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Abstract 

In our competitive world, companies need to adapt their processes quickly in order to react, for 
instance, to changing customer demands. Process models, as means to support process 
management, are nowadays often created and adapted in a time-consuming, widely used manual 
manner. Semantic Business Process Management in combination with planning approaches can 
alleviate this drawback by enabling an automated planning of process models. This paper 
describes the drawbacks that existing planning algorithms have related to the creation of process 
models. Therefore, we introduce - based on the design science paradigm - an innovative algorithm 
(method) that is suitable for the planning of process models focusing on the construction of the 
control flow pattern exclusive choice. Demonstrating the feasibility and the effectiveness of our 
method, we implemented our approach as a prototype. Finally, we evaluate the algorithm in terms 
of different properties like termination and its applicability within a real-use situation. 

Keywords: Process modeling, Design Science Research, Automated planning 
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Introduction 

In order to describe the increasingly complex processes within and across enterprises as well as for communication 
and training purposes, process modeling has proven to be an important instrument. A number of process modeling 
techniques have been developed in the past decades, including modeling languages like Event-driven Process Chains 
(EPC) or UML activity diagrams. However, process modeling and optimization are still time-consuming in practice, 
if new process models need to be designed or existing ones need to be adapted to changing requirements (Becker 
and Kahn 2003; Borges et al. 2005; Ma and Leymann 2008). Hornung et al. (2007) wrote, for instance, that “Manual 
process modeling is a time-consuming task and thus increases the total amount of modeling time.”. Nevertheless, 
changing customer needs etc. make it necessary to maintain and adjust process models frequently. Even if reference 
process models are used, they have to be changed due to the new requirements as well, which again is time-
consuming and costly. In addition, in many domains there are no reference process models at all that can be used. 
With this in mind, a fast and under economic considerations reasonable construction or adaption of process models 
is often difficult. For that reason, many process management departments in companies also need to deal with the 
criticism to cause too high costs compared to their benefit (e.g. Recker et al. 2005). A semantic annotation of 
process models, as envisioned in the research area Semantic Business Process Management (SBPM) can alleviate 
this drawback (Betz et al. 2006; Brockmans et al. 2006; Hepp et al. 2005; Hepp and Dumitri 2007; Thomas and 
Fellmann 2007) in combination with existing AI planning techniques (Bertoli et al. 2006; Hoffmann and Brafman 
2005) by enabling an automated planning of process models (Heinrich et al. 2008; Henneberger et al. 2008). 

In order to plan process models, not only a sequence of actions – the atomic elements of a process – but also other 
control structures (see Van der Aalst et al. 2003), which are provided by modeling languages and describe the 
control flow of a process, have to be constructed automatically. Thus, a fundamental challenge for the planning of 
process models is to consider such control structures, which can be reduced to a few fundamental control flow 
patterns. As the control flow pattern exclusive choice (besides e.g. the simple merge, and the parallel split) is one of 
the basic patterns for designing process models, this paper will examine its automated construction. The task of an 
automated construction of process models can be understood as a planning problem (Ghallab et al. 2004) with the 
objective to arrange the single process components, i.e. the actions, in an appropriate order. 

To this end, we introduce – based on the design science paradigm – a technical definition of our planning domain 
and a novel algorithm (method) for the automated construction of exclusive choices within process models (cp. 
Figure 1). Therefore, we need special definitions provided by an abstract representation language. The main 
contributions are as follows1: 

 The construction of exclusive choices is based on the preconditions and effects of actions2. In addition, planning 
has to consider that various, maybe large data types e.g. double (Biron and Malhotra 2004) can be assigned to 
them and that some actions accept only certain ranges of values of a data type (so called restrictions). We tackle 
these challenges by means of the representation of possibly infinite sets of world states, so called belief states. 

 These belief states are presented in an abstract representation language which makes it possible to construct 
exclusive choices independently from well-known representation languages. 

 This enables the definition of a planning domain (conditional deterministic belief-state-transition system) and a 
planning problem which allow us to design the necessary conditions (for instance, in UML they are called 
guards) – needed for the planning of the control flow pattern exclusive choice – automatically by an algorithm. 

Considering the guidelines for conducting design science research by Hevner et al. (2004), we organize the paper as 
follows: The second section specifies both the problem context for which the new approach is relevant and the 
requirements that must be met in order to plan the exclusive choice in process models whereupon the related work is 
discussed. The third section introduces an abstract representation language and shows how belief states are 
represented. This is followed by a description of the planning model, our planning domain. Section five answers the 
key research question of how the exclusive choice control flow pattern can be constructed automatically by 

                                                           
1 The semantic annotation of actions is analyzed in a step before the planning of control structures and is therefore not the focus 
of this paper (for a more detailed description of how the semantic annotation is used, we refer to Heinrich et al. 2008). 
2 The term preconditions denotes everything an action needs in order to be performed, including input parameters; the term 
effects denotes everything an action provides after it was performed, including output parameters, as it is used in AI planning. 
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providing the necessary algorithm. The penultimate section is dedicated to an evaluation of our approach. Here, we 
demonstrate the feasibility and the implementability of our approach by means of a prototype (instantiation) and 
illustrate its application within a real-use situation (here, our instantiation has the character of a working example 
(see also Gregor and Jones 2007, p. 323)). Furthermore, we mathematically evaluated the presented approach in 
terms of different properties like termination. Finally, the last section summarizes our considerations and provides 
an outlook on future steps. 

Figure 1. The Planning Approach to Construct the Control Flow Pattern Exclusive Choice 

Problem Context, Requirements and Related Work 

At first, we present the problem context of this paper with regard to the research strand of SBPM. After this, we 
discuss the types of processes, which seem to be appropriate for the use of automated process planning in practice. 
That is followed by aligning the problem context to the planning of exclusive choices, before we formulate the 
requirements for the planning domain and the algorithm, which are based on literature. At the same time, these 
requirements are the source for the subsequent analysis of the related work, to define the need for research. 

Problem Context 

Based on the awareness that process modeling is time-consuming, the emerging research strand of SBPM tries to 
reach a higher level of automation in the creation and adaptation of process models by means of their semantic 
annotation as well as planning algorithms. For a more detailed description of SBPM see e.g. Hepp et al. (2005), 
Hepp and Dumitri (2007) and Thomas and Fellmann (2007). This is the field of study in which we envision the 
automated planning of process models (which is understood as a plan in the following sections). We propose that if 
actions, which can be – in accordance to Hepp and Dumitri (2007) – stored in a process library, are semantically 
annotated, it becomes possible to create process models automatically for a given problem description (see also 
Henneberger et al. 2008). The annotation of an action includes a semantic annotation of the preconditions needed for 
it to be performed and the effects provided after it has been performed. A description for a planning problem 
comprises, besides the actions, of an initial state representing the overall process input and a set of goals 
representing the desired process output. Given such a problem description, a planner is expected to build feasible 
process models (e.g. Heinrich et al. 2008; Henneberger et al. 2008). During the overall planning, the semantic 
annotation of the corresponding elements of the problem is analyzed by an inference mechanism to identify the 
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existing dependencies between initial state, actions and goal states. Since this semantic reasoning can be done prior 
to the planning of the control flow patterns (see Heinrich et al. 2008), we do not address it further in this paper. 

