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Abstract

Risk/return management has evolved as one of the key
success factors for enterprises especially in the financial
services industry. It is highly demanding in terms of busi-
ness requirements and technical resources, making it an
almost ideal application for grid computing concepts. In
this paper we analyze the value proposition of grid com-
puting for risk/return management. We focus on a specific
problem—the estimation of covariance matrices—and pro-
pose a model to quantify the benefits and cost of the corre-
sponding calculations. Our model not only makes a contri-
bution to understand the business value of grid computing
in the domain of risk/return management, it also constitutes
a building block for the development of economic resource
allocation mechanisms.

1. Introduction

Whereas in the beginning, grid computing concepts were
restricted to large-scale scientific applications like in high-
energy physics, astronomy or biology, it has over the past
years evolved to an increasingly relevant technology for the
commercial sector as well. At the same time, it has become
difficult to some extent to precisely differentiate grid com-
puting from the related concepts of e.g. distributed comput-
ing, cluster computing or utility computing.

The meaning we intend to convey by our use of the
term grid computing is best captured by a definition in
[8]: “A Grid is a type of parallel and distributed system
that enables the sharing, selection, and aggregation of geo-
graphically distributed, autonomous resources dynamically
at runtime depending on their availability, capability, perfor-
mance, cost, and users’ quality-of-service requirements”.
An overview of the status quo and current applications of
grid computing provide e.g. [5], [14], and [1].

The availability of grid enabled business applications
seems to be a critical success factor for the wide adop-
tion and further development of this powerful technology.
One of the most promising application domains of grid
computing concepts is the financial services industry with
its information-driven business models, time-critical math-
ematical calculations and accordingly high needs for com-
puting power. In fact, this sector is often mentioned among
the key industries for grid computing applications, see for
example [16] or [19].

In this context resource-intensive risk/return manage-
ment applications seem to be especially suitable. With the
potentially huge amount of computing capacity a grid in-
frastructure offers (embracing resources of the whole enter-
prise or even of external resource providers) such applica-
tions can possibly be accelerated dramatically. Yet even on
a grid infrastructure resources are not unlimited. Thus for
grid-based risk/return management it is necessary to find an
economic optimum between the benefits of fast calculations
on the one hand and the cost for allocated computing ca-
pacity on the other. We will therefore develop an economic
model quantifying the functional relationship between com-
puting capacity provided by a grid infrastructure and the
corresponding economic value. For our analysis we focus
on a specific problem in risk/return management—the cal-
culation of covariances, which is a very complex and time-
consuming assignment. With the paper at hand we are striv-
ing to provide the missing link between the capabilities of
grid computing and its economically reasonable application
in risk/return management.

The remainder of this text is organized as follows: In sec-
tion 2 we give a short overview of risk/return management
and the value proposition of grid computing. Section 3 ex-
amines how the economic value gained from fast covariance
calculations can be quantified. We point out results and pro-
vide an interpretation in section 4. Section 5 concludes our
considerations.



2. Grid-based Risk/Return Management

Risk/return management is concerned with the evalua-
tion of risk and return associated with investment decisions.
Whereas literature most often focuses solely on risk man-
agement, we will rather speak of risk/return management
emphasizing an integrated view because risk management
can only unfold its potential in combination with the man-
agement of the corresponding return. In this section we will
give a brief review of risk/return management and its appli-
cation on a grid infrastructure.

2.1. Principles of Risk/Return Manage-
ment

Enterprises are investing capital into risky investment
objects in order to generate cash inflows and subsequently
increase the return of the invested capital. Generally higher
return is systematically associated with higher risk. This
connection is theoretically explained by economic models
like the “Capital Asset Pricing Model”, that was developed
by Lintner, Sharpe, and Mossin and empirically verified
later on. Following the argumentation of [21, pp. 194] it
is therefore crucial for the survival (i.e. not going bankrupt)
and success (i.e. achieving the most out of the invested cap-
ital) of an enterprise to be able to allocate the available cap-
ital to the right combination of investment objects taking
into account their specific contributions to the overall risk
and return. This is especially important for the financial
services industry where risk taking is an essential part of
the business model. Yet its application domain is not con-
fined to the traditional asset management context. In fact
almost all business transactions are associated with uncer-
tainty and thus contribute to an enterprise’s overall risk ex-
posure. Thus the management of risk and return is a funda-
mental business function in every enterprise.

