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web-based services like facebook.com. A central challenge for the social network analysis is the 
identification of key persons within a social network. In this context, the article aims at presenting the 
current state of research on centrality measures for social networks. Given highly variable findings on 
the quality of various centrality measures, we also illustrate the tremendous importance of a reflected 
utilization of existing centrality measures. For this purpose, the paper analyzes five common centrality 
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Abstract 
Social networks are currently gaining increasing impact in light of the ongoing growth of web-based 
services like facebook.com. One major challenge for the economically successful implementation of 
selected management activities such as viral marketing is the identification of key persons with an 
outstanding structural position within the network. For this purpose, social network analysis provides a 
lot of measures for quantifying a member’s interconnectedness within social networks. In this context, 
this paper shows the state of the art with regard to centrality measures for social networks. Due to 
strongly differing results with respect to the quality of different centrality measures, this paper also 
aims at illustrating the tremendous importance of a reflected utilization of existing centrality measures. 
For this purpose, the paper analyzes five common centrality measures from literature on the basis of 
three simple requirements for the behavior of centrality measures. 
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1 Introduction 

Fundamental developments in information technology (IT) and especially the enormous growth of the 

Internet are essential drivers for the increasing global interconnectedness of companies and 

individuals. The targeted use of powerful IT thereby significantly facilitates the interaction of actors at 

different locations and information exchange in real time. In this context, services subsumed under the 

term Web 2.0, such as wikis, blogs, or online social networks, in which individuals are connected to 

each other and share news, experiences, and knowledge, increasingly gain importance. The U.S. 

market researcher Hitwise for instance reported in March 2010 that – as measured by the number of 

visits – the online social network facebook.com replaced the search engine giant google.com as the 

most visited U.S. website (Hitwise 2010). Moreover, according to a recent study by the Nielsen 

Company about 66 % of global Internet users are actively using these new social communities each 

month (The Nielsen Company 2009, p. 2). Given this development, it is not surprising that web-based 

social networks have attracted the interest of many companies since a majority of their customers now 

regularly uses these services and, in this way, exchanges on products and services (De Valck et al. 

2009, p. 185). 

The constitutive feature of social networks are the relationships between network members and hence 

the network structure induced by the mutual connections (Zinoviev and Duong 2009). This 

interconnectedness of an actor – i.e., his structural integration into the network – significantly 

influences his communication and interaction, and therefore holds valuable information for companies 

with regard to various corporate issues. Concerning viral marketing, for instance, the integration of 

well-connected actors is of considerable importance in order to attract the attention of the largest 



possible audience to a brand, a product, or a campaign (Kiss and Bichler 2008, p. 233; De Valck et al. 

2009, p. 187). In product development and in particular in the identification of trends, the integration of 

members who are taking a central position within their network is also of great advantage since these 

actors have access to information on a variety of other actors (De Valck et al. 2009 S. 185). 

The successful implementation of this exemplary list of business related issues and similar ones 

requires the identification of those members (key persons) who are structurally very well integrated 

into a social network. This identification is not only necessary for the success of business decisions, 

but is particularly important in the context of time and budget constraints. In this context, taking 

recourse to the social network analysis (SNA), which has already developed and discussed a variety 

of centrality measures (CM) for the quantification of the interconnectedness of actors in social 

networks, appears suitable. Therefore, the aim of this paper is (1) to show the current state of 

research with regard to CM in social networks and (2) to illustrate the enormous importance of a 

reflected utilization of existing CM in view of highly variable findings on the quality of various CM in 

SNA. 

The paper is organized as follows: In section 2, we first present the state of research on CM in social 

networks. On this basis, we exemplarily formulate three simple general requirements for CM in section 

3, which are used in section 4 to analyze five commonly applied CM from the literature on SNA. The 

paper concludes with a summary of results and an outlook in section 5. 

 

2 Social Networks 

2.1 Structure and Characteristics of Social Networks 

Based on Valente (1996) the term social network is understood in this paper as a "pattern of 

friendship, advice, communication or support" (Valente 1996) between individual members or groups 

of members within a social system (cf. also Burt and Minor 1983; Knoke and Kuklinski 1982; Scott 

1991; Wellman 1988). Usually, a common goal, interest, or need of the various persons involved 

constitutes the unifying element of such a network. Web-based social networks use the infrastructure 

of the Internet to provide basic functionality for identity management (i.e., the presentation of oneself), 

relationship management (i.e., managing one’s own contacts or cari the network), and visualization of 

profiles and networks (Koch et al. 2007). In this way, the community feeling of the actors, which is a 

central characteristic of such networks, can be achieved also without their direct physical presence 

(Heidemann 2009). The features for relationship management and in particular the management of 

contacts via contacts lists in web-based social networks especially enable maintaining casual 

acquaintances which are often not kept alive in reality. 

Taking a structural point of view, we can model the relationships within a social network as a graph G 

with a set VG of nodes and a set EG of edges between these nodes. The set VG represents the 

members of the social network, while the set EG refers to the relationships between them and thus 

describes social ties and interaction potentials between the actors (Sabidussi 1966; Wassermann and 

Faust 1994). The resulting network structure of a social network can also be represented by a matrix 
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2.2 Interconnectedness and Centrality Measures in Social Networks 

Since many years, the interconnectedness of actors in social networks has been a central issue of 

SNA. Simplifying, the discussion is often limited to undirected, unweighted social networks. However, 

even for these relatively simple graphs there is no uniform understanding of an actors’ centrality in a 

social network (Borgatti and Everett 2006, p. 467). Instead, there are some very different concepts and 

context-specific interpretations of the centrality of a node (Borgatti and Everett 2006, p. 467) that may 

result from different objectives for the use of CM. In the following, we therefore firstly present four 

basic concepts of centrality. In the simplest case, the number of a network member’s direct contacts is 

a useful indicator of centrality. The advantage of this interpretation of an actor’s centrality, with degree 

centrality (DC) as its standard representative (Nieminen 1974; Shaw 1954), is the relatively easy 

interpretability and communicability of the results. A second approach is based on the idea that nodes 

that have a short distance to other nodes and consequently may disseminate information on the 

network very effectively are taking a central position in the network (Beauchamp 1965; Sabidussi 