As discussed in the introduction, automated planning is thought to contribute to process modeling to design and 
adapt process models faster. However, the question of which processes are adequate to apply a process planning 
algorithm to and which are not, needs to be clarified. Such a classification is required to specify the business 
problem context as well as the boundaries within which the approach is expected to be applied. Processes are 
classified in literature related to different criteria (e.g. Marjanovic 2005; Weske et al. 2004). Here, criteria like 
degree of process repetition, frequency of process redesign and process value seem promising. According to the 
papers mentioned before, a professional manual process design is suggested (in contrast to not doing such a process 
design) especially for repetitive processes that need to be (re)designed repeatedly and which are of high value for a 
firm. This is justified primarily by economic reasons, i.e. any high initial costs of analyzing and documenting the 
problem domain (for which the process is constructed) as well as the costs of a manual adaption of an existing 
process are worthwhile, if the analysis and documentation, once made, can be used again during another redesign. 
The classification by these authors can be transferred in a sense to automated planning of process models. Here, too, 
high initial costs occur to analyze and annotate the process actions (preconditions and effects) and to implement the 
planning algorithm. Another similarity to manual process design is that the annotations and the implemented 
algorithm can later be reused during further (re)design projects, which reduces the costs and time of the design. 
Therefore, we will focus first on repetitive processes that need to be (re)designed repeatedly and which are of high 
value. Such processes seem to be the first choice for applying automated planning approaches. This boundary of the 
problem context is expected to be relevant, since usually there are many processes in companies that belong to this 
process class. Thus, we have to evaluate later, if under the defined conditions – especially repetitive processes that 
need to be (re)designed repeatedly – an automated planning of process models is useful. 

In our context, we focus on the, so far, unsolved issue of planning the control flow pattern exclusive choice in 
process models. As suggested by Hevner et al. (2004), we decompose the problem of planning a whole process 
model into subproblems such as the planning of exclusive choices in order to address this subproblem in depth. The 
planning domain and algorithm have to cope with a number of requirements, which are presented in the following 
subsection of this paper before related work is discussed. 

Requirements 

The planning domain must meet general requirements (see also Bertoli et al. 2006; Constantinescu et al. 2004; 
Meyer and Kuropka 2005; Meyer and Weske 2006; Pathak et al. 2006). These requirements are also the basis for the 
analysis of existing approaches and AI planning techniques in the next subsection. The following requirements need 
to be considered: 

(R1) Preconditions and effects and the data types of their parameters: It must be possible to assign various data 
types (e.g. defined in Biron and Malhotra 2004) to parameters of preconditions and effects of actions and consider 
them within the planning model. Some actions may require restricted ranges of values for a data type. Therefore, 
restrictions have to be considered as well. In other words, it should be possible to specify the range of values an 
action accepts for a precondition and the range of values it produces for an effect. Since the restrictions of 
consecutive actions may not match completely, the planning algorithm needs to consider all possible ranges in the 
process model. In a given world state according to an individual process execution, every parameter can be 
represented by a unique value, i.e., allowing ranges of values is equivalent to allowing a possibly infinite set of 
world states. 

(R2) Planning independently of a concrete representation language: In order to use the planning approach 
independently of a concrete representation language, a general and formal framework (planning domain and 
algorithm) has to be built by the use of an abstract representation language. 

(R3) Planning of exclusive choices: An algorithm should be able to plan control structures and especially 
exclusive choices in process models automatically. Van der Aalst et al. (2003) provides a comprehensive overview 
of the various control structures that may be part of a process model. Moreover, he analyzes how these structures are 
represented in different process modeling languages such as UML activity diagrams. Thus, following these findings, 
a planning domain needs to consider conditions for constructing control structures, such as exclusive choice. 
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Related Work 

The planning problem described in this paper can be characterized as a nondeterministic planning problem with 
initial state uncertainty. It is nondeterministic because we abstract from an individual process execution. Therefore 
the realizations of parameter values (and thus the world state) are not determined at the moment of planning 
(Ghallab et al. 2004). Likewise parameters are not fully determined in the initial state either, which is frequently 
called initial state uncertainty (R1) (Bonet and Geffner 2001). Although there are already algorithms that can cope 
with nondeterminism and initial state uncertainty (e.g. Bertoli et al. 2006; Bonet and Geffner 2001), these 
approaches do not reach out for the planning of process models because of their limited capabilities concerning the 
construction of control structures (R3). Other algorithms, such as the one presented in Bertoli et al. (2006), progress 
from an initial belief state to one of the goal belief states. It builds a search tree, to find all possible paths beginning 
with the initial belief state, branching on conditions. The approaches of such conditional planning (e.g. Bertoli et al. 
2006; Hoffmann and Brafman 2005) do not fit our problem. They encode so called observations, which are points in 
the plan, where it is necessary to determine, if some logical expression is valid or not in order to proceed further in 
the plan. They encode the observations separately in the form of observation variables and observation actions, 
respectively, making them part of their planning domain. In practice this means, that there are observations in the 
domain description, which makes such an observation the only point in the plan, where it might branch (e.g. in order 
to construct an exclusive choice). Thus, exclusive choices are possible (see also the conditional planners such as 
Bonet and Geffner 2001; Hoffmann and Brafman 2005) but are “hard-coded” in the domain (e.g. in terms of sensing 
actions) and additionally restricted to Boolean variables. In process modeling, which is our problem context, such 
observations are not given as this would simplify planning process models to a great extent. In practice this means, 
that a planning approach must determine the conditions by itself without having the observations given in advance 
(R3). Finally, there needs to be a way of representing belief states, in order to map one belief state into another, 
which is a key problem in belief space according to Geffner (2002) (R1). One promising approach seems to be the 
use of Binary Decision Diagrams as proposed in Bertoli et al. (2006). Another way is the representation of a belief 
state implicitly by an initial belief state together with a sequence of actions that leads to this belief state as done in 
Hoffmann and Brafman (2006). Other planners, for example in Bonet and Geffner (2000), enumerate all states of the 
world explicitly that may occur after applying an action. Because of large data types (e.g. double), which are 
essential for the problem context of process modeling, these approaches are not suitable. 

As the composition of (semantic) web services forms a similar issue as the automated planning of process models 
we additionally want to briefly mention some planning and rule-based approaches that have already been adapted 
for the composition of (semantic) web services (e.g. Liang and Su 2005, Pistore et al. 2005, Weigand et al. 2008, 
Wu et al. 2003). However, none of these approaches meet the above-mentioned requirements for process planning, 
especially nondeterministic planning, the construction of exclusive choices, and the ability to handle different data 
types. Yet, these issues are necessary for the planning of process models. 