One major goal of risk/return management as pointed out
above is the prevention of bankruptcy by restricting poten-
tial losses resulting from risky investment objects.1 The in-
creasing importance of this goal is emphasized by a grow-
ing number of rules and regulations that require enterprises
to hold an adequate part of their available capital to back
their risky investments (see e.g. [18, pp. 8]). This share of
the available capital then makes less or no contribution to
the overall earnings. In the financial services industry rules
and regulations are especially tight (e.g. Basel II, Solvency
II or the German rules MaH and MaK) and institutions are
required to keep significant capital reserves to retain their
solvency even in extreme market situations. By manage-
ment decisions these restrictions are broken down along the

1We do not restrict our analysis to securities but also associate with the
term investment object e.g. customers or projects.

organizational hierarchies into guidelines representing lim-
its for the maximum risk a business unit is willing (or able)
to take. In order to abide by the given risk limits the knowl-
edge of the current overall risk position is an essential pre-
requisite. Consider for example a trading unit in an invest-
ment bank that needs exact and timely information about its
risk exposure when deciding on security or option trades. It
is one fundamental challenge of risk/return management to
provide accurate measures of risk to assist these decisions.

Suitable and widely accepted measures of risk are vari-
ance, standard deviation (as the positive square root of
variance) or synonymously volatility (as discussed in [20,
pp. 154]), and especially for defining regulatory risk limits
the Value-at-risk (VaR). Finance offers a set of instruments
to calculate these measures, ranging from Monte Carlo sim-
ulation to regression analysis of historical data. Some of
them seem to be promising with regard to grid computing
concepts as well, see e.g. [19]. Yet in this paper we focus on
the “variance-covariance approach” and especially on the
estimation of covariance matrices containing the pairwise
covariances between investment objects. They are used to
determine the variance of a portfolio of investment objects
taking into account correlation effects that exist between
them. Although we concentrate on portfolio variance as a
measure of risk it is worth mentioning that the variance-
covariance approach is also deployed to determine—under
certain assumptions—the VaR of a portfolio, making it a
fairly fundamental concept.

2.2. Value Proposition of Grid Computing

Mainly due to computing capacity restrictions2

risk/return management calculations are conducted at
most on a daily or overnight basis. Practitioners like [19]
even report that they are usually performed weekly or
even over longer time intervals. Whereas this might be
sufficient in special cases, it is considered a disadvantage
in general because investment decisions then are based
upon outdated information. We figure that, using a grid,
the necessary underlying calculations like covariance esti-
mations can possibly be dramatically accelerated without
the need to invest into additional cost-intensive computing
infrastructure.

Accordingly, the relevant, yet basic, value proposition
of grid computing is almost canonical and already numer-
ously stated: It delivers on demand computing power at
transparent and relatively low cost (in comparison to ded-
icated, server-based computing) in combination with in-
creased flexibility, scalability and a robust behavior against
failure. This is achieved by using existing and/or standard-
ized resources which are geographically and/or logically

2Obviously there exist other restrictions as well like the availability and
quality of input data.



distributed in more or less autonomous units, provoking a
high percentage utilization. In the following we elaborate
in more detail the specific value proposition of grid com-
puting in the context of risk/return management:

1. The input data needed for estimation and forecast-
ing is usually geographically and/or logically distributed.
This matches the fundamental structure of a grid system and
thus can be exploited for distributed processing because the
corresponding parts of the covariance matrix are estimated
where the data is available. No centralization of data (caus-
ing communication and management complexity) is neces-
sary and the advantages of a grid infrastructure are fully
exploited. For instance, portfolio information of a glob-
ally acting enterprise might be scattered over several trading
units in different locations.

2. There is a trend towards higher frequency of input
data first observed and published by [11]. Today, for exam-
ple stock market data is widely available down to the trans-
actional level. The analysis of this “Ultra-High-Frequency”
market data is a promising new area with implications for
risk management not yet fully discovered. Grid computing
can contribute its share to storing and processing this huge
amount of data providing comprehensive and up-to-date in-
formation.

