables), SaaS-based
delivery, and limiting manual labor required for
networking, operating system, virtual machine,
security, or availability configuration are positive
differentiators.

Low Latency
and
Fast Finality

Many online transaction processing (OLTP) tasks
in enterprise applications have near real-time
data processing expectations, requiring fast
(sub-second) confirmation of transactions.

Energy
Efficiency

The DLT’s effective utilization, and its reliance
on the power grid, must be in line with typical
corporate applications. Improved utilization
relative to state of the practice is a differentiator.

Access Control
and Data
Governance

Nearly all enterprises require the ability to scope
ledger and world state updates to a subset of
participants on a per-transaction basis (“private
transactions”), for reasons ranging from business
confidentiality, to material disclosure laws, to
data protection regulations.

Table 1. Business requirements for DLTs used for

enterprise data sharing and integration applications.

The most frequently cited reason for adopting (or
intending to adopt, as was more often the case)
blockchain technology was what we termed “dispersed
data” problems: Internal data that spanned departments
and/or multi-company workflows that spanned business
partners, such as suppliers or logistics. Frequently,
this data also had to traverse at least one other divide:
multiple geographies, multiple providers (AWS, Azure,
Snowflake, and Databricks were the most frequently
cited), or needed to straddle an on-premise/public cloud
connection. Interviewees often chose terms such as,
”single source of truth”, ”shared system of record”,
”breaking down data silos”, ”connecting data”, or
”multi-party solutions” to express their desired end
states and their reason for considering blockchain as
a solution. Highly correlated requirements included
privacy and security concerns, with interviewees often
stressing that some form of access controls were
mandatory to enable them to “keep control of their data”,
and the public blockchains were thus often a non starter
as a place to store actual business data. Secondary
concerns included deployment and operating costs,
educational costs (e.g., specialized languages, training,
or access to distributed systems and blockchain experts),
and ease of partner onboarding and offboarding.

Unsurprisingly, given that the interviewees were
selected for their interest in public cloud technologies,
none of the respondents considered the ability to run
a blockchain solution “on premise” a requirement;
in fact, the overwhelming majority requested fully
managed solutions, using terms such as “SaaS-style”.
These requests were frequently coupled with concerns
over operational and staffing complexity, with most
interviewees acknowledging that, despite their interest,
they were unprepared to staff, develop, or operate
either public or private blockchain infrastructure at
the time of interview. Another non-requirement we
discovered was tokenization – most interviewees agreed
with the approach taken by Hyperledger Fabric and
other permissioned solutions where nodes are treated as
conventional enterprise infrastructure costs and there is
no economic incentive desired or required for operation.
Below we present two anecdotal but typical quotes
gleaned from interviewees, and summarize the highest
voted results from asking interviewees to select their
top 5 requirements for distributed ledger technologies
in table 1.

CEO of a Leading Airline Alliance: “To ensure
appropriate and timely responses to market changes,
businesses need to be highly agile, ensure connected
experiences and tie cost to demand. We are a highly
connected and complex industry and we succeed at
delivering the best outcome to the travelers only if all



partners are able to make decisions on a single, agreed
upon version of the truth. Managing point solutions
is expensive and the fixed costs are high and neither
scalable nor agile. What we need is a highly scalable
and agile multi-lateral agreement mechanism with a
SaaS-like model.”
CEO of a Leading Insurance Provider: “We need all
the promises of Blockchain – a single source of truth
with each party controlling their own data – but with
the scale, cost advantages, and enterprise-grade feature
set of a public cloud service.”

Of the approximately 27% of interviewees already
engaged in any form of DLT deployment (from
prototyping through production attempts), the
overwhelming majority reported a lack of success
or significant impediments. This includes nearly
100% churn among public-Ethereum-based trials and
a striking 90% abandonment rate for active PoCs,
pilots, or other trials involving Hyperledger Fabric,
with the remainder either incomplete at time of
discussion or scoring poorly on likelihood of eventual
implementation. The most frequently cited reasons for
terminating a project were costs and complexity, with
PoCs typically requiring 6-12 months and infrastructure
and staffing or consulting costs that in many cases
exceeded $1M USD. Attempts to simulate partner
onboarding registered the highest levels of complaints
and failures, due to the additional costs, deployment,
and connectivity burdens involved, which sometimes
even led to scenarios in which one of the parties ran
all the nodes in the blockchain network – a setting that
contradicts the original intention of a DLT.

SOC2, GDPR, PCI, and other compliance programs
that address regulation were typically cited as
requirements, and interviewees also expressed de jeure
concerns: For example, the climate impact of proof
of work (PoW) solutions and its well-known energy
consumption [26] often failed to meet shareholder and
customer expectations regarding a public corporation’s
environmental impact.