Abstract Representation Language 

In this section we present a formal definition of belief states, making it possible to explicitly represent an infinite 
state space independently of a concrete representation language. This is the foundation for both the description of 
our planning model and the development of our algorithm in order to meet the requirements (R1) to (R3). With the 
abstract representation language it is possible to represent possibly infinite sets of world states quite easily. 
Furthermore, it is a rather intuitive way – from a process modeling perspective – to express certain preconditions 
and effects3. We do not use other representation languages like set-theoretic representation or state-variable 
representation (see Ghallab et al. 2004), since we do not have a classical planning problem and we want to build a 
planning model that is independent of a concrete representation language4. In this way, it is a kind of specialized 
language to describe our problem considered in a new way (March and Smith 1995). When talking about process 

                                                           
3 As mentioned above, these preconditions and effects need to be semantically annotated. This is realized by linking their 
parameters already during the specification of the actions with classes of an OWL 2 ontology (Motik et al. 2008). These 
semantics are analyzed by an inference step prior to the planning of control flows and its patterns (see Heinrich et al. 2008), so 
that for the further paper it is sufficient to demonstrate the approach on a syntactic basis. 
4 However, if we restrict all of the atoms and belief state variables to be ground, then from a theoretical point of view our abstract 
representation language has equivalent expressiveness than the languages mentioned. 
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models, the annotation of their actions includes a specification of the preconditions and the effects. We define a 
parameter of the preconditions and effects as belief state tuple that consists of the parameter name and a set of 
values, all of which can be assigned to the parameter in a specific world state (according to an individual process 
execution). Thus the name of a parameter is also understood as a variable that can take on all the values in the set of 
values. The data type of a parameter is the predefined domain of a belief state tuple. 

Definition 1 (Belief state tuple). A belief state tuple p is a tuple of a belief state variable v(p) and a subset r(p) of its 
predefined domain dom(p), which we will write as p:= (v(p),r(p)). It is v(p) r(p) in a specific world state. When 
talking about belief states, v(p) is the symbol of the belief state variable. The set r(p)  dom(p) is called the belief-
state-variable restriction (abbr.: restriction) of v(p), which contains the values that can be assigned to v(p) in a 
possible world state. If r(p)= then, the belief state variable does not exist (anymore), allowing the deletion of a 
belief state variable. 

According to this definition, each belief state variable v(p) has a predefined data type (e.g. double) specifying the 
predefined domain dom(p). Additionally, restrictions r(p) can be defined for each belief state variable v(p). A 
restriction can either be described by logical expressions (e.g. u ≥ 4 ⁄ u ≤ 5) defining a set of values or an explicit 
enumeration of values (e.g. u{4,5}) for a specific belief state variable (e.g. u). 

Example 2. The set bs1= { (u,[4,5]), (v,{T}), (w,{T}), (y,{F}), (z,[5,6]) } represents a set of belief state tuples. The 
restriction of u is an interval of the double data type, whereas four and five are part of the interval. The domains of 
the belief state variables might be predefined as dom(u)=dom(z)=double, dom(v)=dom(w)=dom(y)=boolean. 

With the definition of a belief state tuple we have one cornerstone of the planning model, presented in the next 
section. By the use of these belief state tuples we can explicitly represent belief states and explain in what sense we 
understand them as possibly infinite sets of world states by the help of definition 4 in combination with definition 3. 

Definition 3 (⋿). Let A = {u1, …, uk} and B = {w1, …, wm} be two finite sets of belief state tuples, then:  
   A ⋿ B : uA wB: v(u)=v(w)    r(u)  r(w)    |r(u)|=1. 

Definition 4 (Belief state and world state). Let BST = {p1, …, pn} be a finite set of belief state tuples. A belief state 
bs is a subset of BST, containing every belief state variable one time at the most. A world state s is a member of the 
belief state bs, in the context that it is s ⋿ bs.  

The set bs is constituted by the restrictions that currently apply to a set of belief state variables. Similar to Petrick 
and Bacchus (2002), the set bs thus could be interpreted as a kind of knowledge base capturing the knowledge about 
available belief state variables. The set bs therefore describes different conceivable world states that may occur 
during plan execution. It needs to be distinguished from the world state, which generally refers to an individual 
situation at process execution time. According to literature (e.g. Bertoli et al. 2006; Bonet and Geffner 2000; 
Hoffmann and Brafman 2005; Hoffmann and Brafman 2006), a set of world states is called belief state. Since the set 
bs is a set of world states in the context of definition 4, we will follow this wording and refer to the set bs as a belief 
state. 

This way of representing a set of world states is one starting point to define and solve our planning problem. 
Furthermore, we can explicitly represent belief states in a rather intuitive way. Additionally, with this abstract 
representation language (R2), a belief state can be a possibly infinite set of world states (R1). Hence, a world state s 
is an instance of a belief state bs. In the following section this allows us to describe a concrete transition function, 
which is needed for the planning model. 

Planning Model 

As stated above, our approach can be seen as a nondeterministic planning problem with initial state uncertainty. Our 
approach is inspired by the framework given in Bertoli et al. (2006), but we will describe our domain in the abstract 
representation language specified before. Furthermore, we will handle nondeterminism in a different way. This is 
necessary because former approaches include observations in the domain description. In the context of process 
modeling these observations are not known in advance. To solve this problem, our idea is to automatically create 
sets of conditions, where a plan can branch. This is based on the presented requirements for the automated planning 
of the exclusive choice control structure (R3), which leads to conditional plans. 

In this section we describe our search process (related to the guidelines for conducting design science research) and 
start with a nondeterministic state-transition system and its definition. Then we modify it by using the introduced 
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abstract representation language of the previous section. Instead of states we use belief states in the transition 
system, which makes it possible to change the transition function in a first step to be deterministic regarding belief 
states. As a result of that change, we define a deterministic belief-state-transition system, making it possible to cope 
with (R1) and (R2). In a second step we extend the transition function by what we call conditions, in order to build 
branches in a plan. As a consequence, we describe a conditional deterministic belief-state-transition system to 
handle our planning problem at the end of this section. 

Nondeterministic State-Transition System – The Starting Point 

When being confronted with a nondeterministic planning problem, it is common to use a nondeterministic planning 
domain. In general, “a nondeterministic state-transition system is defined in terms of its states, its actions, and of a 
transition function that describes how (the execution of) an action leads from one state to possibly many states” 
(Bertoli et al. 2006). We use this as a working definition of a nondeterministic state-transition system. More 
formally a state-transition system and (non-)determinism in state space are defined in Bertoli et al. (2006) as 
follows. 

Definition 5 (Nondeterministic state-transition system). “A nondeterministic state-transition system is a tuple  = 
(S, A, R), where 

 S is a finite set of states, 

 A is a finite set of actions, 

 and R : S × A → 2S is the transition function. The transition function associates to each state s  S and to each 
action a  A the set R(s, a)  S of next states.” 

Definition 6 ((Non-)determinism in state space). “An action a is applicable in a state s ([…]) iff |R(s, a)| > 0; it is 
deterministic (nondeterministic) in s iff |R(s, a)| = 1 (|R(s, a)| > 1). If a is applicable in s, then R(s, a) is the set of 
states that can be reached from s by performing a.” 