1966). A representative of this approach is closeness centrality (CC), where a person is seen as 

centrally involved in the network if he requires only few intermediaries for contacting others and thus is 

structurally relatively independent. Accordingly, the calculation of this CM includes the length of the 

shortest paths to all other actors in the network. Further developments of CC even use the length of all 

paths between the actors for the calculation (e.g., Newman 2005). A third approach, however, equates 

centrality with the control of the information flow which a member of the network may exert based on 

his position in the network. Thereby, it is assumed implicitly that the communication and interaction 

between two not directly related actors depends on the intervening actors. The most prominent 

representative of this concept is betweenness centrality (BC), where the determination of an actor’s 

centrality is based on the quotient of the number of all shortest paths between actors in the network 

that include the regarded actor and the number of all shortest paths in the network (Bavelas 1948; 

Freeman 1977; Shaw 1954). The common characteristic of all networking concepts presented so far is 

that only little or no attention is paid to indirect contacts, meaning they are not or only indirectly 

included in the quantification of an actor’s centrality. This is where the so-called influence measures 

come into play. These CM consider actors to be centrally involved in the network if their directly 

connected network members stand in relation with many other well-connected actors. Some of the 

best known of these recursively defined CM are the eigenvector centrality (EC) (Bonacich 1972), the 

CM by Bonacich (Bonacich 1972), and the CM by Katz (Katz 1953). Besides these representatives of 

the four basic concepts of centrality, a plethora of other CM has been defined over the years (see, e.g. 

Bonacich and Lloyd 2001; Freeman et al. 1991; Lee et al. 2009; Rousseau and Zhang 2008) which, 

e.g., enable the integration of edge weights or of directional connections or are suitable for specific 

applications and network types. Usually, these CM represent modifications or enhancements of the 

already discussed CM and thus are not elaborated in more detail in this article. For the mathematical 

calculation of each CM different algorithms have been developed which may vary significantly in terms 

of complexity. While the DC only requires to count the direct contacts of the n nodes in the network 

(complexity of O(n)), the complexity of BC in unweighted graphs amounts to O(n·m) (Brandes 2001), 



where m is the number of edges in the network.1 At the same time, this algorithm allows the 

calculation of other distance-based CM, such as CC, for which Okamoto et al. (2008) discuss other 

algorithms and heuristics. According to Kiss and Bichler (2008), the complexity of calculating the EC is 

O(n2), whereas in case of Katz’s CM the inverting of the adjacency matrix initially induces a complexity 

of O(n3). However, this complexity can be reduced by applying the algorithm of Coppersmith and 

Winograd (1990) to O(n2.376). 

Starting from the definition of different CM a lively discussion on the characteristics and the robustness 

(e.g., in case of incorrect or incomplete data on the network structure) of different CM arose. 

Accordingly, on the one hand, there exist numerous empirical studies that discuss the application of 

CM using different real or simulated networks. On the other hand, much research exists which – 

starting from the concept of different CM – derive conclusions about their properties or suitability for 

different applications. Tab. 1 provides an overview of relevant contributions, which are classified 

according to the dimensions of focus (empirical vs. conceptual), approach, and analyzed CM. 

In the field of applying CM to real or simulated networks, e.g., Bolland (1988) discusses the 

robustness of DC, CC, BC, and the CM by Bonacich in random and systematic variation of the 

underlying network structure. This analysis shows that BC is generally very unstable with regard to the 

variation of the network structure. In contrast, for DC and CC the centrality score usually varies only a 

little in case of a random or systematic change of the underlying network structure. However, 

according to the studies of Bolland (1988) the CM of Bonacich is the least sensitive one in terms of a 

random or systematic variation of the network structure. A further contribution to the discussion on the 

robustness of different CM is provided by Borgatti et al. (2006) who first define four different types of 

error (adding or deleting an edge or a node) and then compare the CM DC, CC, BC, and EC with 

regard to these different types of errors. The main finding of the study is that the four CM react very 

similarly to manipulations of the network structure, with BC being a little bit worse than the other three. 

Frantz et al. (2009) extend these investigations by differentiating five network topologies. They 

conclude that the robustness of the four CM also depends on the particular topology of the network. 

Furthermore, Costenbader and Valente (2003) also analyze the stability of different CM in presence of 

incorrect or incomplete information on the structure of a network (e.g., for the analysis of a sample of 

the network). In addition to the classic CM DC, CC, BC, EC, and the CM by Bonacich, their 

investigation includes two more CM and they also extend their analysis to directed graphs. For 

undirected, unweighted social networks they come to the conclusion that the centrality scores of 

individual actors, which have been determined based on a sample of the overall network, have the 

highest average correlations with the centrality scores of the individual actors in the overall network in 

the case of EC (before DC, CC, and BC). Here, BC, however, comes off less successfully than the 

other three CM, indicating a fundamentally distinct conception of centrality for this CM (Bolland 1988). 

The investigations on the robustness of CM concerning the variation of the network structure 

discussed here are very important since the connections between actors that are considered for an 

analysis of social networks usually only present a distorted picture of the real social network for both 

the offline and the online context. Therefore, using CM one is often confronted with the problem of 
                                                 
1 If an approximation rather than a precise calculation of the values of BC is sufficient, the faster algorithm of 
Bader et al. (2007) can be used. 



incomplete information on the structure of the network or does not have the resources necessary to 

measure the structure of large, complex networks in total. Therefore, the information on the 

robustness of the used CM is highly relevant. 