4. A serverless DLT architecture

Out of the box, Serverless cloud services share a
key limitation with the earlier cloud technologies: A
centralized, single-owner resource model. Moreover,
these resources are mutable by the owner. Using them
to construct a blockchain consensus algorithm and, thus,
a multi-party, decentralized ledger requires algorithmic
techniques that differ from both conventional consensus
approaches and classic “single party” cloud application
design. Figure 1 illustrates the high-level architecture
of the core of a serverless blockchain, analogous to

the pending transaction ingestion, data replication and
durability aspects, and consensus (“block minting”)
elements of a conventional blockchain. Transactions
follow a distributed two-phase commit lifecycle:

(1) An API Gateway receives the transaction as
an HTTPS request, and uses a serverless function
(AWS Lambda in our implementation) to add it to
a (durable) shared pending transaction queue. Users
can group their updates into ordered or unordered
atomic transactions. (2) A serverless choreography
service reads pending transactions from the queue,
combines them into a batch (“block”) by applying
commutativity and associativity proofs that will
enable non-deterministic parallelism, then orchestrates
a two-phase commit among all nodes again using
serverless functions. This “leader” function can be
rotated amongst the nodes or operated in a separate
account from them. (3) In the first (“verify”) phase,
each node checks the syntactic and semantic validity of
transactions; the pending block is also written to durable
storage. (4) In the second (“apply”) phase, transactions
are committed to world state and the block is marked
committed. In both phases, transactions within a
block are processed in parallel, a key performance
difference with prior approaches. The ledger is a
typical blockchain-style data structure in which each
record contains a hash of its own content as well as a
hash pointer to the previous block’s content to provide
tamper-evidence. Signed hashes from each of the nodes
participating in the block’s construction can be included
to make the ledger a standalone “proof of agreement”
that can be independently audited. Both ledger and
world state are stored in a cloud-based NoSQL data
store.

Conventional distributed application techniques can
be incorporated into the algorithm above to enable
individual nodes to fail (i.e., either verify or apply calls
are not returned) and to re-synchronize them to the
group, providing fault tolerance up to whatever degree
(majority, Byzantine Attack-resistant majority, etc.) the
chain’s policy permits.

A naı̈ve implementation of the above sketch would
require centralized trust: A nefarious orchestration, e.g.,
could ignore the actual votes from the first commit
phase. To explore the construction of a decentralized
approach, we define a simplified threat model we refer
to as downward-only trust with identities: Parties in
the chain do not trust each other, but can reliably
identify messages (either through the use of CSP
identity mechanisms or any form of key pairs). As
with conventional blockchains, all parties trust their
“infrastructure” – e.g., assume that the CPU processors,
data centers, and so forth faithfully execute the
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Figure 1. Components and transaction lifecycle of a serverless blockchain.

consensus algorithm as written. Network messages are
assumed to be subject to loss and/or corruption by an
adversary. Because our approach is cloud-based, denial
of service (DOS) attacks are trivial to reject at the
infrastructure level and do not appear in the consensus
algorithm per se.

To counter threats, we rely on a combination
of techniques to convert “centralized”, single-owner
computations into multi-party ones. Chief among these
is verifiable immutability: By rendering a resource
immutable to everyone (including its creator) in a way
that can be independently verified by others, trust
in its content switches from an (untrusted) fellow
participant in the chain to the (trusted) transitive closure
of infrastructure. In conjunction with consensus,
these techniques enable “party-independent” storage
and compute along with the ability to verify both
consensus correctness and enforce application-defined
smart contract code reviews with effectively no
performance overhead, i.e., O(1) time relative to
transaction submission and block construction.
Code Storage: Reference copies of code used
to perform consensus and for user-provided smart
contracts can be rendered immutable through the
embargo features provided by all major CSP blob
storage services.
Compute: The versioning of cloud functions enables
immutable execution, where the outcome is provably
independent of the identity of both the owner and the
caller. In addition, we rely on the ability of CSPs to
provide either the code or a hash for a function’s content
in a reliable way.
Orchestrations: We utilize CSP immutability and/or
versioning features to acquire a read-only copy of
the orchestration that is guaranteed to be linked to

an in-flight execution of same, and then prove its
correctness by having verifiers vote on its veracity.