As mentioned, we take this nondeterministic state-transition system as a starting point, and simply define it in a 
different way by using the introduced abstract representation language of the previous section. 

Deterministic Belief-State-Transition System – The First Step 

So far, we defined a nondeterministic state-transition system and what we understand as a belief state. With this, we 
define a deterministic belief-state-transition system and (non-)determinism in belief space. Similar to the working 
definition of the nondeterministic state-transition system, we formulate a working definition of a so called 
deterministic belief-state-transition system which is defined in terms of its belief states (sets of states), its actions, 
and of a transition function that describes how (the execution of) an action leads from one belief state to one and 
only one belief state. More formally: 

Definition 7 (Deterministic belief-state-transition system). Let BST = {p1, …, pn} be a finite set of belief state tuples. 
A deterministic belief-state-transition system is a tuple d = (BS, A, d), such that: 

 BS  2BST is a finite set of belief states, i.e., each belief state bs BS is a subset of BST. 

 A is a finite set of actions. Each action aA is a triple consisting of the action name and two subsets of BST, which 
we will write as a:=(name(a), precond(a), effects(a)). The set precond(a)  BST are the preconditions of a and 
the set effects(a)  BST are the effects of a. 

 An action a is applicable in a belief state bs (denoted with applicable(a, bs)) iff bs m precond(a) (m as defined in 
definition 9). This phrases a sufficient condition that needs to be met so that an action a can actually be performed 
in a belief state bs, since a can be performed in all the possible world states of bs. All belief state variables in 
precond(a) are available in bs. At the same time, the restriction of each belief state variable in bs is a subset of the 
restriction required by a belief state variable in precond(a). In other words, an action is applicable iff the action 
can be performed in each world state s ⋿ bs. 

 The transition function is d : BS × A → 2BS with d(bs,a) = { (bs \ { (vbs,rbs)  bs | vbs = veffects, (veffects,reffects)  
effects(a) } )  effects(a) } if aA is applicable in bsBS, and undefined otherwise. 

 2BS is closed under d, i.e., if bsBS, then for every action a that is applicable in bs, d(bs, a)2BS. 
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Definition 8 ((Non-)determinism in belief space). An action a is deterministic (nondeterministic) in bs iff |d(bs, a)| 
= 1 (|d(bs, a)| > 1). If a is applicable in bs, then d(bs, a) is the set of belief states that can be reached from bs by 
performing a. 

Definition 9 (m). Let A = {u1, …, uk} and B = {w1, …, wm} be two finite sets of belief state tuples, then:   
   A m B : wB uA: v(w)=v(u)    r(u)  r(w). 

Example 10. Let (a1,  precond(a1):={ (u,[3,6]), (v, {T,F}), (w,{T}), (y,{F}) }, effects(a1):= { (u,[2,7]), (v,{F}), 
(x,[1,4]) } ) be an action and let bs1 = { (u,[4,5]), (v,{T}), (w,{T}), (y,{F}), (z,[5,6]) } be a belief state. Here a1 is 
applicable in the belief state bs1, since bs1 m precond(a1), because for each belief state variable among the 
preconditions of a1 there is a belief state variable in bs1 and it is [4,5]u_bs1  [3,6]u_a1, {T}v_bs1 {T,F}v_a1, {T}w_bs1 
{T}w_a1 and {F}y_bs1{F}y_a1

5. As a result it is d(bs1,a1)={ { (u,[2,7]), (v,{F}), (w,{T}), (x,[1,4]), (y,{F}), (z,[5,6]) } }. 

We compare definition 5 and definition 7 to show, that definition 7 just extends definition 5, but is basically another 
way to define a nondeterministic state-transition system. Our transition system is called a belief-state-transition 
system, since it is not based on states, but on belief states. A nondeterministic state-transition system can be written 
as a deterministic belief-state-transition system, because: 

 Both transition systems have a finite set of sets of world states, |S|< and |BS|<. The nondeterministic state-
transition system has a finite set of world states S. A single world state sS can be understood as a set of world 
states, having only one element. Due to that, the nondeterministic state-transition system has a finite set of sets of 
world states. The deterministic belief-state-transition system is based on a finite set of belief states BS, and 
therefore has a finite set of sets of world states, too. 

 Both transition systems have a finite set of actions. 

 Both transition systems have a transition function that associates to each set of world states and to each action, a 
set of next world states. 

According to definition 8, the belief-state-transition system is called deterministic, since it is |d(bs, a)| = 1. This 
deterministic belief-state-transition system allows transitions from a set of world states, with more than one element, 
to a set of next world states, which is made possible through the use of belief state tuples. Here, the nondeterministic 
state-transition system is extended, since it only allows transitions from one world state to a set of next world states. 
Due to the definition of the belief states tuples, another extension is that a belief state is a possibly infinite set of 
world states. These two extensions tackle the problem of representing and updating belief states in large state spaces. 
With this novel model definition, it is now – in contrast to former works – possible to cope with (R1) and (R2). 

As the next example demonstrates, the transition function d might leave out transitions that are possible in the 
process modeling context, due to the fact that a transition takes place only when an action is applicable in a belief 
state.  

Example 11. Let (a1,  { (u,[3,6]), (v,{T, F}), (w,{T}), (y,{F}) },  { (u,[2,7]), (v,{F}), (x,[1,4]) } ) be an action and let 
bs2 = { (u,[1,5]), (v,{T}), (w,{T}), (y,{T,F}), (z,[5,6]) } be a belief state. Here a1 is not applicable in the belief state 
bs2, since bs2 o precond(a1), because it is [1,5]u_bs2  [3,6]u_a1 and {T,F}y_bs2  {F}y_a1. The transition function 
d(bs2,a1) would be considered as not defined, although it would be defined if, for example, (u,{4}) and (y,{T}) hold 
in an individual process execution (a certain world state of bs2). Thus, it is necessary to consider branches with 
conditions in the constructed process model (see (R3)). 

Conditions – Enabling the Second Step 

As a result of example 11, we realize the need to generalize the transition function to allow the performing of what 
we call partly applicable actions in a belief state. In a next step, we therefore extend the transition function d of 
definition 7 by so called conditions, which are comparable to the routing constraints in Sun et al. (2006). 

Definition 12 (Partly applicable). An action a is partly applicable in a belief state bs (denoted with 
partly_applicable(a, bs)) iff: 

                                                           
5 The indices are just given to note, to which belief state variable the restriction belongs to, for example [4,5]u_bs1 indicates that 
the interval of numbers [4,5] is the restriction of u in bs1. 
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u precond(a) w bs: v(u)=v(w)    (r(u)  r(w)   ). 

Definition 12 describes a necessary condition that needs to be met so that an action a can actually be performed in a 
belief state bs. All belief state variables in precond(a) are available in bs and the restriction of each belief state 
variable (i.e. the set of possible values) does not contradict the restriction required by a for that belief state variable. 
However, there may still be situations (certain world states of bs) where performing a is not possible due to the 
restrictions. If we allow partly applicable actions, our transition function needs to be able to handle actions that are 
partly applicable in a belief state. 