3. Because of the permanent movement and devel-
opment especially of financial markets the demand for
risk/return management calculations is itself far from con-
stant. Using a dedicated infrastructure the enterprise is
therefore committed to provide at any time a computing
capacity aligned to the maximum demand during peak
times. Additionally there is always the trade-off between
risk/return management and other operations which have to
be performed by the resources at hand. This challenge is
met when unused resources can be seized at any time for
additional speed and/or accuracy and in turn are available
for daily operations in “quiet times” .

4. There exists a variety of applications that do not by
all means require high-performance computing power at
any given time. In contrast to the typical batch-processing
mode they can possibly be executed cost-effectively on
a grid infrastructure in the background. With the avail-
able (and varying) computing capacity they can be per-
formed continuously including “slow” business hours like
e.g. overnight and are still incessantly adding value for the
enterprise. Next to covariance estimation eligible candi-
dates range from the calculation of β-factors up to Value-
at-Risk calculations and back-testing. The key point here
is the automatic allocation of resources whenever they are
available, increasing the flexibility and manageability of ex-
isting infrastructure.

5. Last but not least grid computing offers new possibili-
ties for intra- and inter-organizational collaboration regard-
ing the integration, coordination and usage of resources. In

this context especially the possibility to contract additional
computing capacity from an external provider on a pay-per-
use basis seems to be promising. As already stated above
the demand for computing capacity is changing over time.
Following the grid paradigm enterprises can buy resources
on-demand paying only for computing capacity that is actu-
ally used.

Concerning this value proposition one question in-
evitably arises: What benefits and cost are associated with
grid-based risk/return management? Two different perspec-
tives can be distinguished. In the long run an enterprise
decides on how much capacity it wants to acquire, e.g. by
investing into grid infrastructure or by contracting with ex-
ternal service providers. In the short run it has to choose
(ideally in real-time) how much of its available resources—
usable for various tasks like calculating customers’ portfo-
lios or storing operational data—it wants to allocate (and
pay for). In combination with the corresponding cost (as
proposed in subsection 3.2) our valuation model enables
a mechanism to ensure an economically efficient planning
and allocation of required computing capacity provided by
grid resources.

Although the quantification we suggest is to some ex-
tent also applicable outside the domain of grid computing,
it complements existing economic grid resource allocation
mechanisms. It does not deal with physical resource allo-
cation but with the valuation of computing capacity on a
higher abstraction level, as proposed e.g. by [10].

Furthermore, grid-based covariance estimation can be
regarded as a “service” which is employed by several other
services or financial applications. The set of services, to-
gether with means for provisioning and pricing, may con-
stitute a “service market” as laid out in more detail by [13].
At the same time services demand for different kinds of re-
sources (like CPU time, data storage capacity, software li-
censes etc.), which are provided on a corresponding grid
“resource market”. The abstraction essentially implies that
the service consumer has no concrete knowledge of physi-
cal resources necessary to solve the problem at hand. Yet,
for resource allocation, a valuation of the service from the
perspective of the service consumer is mandatory.

The research questions addressed in this paper fit seam-
lessly into this setting: We consider a “covariance ma-
trix estimation service” that provides its user transparently
with up-to-date covariance data for the relevant investment
universe. By using a distributed, grid-based computation
service, covariance matrices can be estimated in parallel,
which increases the update frequency and actuality of the
data. Thereby we try to narrow the gap between mainly
economical questions (concerning the service market) and
technical questions (relevant for the resource market).



3. A Valuation Model for Fast Covariance Cal-
culations

For our valuation model we consider an enterprise fre-
quently calculating its risk position by computing the co-
variance matrix of all investment objects it is engaged in.
Since the enterprise is acting in an uncertain and dynamic
environment its risk position is changing willingly (by mak-
ing investment decisions) or unwillingly (by “movement” of
the underlying markets). Because the estimation of the co-
variance matrix cannot currently be accomplished in real-
time the covariances at hand are always significantly out-
dated. We are in the following recurring to the fact that
enterprises are adjusting their risk position to a value some-
where below a certain threshold, thus constituting a “safety
margin”, to ensure that the overall risk remains below the
given risk limit at any time.3 They are doing so by using
the capital allocation between risky and risk-free investment
objects for balancing their overall risk position.4 Our basic
modelling approach is in the following: whenever covari-
ances are available the safety margin can be adjusted imme-
diately in a way that the resulting (and over time changing)
overall risk position of the enterprise with high probabil-
ity does not exceed the given risk limit at any time. Hence
the faster it can calculate covariances the smaller the safety
margin can be. This text contains a shortened version of
our model. The complete exposition can be found in the
working paper [7, pp. 7] of the same authors.