The serverless system that we developed includes a
compiler capable of converting a JSON Schema-based
representation of a data model into the multi-party,
cloud-hosted deployment described above. Data
integrity is handled as in prior approaches: hash
chaining and signatures from all verifiers voting
“yes” that include the block’s id and hash protect
against future attempts to corrupt, reorder, or repudiate
transaction content and enable automated correctness
proofs for materialized world state at any block
height. By including software updates, metadata
correctness proofs, smart contract code agreements,
and data schema evolution as block entries, the
trust model can be naturally extended to correctness
proofs of the consensus algorithm itself (including
software patches) and contract execution. Including
transaction-submitted hashes and signatures extends this
approach to protecting the individual content prior to
submission.

5. Qualitative evaluation

We now discuss our approach to implementing a
permissioned blockchain from a qualitative perspective,
structured according to the business requirements
collected in section 3.

While our approach allows for individual nodes to
be placed on the owner’s preferred CSPs, conventional
(“server-based”) blockchains also permit operating an
individual node outside of any cloud, for example in a
self-hosted data center. Recreating the fault tolerance
inherent in our approach, would of course entail
additional costs in that model to create multi-region data



centers with decorrelated fault models. In choosing a
cloud-native implementation, our approach restricts the
set of providers to public cloud CSPs; our interview
results indicated that companies are already reliant on
or more CSPs for critical business processes and thus
find this acceptable and in many cases preferable, as
it simplifies deployment, management, hosting, and
administration for them. The critical locus of trust
for our survey respondents was with respect to other
business parties participating in the chain, rather than
whether the chain itself is hosted in the cloud or
on premise, and they were comfortable trusting a
provider such as AWS, in much the same way they
trust a company like Intel at the processor level.
Consequently, our serverless distributed ledger approach
can sufficiently address enterprises’ decentralization
needs.

Existing permissioned blockchains like Fabric or
Quorum are known to be both CPU bound and to expose
limited multi-CPU/multi-core parallelism, restricting
their ability to scale elastically on demand [27]. Popular
permissioned blockchains like Fabric and Quorum also
employ databases, such as LevelDB or CouchDB, that
have storage limits, unlike our approach’s reliance
on (the effectively limitless) cloud-hosted NoSQL
database storage engines. According to several
interviewees, LevelDB and CouchDB are uncommon
in enterprise IT stacks, and having enterprise security
teams authorize them can impose time-consuming
analysis. Consequently, integrating a blockchain
such as Hyperledger Fabric into a modern IT stack
can require substantial infrastructure work, including
networking, server allocation and maintenance, and
long-term data storage considerations. By contrast, our
serverless blockchain approach is natively compatible
with common cloud-based storage solutions, and the
inherently multi-tenanted infrastructure and economies
of scale enable our algorithm to exploit massively
parallel data writing bandwidth to both NoSQL and
blob storage services from within the compute layer.
As a result, our ledgers, world state, and on-chain
blob storage are all effectively unlimited – CSPs simply
grow their underlying physical data centers over time.
Consequently, a serverless blockchain implementation
addresses enterprise requirements regarding elastic
scaling on demand and unlimited storage by design.

A further benefit of using serverless technologies
is that they natively incorporate fault tolerance and
high availability into their implementations, relieving
their owners of the responsibility of constructing
and managing the associated scaling and monitoring
infrastructure. This is also a cost optimization, as
both the human and infrastructure costs of scaling

and operating large fleets and then packing work
into them is amortized across millions of users with
heterogeneous loads. By contrast, a server-based DLT
must deploy multiple nodes (in the case of AWS, e.g.,
typically three nodes in three AZs) to achieve a 99.99 %
availability service level agreement (SLA), and scale
vertically to peak load requirements. Furthermore,
while server-based nodes can crash, particularly under
high load, the intrinsic fault tolerance of serverless
computing methods admits to a distributed ledger design
in which a single transaction or block might fail, but
the system as a whole remains resilient, particularly
as each resource (serverless function, orchestration,
storage unit, etc.) offers fault tolerance independent of
other components. By contrast, a node in a server-based
blockchain implementation generally fails as a unit.

By design, a serverless distributed ledger addresses
cloud deployment requirements, and features inherent
to serverless resources also improve the ease of
deployment: Measuring time-to-market objectively is a
difficult exercise, but qualitatively a serverless approach
is far simpler than one that exposes the details of
server-based networking and infrastructure. In concrete
terms, a serverless model allows not only the seamless
integration with cloud-based services and legacy
systems but also the reuse of well established building
blocks, in particular, CSP key distribution, identity
and access management (IAM), and production-grade
security. In our approach, a multi-party, multi-region,
multi-CSP production solution can be constructed and
deployed from a data model in under 10 minutes, even
up to hundreds of participants; similar approaches for
highly available server-based blockchains, even when
performed by highly experienced teams operating with
large personnel and hardware budgets, would typically
be in the range of weeks to multiple quarters, based
on feedback from the interviews described in section 3.
Our approach also supports fully managed (aka “SaaS”)
deployments, in which the accounts and resources
associated with a given node are constructed by our
system on behalf of that participant.