 

Tab. 1 Approaches to the Analysis of Centrality Measures 

Authors Focus Approach Analyzed Centrality 
Measures 

Bolland  
(1988) 

conceptional 
& empirical 

Analysis of the robustness and 
sensitivity of different centrality models 
under conditions of random and 
systematic variation introduced into a 
network 

DC, CC, BC, 
CM by Bonacich 

Borgatti  
(2005) conceptional 

Discussion of various CM regarding their 
matching for different types of network 
flow 

DC, CC, BC, EC 

Borgatti et al. 
(2006) empirical Analysis of the robustness of CM under 

conditions of imperfect data DC, CC, BC, EC 

Costenbader 
and Valente 

(2003) 
empirical Analysis of the stability of centrality 

measures when networks are sampled 

DC, CC, BC, EC, CM 
by Bonacich, 
Integration, Radiality 

Freeman (1979) conceptional 
& empirical 

Discussion of different concepts of 
centrality and application of related CM 
to different exemplary networks 

DC, CC, BC 

Freeman et al. 
(1980) 

conceptional 
& empirical 

Identification of an appropriate CM for 
the case of problem solution in groups DC, CC, BC 

Gneiser et al. 
(2010) conceptional Development of requirements for a CM 

for online social networks 
DC, CC, BC, 
PageRank-based CM 

Kiss and Bichler  
(2008) empirical 

Comparison of the performance of 
different CM regarding the identification 
of influencers in a network of calls from 
a telecom company 

DC, CC, BC, EC, 
PageRank-based CM, 
Edge-weighted DC, 
HITS-based CM, 
SenderRank CM 

Mutschke 
(2008) conceptional Discussion of various anomalies of CM  DC, CC, BC 

Nieminen  
(1974) conceptional Development of axioms for CM DC 

Sabidussi 
(1966) conceptional Development of axioms for CM Various indices 

 

Besides considerations on the robustness of different CM there is further research which identifies and 

analyzes the differences in results when applying different CM. Mutschke (2008), for instance, 

describes six anomalies (i.e., high centrality score of an actor using one CM but low centrality score 

when using other CM at the same time) when applying the CM DC, BC, and CC and gives a possible 

justification for each of these differences in the centrality of an actor. Further contributions focus on the 

partly significant differences in the rankings of the different actors in a social network when using 

different CM (e.g., Freeman 1979; Freeman et al. 1980; Kiss and Bichler 2008). Here, the ranking of 

the actors is defined by the descending order of the centrality score of the respective CM. In this 

context, when comparing the CM DC, CC, and BC for all possible graphs with five actors, Freeman 

(1979) e.g. concludes that the order of the different actors varies enormously using different CM. This 



observation is also confirmed by the work of Freeman et al. (1980), in which the CM DC, CC, and BC 

are applied to other sample networks. In addition, this article evaluates the suitability of the three CM 

to identify key persons in the context of "problem solving in groups". More recent contributions deal 

with the capability of different CM for other applications (e.g., Borgatti 2006; Hossain et al. 2007; Kiss 

and Bichler 2008; Lee et al. 2010; Gloor et al. 2009). For example, Kiss and Bichler (2008) investigate 

the quality of different CM in terms of news dissemination in a telecommunications network. Their 

analysis is based on a defined diffusion model. In addition to the classic CM DC, CC, BC, and EC the 

authors also apply newer concepts (such as PageRank-based CM, the edge-weighted DC, a HITS-

based CM and a SenderRank CM) (Kiss and Bichler, 2008, pp. 236 f.). The main result of this 

investigation is that the centrality of individual actors significantly differs when using various CM, with 

the SenderRank CM and the relatively simple CM out-degree (a directed version of the DC) being 

suited best for the identification of key persons in this application case. Hossain et al. (2007) consider 

a similar issue by evaluating real-world data from the mobile sector as regards the four CM DC, CC, 

BC, and EC in order to assess the relationship between the centrality of an actor and his possibilities 

for disseminating information. It turns out that only by combining different CM the most important 

actors for the dissemination of information can be identified. Lee et al. (2010) deal with a related 

problem and analyze the suitability of the CM DC and BC as an indicator for the influence of individual 

customers on the behavior of the entire customer base. For this purpose, the authors conduct various 

field studies and evaluate the involved actors’ self-assessment and the assessment by others in terms 

of their influence on other clients. The analysis shows that the BC is in both cases positively related to 

opinion leadership, whereas out-degree centrality is only a good indicator in terms of self-assessment 

of the surveyed actors. Moreover, Borgatti (2006) examines the quality of CM for the identification of 

key individuals for the purpose of optimally diffusing something through the network on the one hand 

and for the purpose of disrupting or fragmenting the network by removing nodes on the other hand. 

The author concludes that the traditional CM CC is suited best for the first case, while in the second 

case BC is preferable. Since these CM do not exhaustively solve the particular problems, Borgatti 

(2006) additionally developed new CM that are better suited for the studied issues. Comparing the 

results of current research on analyzing the centrality of individual actors in the application of various 

CM as discussed above, it remains to be noted that different CM in some cases lead to considerably 

different results in terms of the centrality of individual actors. 

In addition to the previously discussed empirical work there are also some conceptual studies in the 

SNA on the characteristics and underlying assumptions of CM. Bolland (1988) explains for each of the 

CM DC, CC, and BC and the CM by Bonacich two assumptions on the nature of network flow, one 

concerning the decay of resources (such as information) over distance and time and the other 

concerning the paths through which resources are able to flow. He comes to the conclusion that 

different CM are implicitly based on different assumptions on the losses that incur in transferring a 

resource from one actor to another. While the DC assumes immediate deterioration of the transferred 

resource after a transfer starts, BC and Bonacich’s CM assume no deterioration of the resource. In 

case of CC, however, a gradual loss of the resource with increasing number of transfers is assumed. 

Also Borgatti (2005) discusses different possibilities of network flow using some example cases for CM 

and assigns appropriate CM to them. However, this assignment in Borgatti (2005) is merely 



argumentative, i.e. he does not provide quantitative criteria for intersubjective verification of the 

suitability of individual CM for certain applications. Other authors (e.g., Nieminen 1974; Sabidussi 

1966) approach the question of the quality of a CM through the formulation of axiomatic requirements 

on the characteristics and the behavior of CM. Also for the special case of online social networks first 

contributions exist, aiming at a stronger focus on the characteristics (e.g., high relevance of indirect 

contacts of an actor) of these web-based social networks when deriving requirements for a CM in 

order to quantify the centrality of individual actors (see, e.g., Gneiser et al. 2010). However, this 

research largely lacks the motivation or justification for why and in which cases the CM should meet 

the requirements. Moreover, these requirements are partly of qualitative nature so that an 

intersubjective assessment of their validity for different CM is difficult. 

In summary, we can note that recent research on interconnectedness and CM in social networks has 

defined different concepts of centrality and, based on these concepts, has developed different CM. 