Example 13. Let (a1,  { (u,[3,6]), (v,{T,F}), (w,{T}), (y,{F}) },  { (u,[2,7]), (v,{F}), (x,[1,4]) } ) be an action and let 
bs2 = { (u,[1,5]), (v,{T}), (w,{T}), (y,{T,F}), (z,[5,6]) } be a belief state. Here a1 is partly applicable in the belief state 
bs2, because it is [1,5]u_bs2  [3,6]u_a1 = [3,5]  , {T}v_bs2  {T,F}v_a1 = {T}   , {T}w_bs2  {T}w_a1 = {T}  and 
{T,F}y_bs2  {F}y_a1 = {F}  . 

If we have a belief state bs, then there might exist a nonempty set of actions Ap_a with actions that are partly 
applicable in bs. In an individual process execution, for every belief state variable in bs a specific value can be 
observed for a certain world state s ⋿ bs. In this world state s, it might be possible to perform all actions in Ap_a or 
just the actions in a subset Aperform  Ap_a. This means, for every belief state variable of a belief state we have to 
discover for which observations (constellation of parameter values) an action is in Aperform. In other words, we need 
to detect, when it is possible to perform an action and consider it in a process model and when this is not possible. 
Therefore, we need to find a set of conditions under which an action can always be performed, that is, under which 
set of conditions an action is applicable in bs (R3). With these definitions, it is possible to plan exclusive choices, 
since we now know the conditions and the corresponding actions to construct branches in a process model. Former 
works (e.g. Bertoli et al. 2006) do not consider sets of conditions (sets of sets of observations). This makes our 
notation more expressive. 

Definition 14 (Condition). A condition q is a tuple of a condition variable v(q) and a subset r(q) of its predefined 
domain dom(q), which we will write as q:= (v(q),r(q)). It is v(q) r(q) in a certain world state. When talking about 
belief states, then v(q) is the symbol of the condition variable. The set r(q) dom(q) is called the condition 
restriction of v(q), which is the set of values that might be assigned to v(q) in a possible world state. 

The restriction r(q) of a condition q is a set of possible values that might be observed in a world state for one 
condition variable v(q). A set of conditions c is built for every action that is partly applicable in a belief state bs, 
which are the actions in Ap_a. This set of conditions c might be different for every action in Ap_a, and it is – in 
contrast to other planning problems – not provided prior to planning a process model. It needs to be determined 
automatically (R3). In a certain world state, we can then perform these actions, where all conditions are fulfilled, i.e., 
for every condition in c there is an observed value in the world state, and the observed value of the condition 
variable is a member of the restriction of the condition for this condition variable. This way it is known in each state, 
which actions can be performed, or as we call it, can be executed. An action can be executed in a certain world state 
of a belief state, either if the action is applicable in the belief state (c=) or if the action is both partly applicable in 
the belief state and all of its conditions are fulfilled. 

Example 15. Let (a1,  { (u,[3,6]), (v,{T,F}), (w,{T}), (y,{F}) },  { (u,[2,7]), (v,{F}), (x,[1,4]) } ) be an action and let 
bs2 = { (u,[1,5]), (v,{T}), (w,{T}), (y,{T,F}), (z,[5,6]) } be a belief state. As shown in example 13, a1 is partly 
applicable in bs2. Since a1 is partly applicable, we need to find the conditions that have to be fulfilled so that the 
action can be executed. We can do that by looking for the reason, why a1 is not applicable in bs2. It is not applicable, 
because it is [1,5]u_bs2  [3,6]u_a1 and {T,F}y_bs2  {F}y_a1, as presented in example 11. If we could restrict these 
restrictions even more, then a1 would be applicable in bs2. This is exactly what we do with the set of conditions. If 
(u,[3,5]) and (y,{F}) holds then a1 would be applicable in bs2, which makes c1 = { (u,[3,5]), (y,{F}) } the set of 
conditions that need to be fulfilled to execute a1 in a certain world state of bs2. 

As mentioned, the set of conditions might be different for every action that is partly applicable. In order to assign a 
set of conditions c to a belief state bs and an action a we define a condition function. This function associates to each 
belief state bs and each action a a set of possible conditions. 

Definition 16 (Condition function). Let d = (BS, A, d) be a deterministic belief-state-transition system. Let C be a 
possibly infinite set of conditions. A condition function over BS and C is a function  : BS × A → 2C (denoted with 
CONDITIONFUNCTION(bs, a)), which associates to each belief state bs and each action a the set of possible conditions 
(bs, a) C. 
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Therefore, not only an action influences the transition from one belief state to another one, but also the conditions 
under which this action can be executed. We remark that in practice the conditions are not given additionally to the 
domain in any way, but need to be created by an algorithm (R3). 

Planning Domain and Planning Problem – The Second Step 

The previous discussions lead to a conditional deterministic belief-state-transition system, which we consider to be 
our planning domain. 

Definition 17 (Planning domain). Let BST = {p1, … ,pn} be a finite set of belief state tuples. Our planning domain 
on BST is a conditional deterministic belief-state-transition system cd = (BS, A, , cd), such that: 

 BS  2BST is a finite set of belief states. 

 A is a finite set of actions. 

  : BS × A → 2C is a condition function over BS and A, with the set of conditions  
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 The transition function is cd : BS × 2C × A → 2BS with cd(bs,c,a) ={ ( ( ( (bs \ { (vbs,rbs) bs | vbs = vc,(vc,rc) c } ) 
 c ) \ {(vc,rc) c | vc = veffects,(veffects,reffects)  effects(a)} ) \ {(vbs,rbs)  bs | vbs = veffects,(veffects,reffects)  effects(a) } ) 
 effects(a) } if aA is partly applicable in bsBS and c2C is a set of conditions for a, and undefined otherwise. 

 2BS is closed under cd, i.e., if bsBS, then for every action a that is partly applicable in bs, and for every set of 
conditions c2C that need to be considered, cd(bs,c,a)2BS. 

In contrast to former approaches like Bertoli et al. (2006), our conditions are not part of the domain, since this is not 
realistic at all in the context of process modeling. Now, they can be automatically derived from the domain, through 
the condition function and the set C, satisfying (R3). 

Example 18. Let (a1,  { (u,[3,6]), (v,{T,F}), (w,{T}), (y,{F}) },  { (u,[2,7]), (v,{F}), (x,[1,4]) } ) be an action and let 
bs2 = { (u,[1,5]), (v,{T}), (w,{T}), (y,{T,F}), (z,[5,6]) } be a belief state. Here a1 is partly applicable in bs2, because it 
is [1,5]u_bs2  [3,6]u_a1 = [3,5]  , {T}v_bs2  {T,F}v_a1 = {T}   , {T}w_bs2  {T}w_a1 = {T}   and {T,F}y_bs2  
{F}y_a1 = {F}  .  Let c1 = { (u,[3,5]), (y,{F}) } be the set of conditions, that need to be fulfilled to execute a1 in 
bs2, as discovered in example 15. As a result we have cd(bs2,c1,a1) ={ { (u,[2,7]), (v,{F}), (w,{T}), (x,[1,4]), (y,{F}), 
(z,[5,6]) } }. 