3.1. The Risk-at-Risk Approach

The discrete time horizon at hand consists out of m > 1
equidistant periods. We will write e.g. rt to indicate the
value of a parameter at the end of period t = 0, 1, . . . ,m.
We are considering an enterprise equipped with a total cap-
ital of K, K > 0, which has access to and is engaged in a
set of n risky investment objects and an additional risk-free
investment alternative. (Dis-)investments are performed in
the standard Markowitz setting, i.e. for example the enter-
prise is generally risk-averse and striving for efficient com-
binations of investment objects, which are perfectly divisi-
ble and traded on a no-frictions market. We assume that the
available capital K is always completely allocated to the
risky portfolio and/or to the risk-free alternative and will
denote the risky portion of K by x (with x ∈ R, x ≥ 0).

Future returns of the portfolio are modelled as indepen-
dent stochastic variables. Their probability distribution for

3In the regulatory context this is often called “haircut”, like in [4,
pp. 29]

4At this point it is important to understand that the model presented
in this text is not addressing the evaluation of the efficient set of invest-
ment objects or portfolio optimization (both problems also require the cal-
culation of covariances), but the aggregation and management of the risk
position of an enterprise.

each period can be characterized by mean and standard de-
viation. This obviously implies that the investment objects
can be “marked to market”, i.e. that there is a (current and
historical) price attached to them.5 Following the idea of
random walks, historical portfolio returns can be used for
estimating mean and standard deviation (or volatility) of
future portfolio returns. The risky portion of the enter-
prise’s capital yields the expected return µ, the risk-free
investment pays the time-invariant risk-free interest rate i,
which is equal to the borrowing rate. We assume that al-
ways µ > i > 0. Thus the total benefit B per period can be
written as

B(x) = K(i + x(µ− i)). (1)

The overall risk position of the enterprise (we perceive
the enterprise as the weighted “sum” of its investment ob-
jects) is expressed by the portfolio risk, measured by the
variance of the portfolio returns, σ2. We can calculate the
portfolio risk, resulting from n investment objects (num-
bered from 1 to n), using the covariance matrix, as

σ2 =
n∑

i=1

n∑

j=1

Covij

with Covij denoting the weighted covariance between in-
vestment objects i and j.6 The covariance of an investment
object to itself is its variance, i.e. Covii = σ2

i . Because
of the symmetry of the matrix the total number of different
(co)variances is according to 1

2n(n + 1).
For the investment portfolio of the enterprise the covari-

ance matrix is not previously known. Covariances can be
empirically estimated, or forecasted, by analyzing histori-
cal data. Although we do not want to focus on the different
methods of volatility and correlation forecasting (see e.g.
[17] or [2] for details) it becomes clear that the correspond-
ing computations are not trivial. Depending on the estima-
tion method used, the calculation of these matrices is a very
resource and time intensive problem.7

Furthermore the estimation of one covariance matrix is
assumed to take exactly T periods. The estimation of a
new covariance matrix begins immediately after finishing
the previous matrix, thus we have a complete covariance
matrix every kT periods (k ∈ N := {1, 2, 3, . . .}), see fig-

5It is common practice to use some variation of a random walk model
for the price movement on security or commodity markets. This approach
goes ultimately back to the early and path-breaking contribution of Louis
Bachelier who proposed his findings for the stock market—comparing
price movements with a “drunkard’s walk”—in his thesis paper [3].

6The aggregated risk can be calculated according to this formula irre-
spective of the return distribution. Nevertheless using the variance as risk
measure has implications on the presumed return distribution.

7In fact the data and computing intensity needed for covariance calcu-
lation is often considered a major disadvantage of the variance-covariance
approach.