Furthermore, there are a number of both empirical and conceptual papers which compare different CM 

and discuss their suitability for various applications, network types, and network flows. In this context, 

the respective authors aim at the presentation and discussion of anomalies of different CM on the one 

hand or at the identification of the CM that is most appropriate for the particular application case or 

network flow on the other hand. In addition, the analysis of current research shows that different CM in 

some cases provide considerably different results in terms of the centrality of individual actors. 

Therefore, the selection of a CM requires the consideration of both the specifics of different CM and 

the widely varying requirements of different application cases. Given the highly variable findings in 

view of quality of different CM, this article focuses on the illustration of the enormous importance of a 

reflective use of CM. Based on the findings of the SNA literature, in the following section we motivate 

and formulate three simple general, quantitative, and thus intersubjectively testable properties of CM 

in social networks, partly drawing on the work of Nieminen (1974) and Sabidussi (1966). The three 

properties are then used for the analysis of some of the most widely discussed and used CM of SNA. 

 

3 Properties of Centrality Measures in Social Networks 

Formally, a measure to quantify interconnectedness of a node x in a graph G is a mapping 

σG:VG→IR0
+ which assigns a non-negative real number to each x∈VG, where a higher value of σG 

indicates a better interconnectedness. In case of an identical network structure of two nodes x and y in 

the network the application of the CM should have the same value σG(x)=σG(y) for both nodes 

(Nieminen 1974, p. 333; Sabidussi 1966, p. 592). Two nodes x and y are thereby considered as being 

identically structurally integrated into the network if a renaming of all nodes of the network is possible 

in such a way that all existing edges remain and x is mapped to y, i.e. if an automorphism2 η:VG→VG 

with y=η(x) exists. In Fig. 2, e.g., the nodes 1 and 5 as well as the nodes 2 and 4 are identically 

integrated into the network in terms of structure since these nodes can be each mapped to each other 

through 2→4, 4→2, 3→3, 1→5, 5→1 and the edges (1,2) (4,5) (2,3) (3,4) and (2,4) remain. 

                                                 
2  An automorphism is an isomorphism of a graph to itself, with two graphs G=(VG,EG) and G’=(VG’,EG’) 

being referred to as isomorphic if a bijection η:VG→VG’ exists with (a,b)∈EG if and only if 
(η(a),η(b))∈EG’ for all a, b∈VG. 



 

Fig. 2 Example of a network illustrating structural equivalence  

In the subsequent motivation of three simple general properties of CM in undirected, unweighted 

social networks we always assume a connected graph G. Furthermore, statements about the desired 

behavior of a CM when adding a new edge are made. Thus, the network is transformed from a state 1 

(with associated graph G) in a state 2 (with associated graph G‘). The removal of an edge exactly 

corresponds to the opposite operation and is associated with the reversal of the statement. For this 

reason, we only consider the case of adding an edge in the following. 

With an additional relationship between a member x and another member y in the network the 

opportunities for communication and interaction particularly increase if x gains a more direct 

connection (i.e. of lesser distance dG(x,y)) to y. The distance dG(x,y) between the actors x and y is 

thereby defined as the minimum length of all paths in G that lead from x to y. In this context, Davis 

(1969, p. 549) assumes that the flow of information between two actors decreases in proportion to 

their connection length. Thus, both the volume and the quality of the transmitted information between 

two actors are usually higher the smaller their distance is. In addition, with a relatively low number of 

contacts between two actors the contacting is normally faster and the individual actors tend to have a 

higher willingness to disclose relevant information (Algesheimer and von Wangenheim 2006). 

Moreover, trust in the message passed through the network is usually higher in the case of a greater 

closeness of the actors to each other. Overall, an actor x thus holds a higher potential in terms of 

information exchange in the presence of a more direct connection to an actor y than without the 

additional connection. This should be positively reflected in the value of the CM of x, as expressed in 

the following property one:  

Property 1 [Monotonicity with respect to the distance of the actors] 

If the distance of the actor x to at least one other actor y is reduced through an additional relationship 
in the network, the centrality score of x increases. 

Formally, this means: 

If VG=VG‘, v, w, x, y∈VG, v≠w, x≠y, (v,w)∉EG, EG‘=EGυ(v,w) and if for the distance between x and y due 
to the additional relationship between v and w dG‘(x,y)<dG(x,y) holds, it follows that σG‘(x)>σG(x). 

Due to the symmetry of relations in this case it also follows that σG‘(y)>σG(y). 

Furthermore, it is advantageous for the interaction in a social network if an actor can contact another 

member on various paths (Davis 1969, p. 549). In this way, disruptions of the information flow along a 

single path can be compensated on the one hand. On the other hand, the actor usually receives more 

information on different paths from and about a larger number of indirect contacts. In addition, several 

paths to another member generally contribute to trust. This is due to the fact that in this case several, 

more direct contacts of an actor have a relationship to this member and thus independently indicate 

his trustworthiness. Due to the benefits of a smaller distance between two actors, as already described 



above, a path is more valuable the shorter it is. If there are multiple paths of shortest length from one 

network member to another, this actor also becomes more independent from the influence of 

individual actors in between (Freeman 1979, p. 221). Hence, an increase in the number of paths with 

shortest length should positively affect the centrality score of x. This is stated in the following property 

two: 

Property 2 [Monotonicity with respect to the number of shortest paths]  

If the number of paths with shortest length from an actor x to at least one other actor y increases 
through an additional relationship in the network, the centrality score of x increases. 

Formally, this means: 

If VG=VG’, v, w, x, y∈VG, v≠w, x≠y, (v,w)∉EG, EG’=EGυ(v,w) and if for the distance between x and y due 
to the additional relationship between v and w dG‘

(v,w)(x,y)=dG(x,y)3 holds, it follows that σG‘(x)>σG(x). 

Due to the symmetry of relations in this case it follows that σG‘(y)>σG(y). 

Based on the assumption of symmetrical relations, an additional relationship between the actors x and 

y is always advantageous for both parties involved as they possibly gain a better access to the 

network of each other due to the new relationship. If actor x was previously connected better than 

actor y, so it is expected that this ranking of the actors in terms of their centrality score remains the 

same after adding the new contact. This results from the fact that actor y can benefit from the network 

of actor x at most to the same extent as x does, since x still has a more direct access to his (better 

evaluated) network than y and vice versa. This is expressed through the following property three: 

Property 3 [Receipt of the actors’ ranking] 

With an additional relationship between two actors x and y the ranking of the two members does not 
change with respect to the CM.  