In practice, for each belief state all partly applicable actions are determined, then the result of the condition function 
is calculated for each action, and at the end a new belief state is created as described by cd. In summary, our 
planning problem is defined as follows. 

Definition 19 (Planning problem). Our planning problem is a triple P = (cd, bs, BSg), where: 

 cd = (BS, A, , cd) is a planning domain. 

 bs  , the belief state prior to the exclusive choice, is a member of BS. 

 Ap_a  A is a set of all actions that are partly applicable in bs. 

 BSg  2BS is a set of belief states called goal belief states that are required to exist after the exclusive choice. The 
set of goal belief states is: 
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The planning problem states, that given the planning domain and the belief state bs, each goal belief state must be 
constructed in order to solve the problem. 

Algorithm 

The focus of this section is on the algorithm (method) that constructs the conditions and the branches, which is the 
realization of the condition function. Therefore, we use another algorithm as a starting point (like in Bertoli et al. 
2006) that progresses from an initial belief state to a goal belief state. It builds a search tree, to find all the possible 
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paths starting in the initial belief state. We enhance such an existing approach with our algorithm and its ability to 
identify the required conditions. The resulting search tree ST is a graph of a set of nodes Nodes(ST), which are the 
belief states, and a set of labeled arcs Arcs(ST). We label the arcs with both, an action and the corresponding 
conditions that need to be fulfilled to execute this action in the belief state. 

Our focus is on how the condition function : BS × A → 2C can be realized, in other words, how the set of 
conditions can be built. First, we describe how the EXTENDTREE primitive, presented in Bertoli et al. (2006), can be 
modified to include the condition function (Figure 3 - appendix). Second, we introduce the CONDITIONFUNCTION 
primitive, see Figure 4, which builds the set of conditions, thus being a realization of our condition function . 
Finally, we present the PARTITION subroutine in Figure 5. This recursive subroutine creates disjoint partitions of the 
restrictions of certain belief state tuples in a belief state, which are needed to build the set of conditions. 

The EXTENDTREE primitive receives the current search tree ST and a node, which is a belief state, where the tree can 
be extended. For every partly applicable action, including also the applicable actions, a set of conditions and the 
resulting next node are built. This next node is added to the set of nodes Nodes(ST) of the current search tree. A new 
arc is constructed which includes the action and the set of conditions as labels, and then added to the set of arcs 
Arcs(ST). We go into detail on line 10 of the EXTENDTREE primitive at the end of this section.  

An arc has two labels, an action and the set of conditions that need to be fulfilled in order to execute the action in a 
node bs to reach bs’. If an action is partly applicable, then the CONDITIONFUNCTION primitive, see Figure 4, needs to 
be executed. The primitive gets a node bs and an action a. If a is applicable in bs then, there is no need for 
conditions and the empty set is returned. On the other hand, if a is just partly applicable (and not applicable), then a 
set of conditions ca is created for a. The lines 6-10 create Ap_a, the set of all partly applicable actions in bs. The set 
bsp is the set of all belief state tuples in bs, where the belief state variable is also in the preconditions of a (line 11). 
The rest of the primitive is then performed for every belief state tuple in bsp. 

We take one element (vbs,rbs) of bsp. The set Partition of nonempty sets is a partition of rbs. The elements of 
Partition are pairwise disjoint and the elements of Partition cover rbs. The Partition subroutine creates the set 
Partition. In line 15, the set cpart is built, which contains those elements of Partition that are a subset of rw, being the 
restriction of a belief state tuple vbs in the preconditions of a. As a next step, the elements of cpart are joined to form 
cp. This set cp is the condition for vbs that, possibly among others, needs to be fulfilled in order to execute a. In the 
end, cp is joined with ca to construct the set of conditions, which is returned, after lines 13-21 are carried out for 
every element of bsp. The CONDITIONFUNCTION primitive creates the minimal amount of conditions, with the 
minimal sets of observations (due to lack of space, we omit the proof). This leads to a minimal quantity of exclusive 
choices in the process model, which is advantageous for its presentation and layout. 

In line 14 of the CONDITIONFUNCTION primitive the PARTITION subroutine is carried out, which is defined 
recursively. This subroutine starts with two sets. The set r is a restriction rbs of a belief state tuple (vbs,rbs). The 
second set R is a collection of restrictions. It is the set of all restrictions for vbs that are part of the preconditions of 
each action in Ap_a. This is done in order to partition rbs in pairwise disjoint sets so that the set cp in the 
CONDITIONFUNCTION primitive can be constructed. It is possible that there are subsets of rbs, which are not covered 
by any precondition of the partly applicable actions. That is to say, there are subsets of rbs, where the intersection of 
these subsets and the union of the sets in R are empty. To handle this case, we always add an arc in the EXTENDTREE 
primitive (line 10) that leads to the termination of the plan if the values in the union of these subsets are observed in 
the world state at execution time. 

As mentioned, the focus of this section is on the algorithm that plans the conditions and the branches. The conditions 
are not given additionally to the domain in any way, but are created by the algorithm, as required by (R3). 

Evaluation 

The presented algorithm was implemented prototypically as part of the open source process modeling tool AgilPro. 
The algorithm and the prototypical implementation (instantiation) were evaluated as shown in this section. 

a) Analysis of the algorithm properties: We mathematically evaluated the algorithm in terms of completeness, 
minimality, termination and computational complexity regarding time. It could be shown that the approach creates 
complete results and a minimal number of exclusive choices in a process model for a given problem. Furthermore, 
the algorithm terminates. Considering the computational complexity regarding time, it can be shown that, for 
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example, the runtime increases subproportionaly when the initial belief state or the goal belief states are extended. 
Due to lack of space we only show that the algorithm terminates:  

Theorem 20. Given our planning domain, the execution of the algorithm EXTENDTREE terminates. 

Proof. Termination is proved by showing that each iteration of every for-loop in the algorithm terminates, and that 
the number of iterations is finite. If a is applicable in bs, then the CONDITIONFUNCTION terminates (lines 2-3). The 
else-case (lines 4-23) is complex.  

Before starting with the CONDITIONFUNCTION, we show that the set Partition in line 14 is finite. The set Partition is 
built by the subroutine PARTITION, presented in Figure 5. The set R of the PARTITION subroutine equals to the set 
{ru |vbs=vu, (vu,ru) precond(ap_a), ap_a Ap_a } when it is invoked the first time. The set precond(ap_a) is finite for 
each ap_a Ap_a, due to the fact that it is a subset of BST. The set of all actions A is finite, and so is Ap_a, because it is 
a subset of A. As precond(ap_a) and Ap_a are finite, the set R is finite, when PARTITION is invoked the first time. 
Every line of the PARTITION subroutine, besides 8 and 11, terminates, simply because there are just set operations. 
The subroutine is invoked recursively only a finite number of times. This is due to the following three facts: 

 R is finite. 