Figure 1. Period model and relevant time in-
tervals

ure 1.8 Whenever a covariance matrix is ready the input
data used for its estimation is exactly T periods old. We
can immediately determine the portfolio risk by appropri-
ately summing up the covariances in the matrix. The latter
can then be used for a risk adjustment decision as well as
for portfolio optimization until the next matrix is finished.
The moment before this happens the input data is already
2T periods outdated. Therefore the uncertainty interval that
has to be taken into account spans 2T periods: in the worst
case the risk has been going up over 2T periods before the
enterprise realizes that it is exceeding the maximum risk it
is willing (or able) to take.

The portfolio risk is fluctuating during this time in a non-
predictable way because of changing (market) values of the
underlying investment objects and varying covariances of
their periodical returns respectively. We therefore model the
portfolio risk at time t, denoted as σt, as well as a stochastic
variable, governed by a random walk. We assume in partic-
ular that the σt are approximately normally distributed with
(strictly positive) mean µσ and standard deviation σσ (both
tagged with an index σ indicating the fact that the parame-
ters apply to the portfolio risk), i.e. σt ∼ ν(µσ, σσ).9 This
relates to a phenomenon known from the empirical behav-
ior of stock market prices called heteroscedasticity, see e.g.
[20, pp. 152]. It is characteristic for the spirit of ARCH
and GARCH models where the covariance matrix is time-
varying as described e.g. in [6] or [12].

As discussed above the enterprise is required to abide by
a given risk limit. We follow an approach comparable to
the VaR to account for this fact. On a formal level, the VaR
is the α quantile of a financial return, rt, and is defined as
the value qα, for which the probability P (rt ≤ qα) = α.
The VaR for a portfolio associated with a holding period
and a confidence level α can therefore be characterized as

8It is important to distinguish the calculation interval T from the length
of the history interval used for estimation.

9This can be seen as a consequence of the central limit theorem. In
practice the rigorous distribution assumption would be relaxed by using
the true distribution of the σt delivered by the grid calculated sequence of
standard deviations.

the expected loss that is after the holding period only ex-
ceeded with the (small) probability of (1 − α). In analogy
to the VaR we assume that the overall risk of the enterprise
should exceed the risk limit σ, σ > 0, only with the (small)
probability of (1− α).

We speak of the Risk-at-risk over a holding period and
with the confidence level α, 0 ¿ α < 1 in this context.
When the overall risk position of the enterprise is calcu-
lated in period T , the portion x of risky capital for the next
T periods is adjusted considering the Risk-at-risk over the
uncertainty interval of 2T . That means the overall risk of
the enterprise, xσt, determines the value of x: Quantifying
the risk limitation as P (xσt ≤ σ) ≥ α for t = 2T it
follows—because of the ν(µσ, σσ) distribution of σt and
with qα as the (onesided) α-quantile of the standardized
normal distribution—that

σ − xµσ

xσσ

√
2T

= qα. (2)

Solving this equation for x and inserting it into equa-
tion (1) gives us the benefits subject to T . We will now di-
rect our attention towards the corresponding cost associated
with covariance estimation when they are performed on a
grid infrastructure. Both elements are then used to deduce
an optimal, risk-adjusted allocation of grid capacity.

3.2. Optimization

Since in this paper our focus lies on the economic aspects
of grid computing technology, we will in the following ap-
ply a straightforward cost function for the (opportunity)
cost side of grid-based covariance calculations:10 The en-
terprise decides on a computing capacity of z, z > 0, units
of computing capacity11 per period used for covariance
calculations. The amount of computing capacity needed
for the calculation of one single covariance is denoted by
w, w > 0. The workload for one covariance basically de-
pends on two factors: The estimation method used and the
length of the history interval considered. Both have signifi-
cant influence on the complexity and the resource consump-
tion of the corresponding calculations. Abstracting from a
specific procedure we assume a given estimation method
with a (moving) history interval of fixed length, and there-
fore w to be constant. Additionally we restrict ourselves to
the consideration of the time needed for computation, ne-
glecting e.g. latency or transmission times, and correspond-
ingly to the cost for computation which occurs in the form
of an (internal or external) factor price p per unit of grid

10Refer to the working paper [15] for thoughts on grid computing tech-
nology in risk/return management as well as for an adequate basis for de-
veloping a more elaborate cost model.