Extant literature has already demonstrated that
permissioned blockchains like Fabric and Quorum
generally exhibit low latency and fast finality [27]
on the order of several hundreds of milliseconds
to a few seconds [27] and hence significantly
improve on their public blockchain counterparts.
While this is already suitable to address many
enterprises’ requirements, a serverless approach can
further improve on these outcomes through the use
of massively parallel computation and – at least for
intra-datacenter applications – access to CSP dark
fiber. Moreover, permissioned blockchains’ energy



consumption is orders of magnitude below that of
PoW-cryptocurrencies, determined by the number of
nodes as this reflects the degree of redundancy
for the operation and storage of transactions [26].
Our approach improves further on this result by
collapsing energy consumption and costs to be linear
in transaction processing, rather than a function of
continuously operated peak capacity; this is made
possible by employing a highly multi-tenanted substrate
that can effectively share compute, storage, and
network capacity across many users with spatially and
temporally decorrelated workloads.

Privacy and access control, especially the ability
of a transaction’s submitter to subset the viewers or
updaters of its content amongst chain participants, is a
critical enterprise feature. For example, Quorum and
Hyperledger Fabric support private transactions that are
only stored and executed in non-obfuscated form by
the intended recipients [12]. We have extended our
verifiable immutability approach to include enforcement
of policies, using it to create access control lists (ACLs)
on all fields, regardless of size or data type. ACLs are
themselves stored in the ledger, enabling full auditing
and lineage tracking for permission-based metadata
in the same way that the underlying data itself is
managed and queried. While this approach yields
essentially the same functionality as private transactions
offered by some existing permissioned blockchains, it
considerably simplifies the ease of deployment, for
example, compared to Quorum where the additional
setup of a software-based enclave is necessary, or
Fabric, where access control lists need to be specified
individually for every smart contract at the time of
deployment.

To further substantiate our qualitative arguments,
we also selected a subset of 50 companies previously
interviewed and presented our vision of a serverless
distributed ledger. 45 of those indicated that the
approach was ‘likely’ or ‘very likely’ to meet their
needs, and 10 companies have already piloted or
deployed a commercialization of this approach, half of
which used it to replace Ethereum or Hyperledger.

6. Quantitative evaluation

To examine the performance effect of
multi-machine parallelism and access to massive
data transfer parallelism available in the public cloud,
we compared our approach to two permissioned
blockchains, Fabric and Quorum, as these generally
exhibited the best performance among several
permissioned blockchains in a performance
analysis [27]. For our benchmarks, we leveraged

the distributed ledger performance scan (DLPS), a
standardized tool for determining maximum throughput,
latency, and resource metrics [27]. We set up a Fabric
network with 8 peers and 4 orderers, and a Quorum
network of 8 nodes to compare with an 8-“node”
serverless blockchain. We investigated different choices
of hardware in AWS for the server-based blockchains,
and chose a simple transaction payload in all cases
(writing a single key-value pair). All benchmarks were
conducted with default user account settings in AWS,
with no limit increases. We tested single-datacenter
deployments, cross-European deployments with
two datacenters in Frankfurt and Dublin, and an
intercontinental setup with four datacenters in
Singapore, Sao Paolo, Frankfurt, and Virginia to
explore geo-related latency sensitivities. Even for
very expensive hardware (16 vCPUs per node), the
maximum throughput of Fabric and Quorum did not
exceed 4,000 tx/s (compare also [28, 12, 29]), with
latencies of around 1-2 seconds. Significantly, a request
rate in excess of the maximum throughput frequently
leads to the crash of at least one node within less
than a minute (see also the discussion of local fault
tolerance in section 5), requiring manual intervention to
recover. By contrast, the serverless blockchain achieved
a maximum ingress rate of more than 8,000 tx/s in all
scenarios (up to 75,000 tx/s in the single datacenter
scenario), and remained resilient well beyond this rate.
Our initial prototype, without commit-time parallelism,
was limited to 200 tx/s due to its use of an off-the-shelf
cloud orchestration service. Preliminary results from
rewriting our consensus in the form of cloud functions
indicate that we can effectively parallelize thousands of
world state updates per block, effectively exploiting the
massively parallel data-planes available in cloud-based
NoSQL data stores to match ingestion rates. We
consequently expect that we can reach a commit
throughput of several thousands of transactions per
second in an optimized version, and more than 10,000
transactions per second with customized CSP account
settings.