 The number of elements in R decreases by one every time the subroutine is invoked recursively. 

 The subroutine is invoked only when there is more than one element in R, representing a lower bound. 

In other words, the subroutine is invoked recursively just a finite number of times, because the set R is finite, the 
number of elements is strictly decreasing and there is a lower bound. Thus, the PARTITION subroutine terminates and 
the set solution is finite. The set solution is returned to the CONDITIONFUNCTION, constituting the finite set Partition. 

With the set Partition being finite, it is possible to show that the CONDITIONFUNCTION terminates. Lines 7-9 
terminate, because the verification whether ap is partly applicable in bs or not terminates and the procedure of 
uniting Ap_a with ap terminates. The for-loop of lines 6-10 terminates, since A is finite. We show that lines 14-20 
terminate. The set cpart is a subset of Partition, which makes cpart finite. Line 18 terminates, because the procedure of 
uniting part with cp terminates. Since cpart is finite, lines 17-19 terminate. The operation of uniting ca with cp 
terminates. To show, that the number of iterations of lines 14-20 is finite, we show that bsp is a finite set of belief 
state tuples. The set BST of all belief state tuples is finite. The node bs is a subset of BST, which makes it finite as 
well. The set bsp is a subset of bs, and is therefore finite. Thus, the for-loop of lines 13-21 terminates, and so does 
the CONDITIONFUNCTION. Since the set A is finite the EXTENDTREE primitive terminates. q.e.d. 

b) Analysis of the implementation: Besides the manual analysis of the source code (structured walk through) 
by persons other than the programmers, we made a series of tests using the JUnit Framework, including runs with 
extreme values, JUnit regression tests and unit tests. The implemented algorithms did not show any defects at the 
end of the test phase. 

c) Formal evaluation of the results: It can be shown that the constructed exclusive choice is syntactically 
correct. As stated in Sadiq and Orlowska (2000), an exclusive choice needs to be "exclusive and complete", which 
means that in each process instance exactly one of the alternative partly applicable actions is executed or the process 
ends. This is guaranteed due to the facts that the conditions of the partly applicable actions are pairwise disjoint and 
that these conditions cover the whole domains of the respective belief states. Further forms of evaluation, as for 
example the proof that no data-flow anomalies exist (Sun et al. 2006) and that the resulting process model fulfills the 
soundness property as proposed by van der Aalst (2000), are not applicable for an exclusive choice itself (we 
conducted such evaluations in other papers considering the overall planned process model). 

d) Defined Requirements: We presented an abstract representation language in order to explicitly represent a 
possibly infinite set of world states in the form of belief states, providing an intuitive formalism (from a process 
modeling perspective) for the planning problem. With this language, we addressed the requirements (R1) and (R2). 
In our approach, belief states are defined as sets of feasible values of belief state variables and thus implicitly 
describe sets of conceivable world states. On this basis we constructed a conditional deterministic belief-state-
transition system, what we considered to be our planning model. In this planning model we had a concrete 
representation of our transition function, which also accounts for sets of conditions (cp. (R3)). 

e) Operational evaluation of the results: Hevner et al. (2004) stressed that an artifact must be evaluated with 
respect to the practical utility provided. Since competing artifacts do not exist in our case, a comparison related to 
efficiency is not possible at all. This in mind, we analyzed the practical applicability in different real-use situations 
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(“proof of construction”). One of those situations – which we consider in the following – is an example taken from 
the security-order-management of a European financial services provider. Here, processes had to be redesigned in 
the past due to new products, new regulations or changing organizational requirements (like to outsource parts of a 
process to external service providers). These processes have to be not only (re)designed repeatedly but are also 
repetitive processes which are of high value for the firm. We analyzed such previous redesigns and studied two 
aspects in detail. Firstly, would it be possible at all to apply our algorithm in these situations and to which extent 
match the results of the automated planning with manually built exclusive choice patterns? And secondly, does the 
application of the algorithm make sense regarding economical aspects, i.e. do we benefit from the automated 
planning of process models compared to a manual design and what costs do result from the artifact’s application? 

Considering the first aspect, it can be said, that the algorithm constructed not only the exclusive choices resulting 
from the manual redesign, but also additional feasible solutions. For instance, the resulting process was planned for 
the execution of security-orders where several steps including check routines had to be modeled. For brevity, we 
only present a small part of the whole process, where the security-order data is entered, the order itself is already 
validated and we now need to decide which check routine should be used (see Figure 2). The resulting belief state bs 
contains, among others, the tupel orderAmount that reaches from 0 to 250,000 Euro and the tuple orderState with 
the values valid and invalid. We now illustrate the input of the PARTITION subroutine, the result of that subroutine, 
and how this result is used in the CONDITIONFUNCTION primitive. 

 

Figure 2. Transformation of a Search Tree ST (Left Side) to an UML Activity Diagram 

The partly applicable actions in bs are checkCompetencies with (orderAmount, (100; 5,000]), (orderState, {valid}) 
and checkExtendedCompetencies with (orderAmount, (5,000; 100,000]), (orderState, {valid}). For the creation of 
the respective conditions (only shown for the action checkCompetencies), the subroutine PARTITION gets 
r = [0; 250,000] and R = { (0; 5,000], (5,000; 100,000] } in its first execution and provides solution = 
{ (100; 5,000], (5,000; 100,000], (0; 100]   (100,000; 250,000] }. The second invocation of PARTITION 
(r = {valid; invalid} and R = {valid}) returns solution = { {valid}; {invalid} }. With these partitions, the 
CONDITIONFUNCTION determines for each of the partly applicable actions, the necessary condition that is 
(orderAmount, (100; 5,000]), (orderState, {valid}) for checkCompetencies and (orderAmount, (5,000; 100,000]), 
(orderState, {valid}) for checkExtendedCompetencies. The third condition (orderAmount, (0; 100]   (100,000; 
250,000]), (orderState, {valid; invalid}) that needs to be considered does not lead to an executable action but to the 
end of the process as there is no executable action for it. 

The assessment showed the practical applicability of the algorithm in some real-use situations. However, what about 
the efficiency of such applications? Here, we have to differentiate: To conduct the algorithm, an initial annotation of 
actions according to their preconditions and effects is necessary. These one-time annotation costs are limited, if a 
firm already uses a process modeling tool featuring a XML interface. Such an interface can be used in order to 
export actions to AgilPro. The financial services provider we consider here used, for instance, the ARIS toolset, 
which allowed us to export a huge number of actions. In the field of the security-order-management about 200 
different actions including their preconditions and effects were imported from the ARIS toolset and afterwards 
checked (semantically). This review comprised for example the check for completeness of the action’s preconditions 
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and effects and on a semantic level if the same parameter names of the preconditions and effects were used for 
different concepts as well as if different parameter names were used for the same concepts. In some cases, 
preconditions and effects had to be completed or corrected. Such a review, which is to some extent also necessary 
during manual process design, ought to evidently be performed more accurately for automated process planning. 
Annotating ten actions with averagely five preconditions and five effects in about half an hour, the net time for the 
annotation of actions in our AgilPro tool is comparatively small. For this purpose, the relevant actions have to be 
defined and labeled before their preconditions and effects are defined and semantically annotated. There, each 
precondition and effect is specified by choosing the mapping concept from the ontology and determining the 
appropriate restriction. All in all, the initial costs of automated planning were about 20% higher than the previous 
costs of manual design. 