Formally, this means: 

If VG=VG’, x, y∈VG, x≠y, σG(x)>σG(y), (x,y)∉EG, EG’=EGυ(x,y) holds, it follows that σG‘(x)≥σG‘(y). 

If even σG(x)=σG(y) holds, it follows that σG‘(x)=σG‘(y). 

The properties 1 to 3 represent three simple general requirements for the behavior of CM in social 

networks which may be desirable in various applications. In section 4 we now analyze some 

representatives of the CM already presented in section two in more detail.  

 

4 Analysis of Centrality Measures  

In the following we at a time first formally define five CM and illustrate them by means of an example 

network. Afterwards we analyze them with respect to the previously formulated properties. The 

selection is limited to DC, CC, and BC as well as the two influence measures EC and the CM by Katz 

being some of the most commonly used CM in SNA literature and thus provides a cross section of the 

different basic concepts of centrality as presented in section two. 

  

4.1 Degree Centrality 

                                                 
3 Here, dG‘

(v,w)(x,y) refers to the length of the shortest path between x and y which contains the edge 
(v,w). Since the path with the length dG‘

(v,w)(x,y) only exists after adding the edge (v,w), the number of 
shortest paths really increases in the case dG‘

(v,w)(x,y)=dG(x,y). 



The DC σD represents the simplest CM and determines the number of direct contacts as an indicator 

of the quality of a network member’s interconnectedness (Nieminen 1974, p. 333). Using the 

adjacency matrix A=(aij) it can be formalized as follows: 

∑
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=
n

i
ixD ax

1
)(σ           (1) 

As a consequence, the centrality score σD(x) for a node x is higher, the more contacts a node x has. In 

the network of Fig. 3, e.g., it follows that σD(1)=1 since actor 1 has only one direct relationship with 

actor 2. In contrast, actor 4 has a centrality score σD(4)=3. 

 

Fig. 3 Example of a Network for the Illustration of Centrality Measures 

Tab. 2 shows the values of the DC for all members of the example network. In addition, the actors’ 

ranking (in short "rank") is stated, i.e. their order in descending value of the DC. The actors 2, 4, 6, and 

7 take rank 1 and thus are the best networked members when applying this CM. 

  

Tab. 2 Results for Degree Centrality 

Degree Centrality 

Actor x 1 2 3 4 5 6 7 8 9 10 

σD(x) 1 3 2 3 2 3 3 1 2 2 

Rank 9 1 5 1 5 1 1 9 5 5 
 

With respect of the properties 1 to 3 the major disadvantage of the DC is that indirect contacts are not 

considered at all. Therefore, a reduction of the distance from one actor x to another actor y resulting 

from an additional relationship in most cases does not increase the value of the CM.4 The 

intensification of a connection of shortest length between x and y does also not increase the value of 

this CM, since the DC only considers direct contacts. However, in an undirected, unweighted graph a 

direct connection between the actors x and y can exist only once. Overall, the properties 1 and 2 are 

therefore not met in general. In contrast, the DC satisfies property 3. Through a new relationship both 

actors involved win one additional direct contact. So the DC of both members equally increases by 1 

and the ranking of the actors, thus, always remains the same. 

  

4.2 Closeness Centrality 

                                                 
4 An exception is the case that the new edge (x,y) is added and dG’(x,y)=1 results. 



The CC σC is based on the idea that nodes with a short distance to other nodes can spread 

information very productively through the network (Beauchamp 1965). In order to calculate the CC 

σC(x) of a node x the distances between the node x and all other nodes of the network are summed up 

(Sabidussi 1966, p. 583). By using the reciprocal value we achieve that the value of the CC increases 

when reducing the distance to another node, i.e. when improving the integration into network. 

Formally, this means (e.g., Freeman 1979, p. 225)  
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For actor 4 in the network of Fig. 3 σC(4)=1/21 results. This is due to the fact that for the actors 

x=2, 3, 5 dG(4,x)=1, for the actors x=1, 6 dG(4,x)=2, for the actors x=7, 10 dG(4,x)=3 and for the actors 

x=8, 9 dG(4,x)=4 holds. Tab. 3 includes the centrality scores of all members in the network from Fig. 3 

and their ranking when applying the CC.  

 

Tab. 3 Results for Closeness Centrality  

Closeness Centrality 

Actor x 1 2 3 4 5 6 7 8 9 10 

σC(x) 1/34 1/26 1/27 1/21 1/19 1/19 1/23 1/31 1/29 1/25 

Rank 10 6 7 3 1 1 4 9 8 5 
 

For the CC the shortening of the distance to at least one other actor when adding an additional 

relationship leads to a smaller value of the denominator in formula (3). Consequently, in this case the 

value of the CM of the considered actor increases and property 1 is satisfied. However, in formula (3) 

only the distances between the different actors are taken into account. Therefore, a larger number of 

paths with shortest length between two actors does not positively affect the value of this CM as 

illustrated by the network 4a, where both before and after adding the additional connection (3,4) 

σC
G(1)=σC

G’(1)=1/4 holds, although in G' there are two paths of length 2 from actor 1 to actor 3. In the 

network 4b the ranking of the actors 1 and 2 also changes. While initially σC
G(1)=1/13=σC

G(2) holds, 

σC
G’(1)=1/10<σC

G’(2)=1/9 results after adding the connection (1,2). Consequently, property 3 is also 

not fulfilled. 

  
Network 4a Network 4b 

Fig. 4 Closeness Centrality – Counterexamples to Property 2 and 3 



 
4.3 Betweenness Centrality 

In case of the BC σB a network member is considered to be well connected if he is located on as many 

of the shortest paths between pairs of other nodes. The underlying assumption of this CM is that the 

interaction between two non-directly connected nodes x and y depends on the nodes between x and 

y. According to Freeman (1979, p. 223) the BC σB(x) for a node x is therefore calculated as  
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with gij representing the number of shortest paths from node i to node j, and gij(x) denoting the number 

of these paths which passes through the node x.  