11Computing capacity could be measured, for instance, in the often-used
unit of “floating point operations” per period. Nevertheless, in this text we
abstract from a concrete measure.



computing capacity. Thus we can state for the total cost of
computation that

C(z) = p · z. (3)

There is a functional relationship between T and z de-
scribing the computing capacity per period necessary to
complete the covariance matrix within the interval T . With
1
2n(n + 1) (co)variances we have

T (z) =
n(n + 1)w

2z
. (4)

The enterprise is striving to maximize its profit by ad-
justing the grid capacity utilized. Thus z forms the decision
variable of our objective function. Putting it all together en-
ables the formulation of the objective function, Z(z), as12

Z(z) := Ki +
Kσ(µ− i)

√
z

qασσ

√
n(n + 1)w

− pz → max! (5)

Applying the standard optimization procedure (i.e. solv-
ing Z ′(z) = 0 for z) delivers as a distinct solution

z∗ =
K2(µ− i)2σ2

4n(n + 1)p2wq2
ασ2

σ

. (6)

Since Z ′′(z) < 0 ∀z the so defined z∗ is a global maxi-
mum of the objective function and thus determines the op-
timal grid allocation and—using equation (4)—the corre-
sponding interval T ∗ the enterprise should comply with for
grid-based covariance estimation. Exceeding T ∗ will re-
sult in less than optimal capital allocation in the risky yet
profitable investment objects while falling short of T ∗ will
entail larger than optimal cost for managing the risk.

4. Results and Interpretation

We will now take a closer look at our model and the im-
plications for grid based risk/return management. Most of
the results determined by equation (6) have readily intuitive
explanations. For example the more capital the enterprise
has to its disposal the more (in absolute terms) it will invest
into risky investment objects.13 Higher risk exposure in turn
increases the importance of risk/return management which
is correctly reflected by a larger value for z∗. The same

12Equations (1), (2), and (4) deliver the benefits subject to z. Z(z)
is then the result of an analytically necessary and numerically justifiable
approximation of the difference between B(z) and C(z). Refer to the
working paper [7, p. 14] for a complete deduction. In this paper we also
provide the rationale for the approximation.

13This is always true under the assumptions made in this context: risky
investment objects have a higher return than the risk-free alternative and
the enterprise is trying to maximize its overall return. Note that the share of
capital allocated to risky investments, x, is independent of the enterprise’s
total capital, K, because the risk limit, which is maintained using x, is a
given, exogenous parameter.

argumentation holds when the enterprise faces a higher risk
limit σ. In this case it should allocate more grid resources to
risk/return management applications, which is consistently
leading to an increasing z∗ in our model. Eventually when
the risk premium (µ − i) rises investing into risky objects
becomes more attractive and profitable, resulting in a larger
share of risky capital, x. In order to manage the conse-
quently more voluminous portfolio our model proposes that
additional grid capacity is necessary. A most interesting
and to some extent counter-intuitive result is produced in
combination with the parameter σσ. One would possibly
expect that, with increasing volatility of the portfolio risk
(expressed by a larger σσ), the optimal grid allocation goes
up as well. That this is not true shows equation (6). Basi-
cally for a given risk limit σ a higher volatility of the port-
folio risk can be leveraged by faster covariance calculations
(so that the enterprise can still get close to the risk limit
without hazardously exceeding it during the uncertainty in-
terval). The cost on the other side are depending on T in
a reciprocal fashion. As a consequence, for higher volatil-
ity of the portfolio risk the cost are increasing more quickly
than the benefits leading ultimately to an increasing T ∗ and
decreasing z∗, respectively.14

We modelled the cost side by a price p per grid com-
puting capacity. It can be interpreted differently depending
on the way resources are provisioned: Firms could either
build their own grid infrastructure embracing resources of
the whole enterprise or computing capacity could be pro-
vided by external service providers. When resources are
provisioned externally the price is given by the provider and
the enterprise needs to decide on the amount of resources
it wants to allocate and pay for. In an internal scenario
prices need to be interpreted as opportunity cost or trans-
fer prices.15 Our model then is valuable to give an indica-
tion for the economically efficient allocation of the shared
resources depending on the (variable) demand. We regard
this as characteristic for the application of grid technology:
depending on current requirements a service user (here: the
estimation of covariances) can consume exactly the amount
of resources needed (provided “on demand” by a service
provider like the enterprise itself and/or external supple-
mentation). In the contrary for a dedicated system the re-
source allocation, once determined, can not be adjusted. In-
stead it would be optimal to use all of the available resources
at a time as opportunity cost are zero.