However, the resulting annotation costs need to be put into perspective, if a redesign of the processes considered is 
necessary more than just one time (see also the specified problem context in the second section). In future redesigns 
of the processes the initial costs are lower, because the annotations as well as the deployed algorithm can be reused. 
This even holds for the common case, where annotated actions (e.g. an action "scan document") can be reused in 
further processes (like for example in the loan department). Therefore, it can be seen, that especially under the 
condition of a higher frequency of process redesigns, an automated planning of processes models leads in sum to 
slightly higher costs compared to a manual redesign. 

Furthermore, in our above mentioned real-use situation considering the security-order-management, a set of feasible 
process models was generated within one day by means of AgilPro. This is an obvious advantage compared to a 
manual design, which took more than one week. Also, the planner generated not only the manual designed process 
model, but other feasible solutions as well. Some of these process solutions need, for instance, less staff capacity of 
the financial services provider than the manual designed process. This leads to lower process costs of about 2.5% in 
average for each process run (calculation basis: process ‘execution of security-orders’). Since the security-order-
management process is a highly repetitive process, the higher initial costs of automatic planning can be amortized in 
our case within half a year. And, according to our projects with firms, these circumstances are not unique in practice. 
But, in any other case, an individual analysis is really necessary to assess if an automated planning is useful. In 
addition, we have to evaluate another point regarding economical aspects: Several actions – as described above – are 
not used within only one process, but are reused in other processes, too. Thus, if an action is used several times, its 
annotation costs can be allocated to all redesigns of those processes using the considered action. However, such 
economical analysis cannot be done for only a few real-use situations but in medium- or long-term studies. 
Therefore, the generalizability of our evaluation of the practical utility is limited. Nonetheless, at this time, this 
limitation is unavoidable since such an iterative study is time-intensive, mitigating the possibility of conducting 
multiple real-use situations simultaneously. We anticipate that these new cases will support the relevance identified 
in this paper. 

Conclusion 

In this paper, we described how control structures can be planned automatically within the research strand of 
Semantic Business Process Management. Related to the guidelines for conducting design science research by 
Hevner et al. (2004) we can summarize as follows: Our key artifact is a method in terms of an algorithm for 
planning exclusive choices within a process model. We regard this as an important step to automate and hence to 
support the task of designing a process model. Both, the algorithm and our planning problem are formally noted and 
can therefore be well-defined and mathematically evaluated. Based on statements in literature (e.g. Borges et al. 
2005; Ma and Leymann 2008) and on our own project expectations that manual process modeling is cost-intensive 
and very time-consuming, we describe our problem context. Here, our artifact is thought to contribute to process 
modeling to design and adapt process models faster and to be useful regarding economical aspects. Since such a 
statement cannot hold for every process type, we concentrate on repetitive processes that need to be (re)designed 
repeatedly. Considering the real-use situations, in which we applied the algorithm, we found that this focus is 
reasonable. The evaluation was done on the one hand by mathematical methods, but not in comparison with 
competing artifacts, since the artifact solves a heretofore unsolved problem. On the other hand, we studied literature 
and derived key requirements that a planning algorithm should meet in our problem context. These requirements 
were not only the guideline when developing our artifact. Moreover the artifact was evaluated against the defined 
requirements. Additionally, we evaluated the algorithm in real-use situations with respect to its applicability and the 
practical utility provided. This is appropriate since it analyzes the planning algorithm “in depth in business” (Hevner 
et al. 2004). Nevertheless, considering such economical analysis, future work is needed and intended to support the 
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assessment and justification of an automated planning. The paper points out, that existing algorithms have some 
serious disadvantages, especially regarding the requirements derived from literature. So, they are not appropriate to 
our context. The research contribution of our approach is to avoid these problems and meet the defined 
requirements. Therefore, our paper fills a gap in science and practice. To support a rigorous definition of our 
artifact, we represented it formally based on an also formally denoted planning domain. Such a technical 
representation assists a mathematical evaluation of the algorithm, too. The search process is on the one hand 
directed by the requirements. On the other hand, we describe this process beginning with the abstract representation 
language and its advantages. Furthermore, we show in detail which steps are necessary to develop our artifact (see 
section planning model). Regarding the communication of our results, we choose a more technical, rigorous 
presentation, because we want to convincingly demonstrate that our artifact can be realized and implemented. 
However, we also tried to attract a managerial audience by means of the illustrated business problem context as well 
as the economic aspects of automated planning process models. Further work is proposed on the question of how 
other control flow patterns, like arbitrary cycles, can be considered. For this, the designed algorithm is a reliable 
basis. 

Appendix 

1 procedure EXTENDTREE(bs, ST) 
2   forall a  A 
3     if partly_applicable(a, bs) then 
4        c := CONDITIONFUNCTION(bs, a) 
5     bs’ := cd(bs, c, a) 
6           Nodes(ST) := Nodes(ST)  {bs’} 
7           Arcs(ST) := Arcs(ST)  bs, a, c, bs’
8    endif 
9   endfor 
10   Arcs(ST) := Arcs(ST)  bs, else, stop 
11 end  

Figure 3. Node Expansion Primitive 
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1 function CONDITIONFUNCTION(bs, a) 
2   if applicable(a, bs) then 
3    return   
4   else 
5    Ap_a :=  
6    forall ap  A 
7      if partly_applicable(ap, bs) then 
8      Ap_a := Ap_a  ap 
9     endif 
10    endfor 
11    bsp := {(vbs,rbs)  bs | vbs = vpre, (vpre,rpre)  precond(a)} 
12    ca :=  
13    forall (vbs,rbs)  bsp   
14     Partition := PARTITION(rbs,{ru|vbs=vu,(vu,ru) precond(ap_a),ap_a Ap_a})
15     cpart := {part  Partition | part  rw, vbs = vw,(vw,rw) precond(a)}
16     cp :=  
17     forall part cpart 
18      cp := cp  part 
19     endfor 
20     ca := ca  cp 
21    endfor 
22    return ca 
23   endif 
24 end  

Figure 4. Condition Primitive 

 

1 function PARTITION(r, R) 
2   nondeterministically choose rest  R 
3   diff := r \ rest 
4   intersection := r  rest 
5   solution =  
6   if |R|>1 then 
7    if diff   then 
8     solution := PARTITION(diff, R \ rest) 
9    endif 
10    if intersection   then 
11     solution := solution  PARTITION(intersection, R \ rest) 
12    endif 
13   else 
14    solution := {diff, intersection} \ {} 
15   endif 
16   return solution 
17 end  

Figure 5. Subroutine of the Condition Function 
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