For a server-based blockchain, the operating cost per
transaction related to infrastructure is straightforward
to compute: Assuming the same hardware for all
nodes, the costs per second are simply the costs
for all servers per second. Low throughput, thus,
means that costs per transaction are high. When
attempted throughput approaches maximum throughput,
the costs for a server-based blockchain can become very
low; however, our results (see above) suggest these
systems become increasingly unreliable when actual
loads near maximum capacity. In contrast, owing to
the multiple components that are invoked and billed
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Figure 2. Comparison of per-transaction costs for

serverful and serverless distributed ledgers.

separately during the lifecycle of a transaction, the cost
structure for a serverless blockchain is considerably
more complex. In general, the cost structure in our
approach involved both a fixed overhead per transaction
and both fixed and variable per-block overhead.

For small request frequencies, block sizes will
typically have a single transaction (n = 1), and
experimentally, we determined a cost of $ 0.0001; at
the maximum packing size n ≈ 900, of our tested
implementation, amortizing block costs reduced this to
$ 0.00001 on a per transaction basis. Unsurprisingly,
compute costs (cloud function invocations) dominated
our cost structure in this experimental setup, yet larger
payload sizes could alter that in favor of data transfer
or storage costs. An interesting characteristic of our
approach is that it allows clients to express their latency
sensitivity: While a transaction that needs low latency
cannot be more expensive than the costs for n = 1,
specifying a high latency bound could enable lower
transaction prices in the presence of infrequent arrival
rates by allowing larger blocks to be minted.

Figure 2 compares per-transaction costs for Fabric,
Quorum and our serverless solution based on average
throughput. The costs of our serverless implementation
have caps due to the minimum and maximum batch
size and interpolate cost at intermediate batch sizes.
For infrequent arrival rates, serverless significantly
outperforms server-based solutions; conversely,
server-based solutions shine when they are operated just
below their point of failure. Many corporate application
workloads are not constant, of course, and as volatility
increases, the ratio of maximum throughput to average
throughput increases. For server-based blockchains,
this requires more expensive hardware (in the form
of vertical scaling), increasing per-transaction costs,

whereas serverless solutions approximate costs that are
linear in the number of transactions processed regardless
of scale or volatility. Finally, for this comparison we
did not create the 3-way redundancy required to achieve
an approximately equivalent level of fault tolerance
on Fabric or Quorum; multiplying the costs of those
systems by 3X would yield a comparable outcome in
this regard, strongly favoring the serverless approach.

7. Conclusions and future research

In this paper, we collect enterprise requirements
for blockchains to enable cross-organization data
exchange and propose an approach that combines
many of the decentralization benefits of conventional
distributed ledger approaches with the advantages of
multi-tenanted but centralized cloud services. While
blockchains may be employed for a wide variety of
purposes, our approach aligns with the needs of business
users attempting to construct a “single source of truth”
among untrusted business parties. Our contributions
include exploration of blended approaches that lie
neither in centralized nor conventional (“server-based”)
decentralized algorithms, and which are capable
of exploiting massive multi-machine parallelism
to overcome scaling and smart contract processing
limitations inherent in single-box approaches, while
still exhibiting useful decentralized outcomes such
as isolation and consistent data replication among
nodes. Benchmarking of two popular permissioned
blockchains, Fabric and Quorum, against our
serverless implementation in terms of throughput
and costs indicates that our current implementation
already improves on multiple performance aspects
– including transaction ingress rates well in excess
of those achievable through conventional means,
while further optimizations promise to outperform
existing permissioned blockchains through readily
exploited avenues, such as decoupling of transaction
content copying from consensus. Future work
will also focus on establishing lower bounds for
blockchains in which compute, storage, and network
capacity are effectively unbounded, such as highly
parallelizeable associativity and commutativity proofs,
and a quantitative study of smart contract performance
comparisons to conventional approaches. We also
aim to rigorously evaluate whether the projects that
leverage our serverless distributed ledger will have a
higher success rate than what we found for existing
permissioned blockchains in our interview study.

Our initial results were produced on AWS, and
some of the features on which we relied, such as
function versioning, are not fully implemented on



other providers, requiring additional or alternative
approaches. More interesting as a research avenue
is cross-cloud fault tolerance, in which consensus can
span CSPs and survive temporary outages in much the
same way that the existing system can survive regional
outages within a CSP. We hypothesize that selective
use of conventional consensus algorithms across clouds
could be applied in such a way as to minimize the
performance impact while offering enhanced threat
models and availability guarantees and hope to explore
such patterns in future work.
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