For actor 9 in the network of Fig. 3, e.g., σB(9)=1/2+1/2=1 results since he is located on one of the two 

shortest paths from the actors 7 and 8 to actor 10. The values of the BC for the other actors and their 

ranking are listed in Tab. 4.  

 

Tab. 4 Results for Betweenness Centrality  

Betweenness Centrality 

Actor x 1 2 3 4 5 6 7 8 9 10 

σB(x) 0 8 0 18 20 21 11 0 1 6 

Rank 8 5 8 3 2 1 4 8 7 6 
 

The BC does not meet any of the required properties as is demonstrated by the networks of Fig. 5. In 

the network 5a actor 1 has a centrality score of σB
G(1)=3 before adding the connection (4,5) and a 

centrality score of σB
G’(1)=1 afterwards, although the distance to actor 4 is reduced through the new 

relationship. Consequently, property 1 is violated. Network 5b shows that property 2 is also not 

satisfied for BC. For actor 1 holds first σB
G(1)=2 and after adding the connection (3,4) σB

G’(1)=0,5 

although there are two paths of length 2 from actor 1 to actor 3 due to the additional relationship. 

Moreover, the ranking of the actors 1 and 2 changes in network 5c. While both have the same 

centrality score (σB
G(1)=0=σB

G(2)) before adding the connection (1,2), afterwards 

σB
G’(1)=1,5>σB

G’(2)=0,5 holds. Consequently, property 3 is also not fulfilled for BC. 

  
Network 5a Network 5b Network 5c 

Fig. 5 Betweenness Centrality – Counterexamples to Property 1 to 3 



 
4.4 Eigenvector Centrality  

The EC σE is based on the idea that a relationship to a more interconnected node contributes to the 

own centrality to a greater extent than a relationship to a less well interconnected node. For a node x, 

the EC is therefore defined as (Bonacich and Lloyd 2001)  
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with v=(v1,…,vn)T referring to an eigenvector for the maximum eigenvalue5 λmax(A) of the adjacency 

matrix A. 

In Tab. 5 the values of the EC for the actors 1 to 10 in the network of Fig. 3 and the resulting ranking 

of the actors are listed.  

Tab. 5 Results for Eigenvector Centrality (with λmax(A)=2,41) 

Eigenvector Centrality 

Actor x 1 2 3 4 5 6 7 8 9 10 

σE(x) 0,171 0,413 0,363 0,463 0,342 0,363 0,292 0,121 0,221 0,242 

Rank 9 2 3 1 5 3 6 10 8 7 
 

Just like the BC, the EC does not meet any of the required properties. This can be illustrated by 

means of the networks from Fig. 6.6 In network 6a, actor 1 first has a centrality score of σE
G(1)=0,602 

and after adding the connection (4,6) of σE
G’(1)=0,417 although the distance of actor 1 to actor 6 has 

been reduced. This contradicts property 1. In network 6b the value of the CM decreases for actor 4 

when adding the new connection (1,2) (σE
G(4)=0,604>σE

G’(4)=0,530) although the relationship 

between actor 4 and actor 2 has been intensified. Therefore property 2 is also not fulfilled. Regarding 

property 3, network 6c can serve as a counterexample. Whereas before adding the connection (4,6) 

actor 4 has a lower centrality score than actor 6 (σE
G(4)=0,271<σE

G(6)=0,311), the ranking of both 

actors changes due to the new relationship (σE
G’(4)=0,435>σE

G’(6)=0,421). Even these simple example 

networks demonstrate the additional problem that the results of the EC are harder to interpret and less 

comprehensible than those of the previously described CM. 

  

                                                 
5 Being a non-negative, irreducible matrix, A always has a positive eigenvalue, which is equal to the 
spectral radius, and  an associated eigenvector with only positive entries (Graham 1987, p. 131). 
6 For detailed calculations and further details, see Appendix A. 



Network 6a Network 6b Network 6c 
Fig. 6 Eigenvector Centrality – Counterexamples to Property 1 to 3 

 

4.5 Katz’s Centrality Measure 

According to Katz not only the number of direct connections but also the further interconnectedness of 

actors plays an important role for the overall interconnectedness in a social network (Katz 1953). 

Therefore, Katz includes all paths of arbitrary length from the considered node x to the other nodes of 

the network in the calculation of his CM σK. The CM by Katz for the node x is thus defined as  
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with 1=(1,1,...,1,1)T representing the nx1 vector consisting of ones only and ex=(0,..,0,1,0,...,0)T the 

unit vector as well as k an arbitrary (usually positive) weighting factor.7 Since the corresponding 

adjacency matrix A=(aij) only contains the values 0 and 1, the entry ãxy of the matrix Ã=Ai represents 

the number of paths of length i from x to y (Katz 1953, p. 40). For the convergence of the series, k 

must be smaller than the reciprocal value of the maximum eigenvalue λmax(A) of the adjacency matrix 

A (Katz 1953, p. 42). This simplifies σK to  

( ) xnn
T
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with In referring to the identity matrix of the dimension n=|VG|. The weighting factor k can then be 

sometimes interpreted as the probability that a single relationship is useful for node x. This results 

(assuming independence of probabilities) in a probability of k2 for a relation of second degree, and so 

forth (Katz 1953, p. 41). In Tab. 6, the values of the CM by Katz and the resulting rankings for the 

actors 1 to 10 of the example network from Fig. 3 are listed. 

 

Tab. 6 Results for the Centrality Measure by Katz (with k=1/3, λmax(A)=2,41) 

Centrality Measure by Katz 

Actor x 1 2 3 4 5 6 7 8 9 10 

σK(x) 1,91 4,72 3,99 5,25 4,06 4,91 4,30 1,77 3,23 3,38 

Rank 9 3 6 1 5 2 4 10 8 7 
 

In each case the CM by Katz meets the properties 1 and 2 since adding any new relationship in a 

connected graph always leads to an increase in the interconnectedness of all actors in the network. 