We will conclude our considerations by a short compar-
ison of grid computing and “traditional” server based com-
puting with respect to our model. We stated that grid com-

14Such a situation could be observed e.g. during a “regime switch”
between two volatility clusters where a time interval with relatively low
volatility switches into an interval with higher volatility or vice versa.

15In fact economic allocation mechanisms determining prices based on
supply and demand are widely discussed in the context of grid computing,
see e.g. [9].



puting delivers high-performance computing capacities at
low cost. We can now render this aspect more precisely with
regard to the calculation of covariance matrices. The corre-
sponding computations can be distributed on several nodes,
as all pairwise covariances can be calculated independently
from each other. Thus efficiency losses are low and cost ad-
vantages actually take effect, as a number of low cost stan-
dardized components can provide the same capacity for co-
variance calculations than an expensive server. Moreover
higher utilization levels can be expected due to on-demand
allocation of resources as described above. In our model
lower cost are reflected by a decreased price p leading to
an increasing optimal capacity z∗ and a shorter calcula-
tion time T . Therefore grid computing—apart from other
aforementioned benefits—reaches out for risk/return man-
agement and qualifies as a suitable infrastructure to perform
the corresponding calculations. In the case of covariance
matrix estimation we expect calculations to be performed
more frequently allowing enterprises to better exploit risk
limits as the current risk position is determined in near- or
even real-time.

The discussed results are focussing on the economic
view on grid resource allocation. Regarding concrete ap-
plication scenarios of our model, additional aspects should
be considered. Our model could not only be employed to
ensure an economically efficient allocation of computing
capacity within an enterprise, it could also be utilized to en-
sure adequate pricing of an external grid-based covariance
estimation service.16 Today financial software or data sup-
pliers like Reuters, Bloomberg or RiskMetrics already of-
fer online services e.g. for the calculation of portfolio risk.
From here it is only a small step towards corresponding
grid-based services. Questions concerning the technical im-
plementation, security aspects or the specific characteristics
of grid networks in this context provide room for future re-
search.

5. Conclusion

In this paper we restricted our analysis to one well-
defined problem: the grid-based estimation of covariance
matrices. Although covariances are widely used in finan-
cial applications, we thereby covered only a small subset
of risk/return management methods and algorithms. Other
approaches and applications for grid computing (like e.g.
Monte-Carlo simulations which have a high parallelization
potential as well) still have to be evaluated regarding bene-
fits and cost. We demonstrated how the value derived from
risk/return management calculations can be measured. We
developed a model considering an enterprise that has to de-

16Of course in the case of an externally provided service enterprise spe-
cific parameters of the model like the overall capital or the individual risk
limit need to be estimated or the model need to be adapted.

cide on the amount of capital it wants to allocate to cover
potential losses resulting from a risky investment portfolio.
Several assumptions and an approximation (for the objec-
tive function) were necessary to get to an analytical solu-
tion. Moreover we targeted our model to the calculation
of covariances from scratch. In reality one would proba-
bly calculate covariances in a continuous fashion, i.e. reuse
the results of the previous calculation or compute only the
covariances that have changed during the last period thus re-
ducing the necessary grid capacity and therefore ultimately
the cost of calculation. Moreover it is a simplification to as-
sume that it is possible to attach a well defined factor price
to computing capacity. In a realistic scenario our abstract
view on resources needs to be broken down to actual phys-
ical resources.

Despite these limitations, the basic principles introduced
in this paper can be adapted to other scenarios in more so-
phisticated and complex surroundings, including e.g. load
balancing or security issues. We are convinced that an eco-
nomic analysis is relevant for many grid computing ap-
plications. It complements emerging concepts of market-
oriented resource allocation, e.g. in the context of grid-
based service and resource markets. Market mechanisms in
connection with individual utility functions that value bene-
fits and cost of resource consumption guarantee an econom-
ically efficient allocation of resources within an enterprise.
Thus paving the way to grid-enable risk/return management
and providing rules for the flexible and economically effi-
cient allocation of grid resources will in our opinion lay the
foundation for a truly real-time and service-oriented enter-
prise supporting all kinds of business critical decisions.
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