This is due to the fact that in a connected graph, a new relationship for any actor opens up additional 

paths to all other actors in the network. The validity of the third property for the CM of Katz can be 

                                                 
7  In contrast to the work of Katz we abstain from normalizing the column sum of the adjacency matrix 
by multiplication with 1/(n-1). As a consequence, the result differs by a multiplicative constant from the 
outcome in the original work by Katz. In addition, under the assumptions described here, the CM by 
Katz differs only by a constant of the alpha centrality. Further details are outlined in Appendix B. 



proven formally only under certain conditions. However, extensive simulation studies show that the 

ranking of two actors in the CM σK does not change by adding an additional relationship.8 

 
4.6 Summary and Comparison of Analysis Results  

Tab. 7 summarizes the resulting rankings of the actors when applying the five considered CM to the 

example network in Fig. 3. It becomes obvious that the actors 1 and 8 have the worst centrality scores 

for all CM investigated. Apart from this, however, there are significant differences regarding the actors’ 

rankings when using different CM. Actor 3, for instance, is seen as poorly interconnected when 

applying BC or CC, while he ranks in the midfield using the DC or the CM by Katz and reaches a top 

position when applying the EC. In addition, it is striking that DC and BC generally do not sufficiently 

differentiate the interconnectedness of individual members. Thus, e.g., the DC provides the same 

value for the actors 2, 4, 6, and 7 although with all other CM the actors 4 and 6 are seen as (partly 

significantly) better interconnected than actor 7. This is due to the fact that the DC only considers the 

number of direct contacts and not their further interconnectedness (i.e., their indirect contacts). In 

addition, the BC does not distinguish between actors who have only one contact and actors whose 

contacts are completely interconnected. In both cases, such actors have an centrality score of 0 and 

thus the last rank (see, e.g., actors 1, 3, and 8). This analysis shows that an actor’s centrality score 

can vary considerably depending on the CM.  

Tab. 7 Ranking Applying Different Centrality Measures 

Rank Degree 
Centrality 

Betweenness 
Centrality 

Closeness 
Centrality 

Eigenvector 
Centrality 

Centrality 
Measure by 

Katz 
1 2, 4, 6, 7 6 5, 6 4 4 

2  5  2 6 

3  4 4 3, 6 2 

4  7 7  7 

5 3, 5, 9, 10 2 10 5 5 

6  10 2 7 3 

7  9 3 10 10 

8  1, 3, 8 9 9 9 

9 1, 8  8 1 1 

10   1 8 8 
 

Tab. 8 summarizes the results regarding the validity of the three properties for all CM presented in this 

paper. It shows that the majority of the frequently used CM in SNA literature does not or not fully meet 

the properties discussed in this article. Both the BC and EC, for instance, satisfy none of the desired 

properties, while the DC and CC only fulfill one of the three properties. According to the findings of the 

authors so far, among the five CM considered in this paper, only the CM by Katz meets all three 

properties. However, the validity of the third property could only be validated by a simulation study 

                                                 
8  For detailed descriptions see Appendix C. 
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those only partially. This result is all the more astonishing as the properties can be considered as 

relatively generic, intuitively plausible requirements for the behavior of CM when adding a 

supplementary relationship. Consequently, decision makers should not uncritically rely on intuitively 

obvious statements from the application of CM. Instead, the widely varying results provided by 

different CM require an accurate analysis in relation to the relevant application. 

The properties used to compare the CM, however, are derived based on some restrictive 

assumptions. First, an undirected, unweighted network is assumed. In doing so, both the existence of 

one-sided relations and relationships with different intensity or emotional ties between the actors are 

neglected. Secondly, we also do not consider the interaction frequency of each member separately in 

this paper. This, however, is an indicator of the actor’s actual contact intensity. Due to the fact that 

such phenomena are difficult to be observed in practice, including such issues is often possible only 

under extremely high cost. Third, the paper does not take cannibalization and saturation effects into 

account, which sometimes arise when an actor can devote less time to maintaining existing 

relationships as a result of adding new contacts. However, since new contacts may also lead to an 

increase of activity in the network for many members, possible cannibalization effects are partially 

compensated and are therefore difficult to be considered in general. Overall, the described limitations 

result in a variety of possible starting points for future research that examines the properties and 

behavior of different CM in a broader context. In addition, further research is needed with regard to 

different concrete application scenarios of CM, the resulting requirements for the CM, and the concrete 

integration of the results in each application scenario. Although the results from the application of a 

CM – as presented in detail in this paper – thus should be considered in a differentiated manner, CM 

still succeed in providing an idea of the involvement of different actors in a social network and can 

provide valuable information for various application scenarios when used in a reflected way.  
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Appendix A: Counterexamples to the Properties 1 to 3 for Eigenvector Centrality 

In the following we present the calculations regarding the counterexamples to the properties 1 to 3 

when applying EC in more detail. The calculations were carried out using the software Octave.  

   
Network 6a Network 6b Network 6c 

Fig. 6 Eigenvector Centrality – Counterexamples to Property 1 to 3 

 

Counterexample to Property 1:  

The following calculations refer to the network 6a. First, we determine the adjacency matrix A of the 

initial network (before adding the connection (4,6)). For this matrix, we calculate the maximum 

eigenvalue and a corresponding eigenvector. 
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In the next step, we modify the network to the extent that a new relationship between the actors 4 and 

6 is added. This results in the following modified adjacency matrix A’ for which the maximum 

eigenvalue and a corresponding eigenvector are calculated:  
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For actor 1 its centrality score first is σE
G(1)=0,602 and after adding the connection (4,6) it is 

σE
G’(1)=0,417 although the distance of actor 1 to actor 6 is reduced. This violates property 1.  

 

 

  



Counterexample to Property 2:  

For network 6b we also initially determine the corresponding adjacency matrix A of the initial network 

(before adding the connection (1,2)) and calculate the maximum eigenvalue and a corresponding 

eigenvector.  
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After adding the connection (1,2) the following modified adjacency matrix A’ results, for which the 

maximum eigenvalue and a corresponding eigenvector are calculated:  
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For actor 4 its centrality score first is σE
G(4)=0,604 and after adding the connection (1,2) it is 

σE
G’(4)=0,530 although the contact of actor 4 to actor 2 is intensified by the new connection (1,2). This 

violates property 2.  

 

Counterexample to Property 3:  

For network 6c we first also determine the associated adjacency matrix A of the initial network (before 

adding the connection (4,6)) and calculate the maximum eigenvalue and a corresponding eigenvector.  
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After adding the connection (4,6) the following modified adjacency matrix A’ results, for which the 

maximum eigenvalue and a corresponding eigenvector are calculated:  
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Whereas before adding the connection (4,6) actor 4 has a lower centrality score than actor 6 

(σE
G(4)=0,271<σE

G(6)=0,311), the ranking of the two actors changes as a result of the additional 

relationship (σE
G’(4)=0,435>σE

G’(6)=0,421), which is a contradiction to property 3.  

The calculations also show that the properties 1 to 3 are often even not met if you multiply each entry 

of the eigenvector with the maximum eigenvalue λmax(A) resp. λmax(A’) of the respective adjacency 

matrix, which may increase by adding a new relationship, but will never decrease (Berman and 

Plemmons 1994).  
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Appendix B: Alpha centrality 

In the context of the outlined assumptions the CM by Katz differs only by a constant from the alpha 

centrality (AC) σα, which is defined as 

xn
T

n
T
x eAIccAIex 11 )()()( −− −=−= αασα        (6) 

Here, In represents the unity matrix of dimension n=|VG| and A is the adjacency matrix of the network 

of relationships between the actors of the considered network. In addition, the vector c allows the 

consideration of the structural influences on the interconnectedness that are independent of the  

structure of relationships. The parameter α specifies the relative weighting of those influences that are 

induced by the structure of relationships and the exogenous influences (Bonacich and Lloyd 2001). If 

the exogenous influences do not differ, one can choose c=1. In this case, for α=k the values of the AC 

and the CM by Katz consequently vary only by the constant 1. The statements about the CM by Katz 

in section 4.5 therefore also apply to the AC. In order to avoid redundancy we refrain from a separate 

representation of the AC. 
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Appendix C: Comments on the validity of property 3 for the CM by Katz 

Description of the Simulation: 

The verification of whether the CM by Katz satisfies property 3 was analytically not possible in the 

general case. Therefore, we simulated contiguous networks with 5 to 1000 nodes and examined the 

effect of adding an edge (x,y) on the ranking of two previously not directly connected nodes x and y. 

As the ranking of the newly connected nodes did not change having carried out approximately 1 

million tests, we assumed that property 3 is met by the CM by Katz in general. 

The networks and their modifications have been generated according to the following procedure: First, 

we created a random binary matrix B. Since the adjacency matrix of the social network must be 

symmetrical due to the symmetry of the relations, we mirrored the upper triangular part of the matrix B 

downwards and obtain a symmetric matrix A. In a next step, all matrices which contain isolated nodes 

(at least one row or column sum < 1) and thus apparently do not represent connected graphs are 

rejected. For the remaining matrices we proceeded as follows: First the adjacency matrix A’ for a 

modified network was calculated by identifying an entry with axy=0 and set a’xy=1 as well as a’yx=1, i.e., 

the graph received a new edge (x,y). Subsequently, we calculated the CM by Katz for both the matrix 

A and matrix A’ for the nodes x and y and determined the ranking of the nodes before and after 

modification of the network. Based on the described simulation study we assumed that property 3 is 

satisfied when using Katz’s CM. 

 

Partially Analytical Evidence: 

For some special cases an analytical proof that property 3 is met by the CM by Katz is possible. 

Therefore, we further present a formal proof of the validity of property 3 in more detail for these cases, 

i.e. under certain restrictive assumptions, in the following. This consideration does not consider the 

constant -1, which would be added as a result of the subtraction of the unit matrix in formula (5'), 

because it is eliminated when calculating the difference in terms of the comparison of the ranking. 

For the further deliberations the following denotations are used:  
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−
, with ( )xy

ij
xy EE =  describing the matrix whose entries – except 

of the two entries xy
xyE  and xy

yxE  – are null. The entries xy
xyE  and xy

yxE have the value 1 and thus 

represent the added edge (x,y).  

According to Sherman and Morrison (1950), by using the above denotations and applying the formula 

twice to calculate the inverse of a matrix when changing one matrix entry in each case (by adding the 

edge (x,y) the entries change at positions axy and ayx), we obtain the following expression: 
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The difference between the centrality score of x and y in graph G‘, which results from adding the edge 

(x,y), therefore is:  
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The denominator of this expression is abbreviated by yyxxxy bbkkbN 22)1(: −−=  in the following. 

Here, bxx-1≥0 holds. This can be justified by the fact that bxx-1 represents the number of paths in G 

that are weighted according to their length that begin and end in x. Since this value is always positive 

in a connected graph, bxx-1≥0 and thus also bxx>0 holds. Analogously, it follows that byy>0. 

Property 3 comprises two statements. Sub-statement 1 refers to the ranking of two nodes that initially 

have a different centrality score. The second part of property 3 makes a statement for nodes to which 

the CM in the original graph assigns the same centrality score. Below, the two sub-statements are for 

some special cases proven separately from each other. 

Sub-statement 1) 

To be shown: 
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The four cases in which the first sub-statement of property 3 is satisfied in general for the CM by Katz 

are outlined below: 

a) Assumptions: yyxx bb >  and 01 >−− xxxy kbkb  

It follows from both assumptions that 01 >−− yyxy kbkb . 
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b) Assumptions: yyxx bb >  and 01 =−− xxxy kbkb  

It follows from both assumptions that 01 >=− xxxy kbkb  (as k, bxx>0) 
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c) Assumptions: yyxx bb =  and xxxy kbkb >−1  
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d) Assumptions: yyxx bb = , xxxy kbkb <−1 and xxxy kbkb <− |1|  
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In summary, the validity of the first sub-statement of property 3 can be proven for the CM by Katz, if 

either (1) yyxx bb >  and 01 ≥−− xxxy kbkb  or (2) yyxx bb =  and xxxy kbkb >−1  or alternatively 

xxxy kbkb <−1 and xxxy kbkb <− |1|  holds.  



Sub-statement 2) 

To be shown: 
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Assumptions: yyxx bb =  and xxxy kbkb ≠− |1|  
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Under the conditions yyxx bb = and xxxy kbkb ≠− |1|  the second sub-statement of property 3 is 

satisfied when using the CM by Katz. 
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