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Abstract 
Risk/return management has not only evolved as one of the key success factors for enterprises 
especially in the financial services industry, but is in the times of the economic crisis initiated by the 
financial markets crucial for the survival of a company. It demands powerful and at the same time 
flexible computational resources making it an almost ideal application for service-oriented computing 
concepts. An essential characteristic of service-oriented infrastructures is that computational 
resources can be accessed on demand and paid per use. Taking the estimation of covariances for a 
portfolio of risky investment objects as an example, we propose quantification for the economic value 
of fast risk/return management calculations. Our model then compares the cost structures of service-
oriented infrastructures and dedicated systems in this domain. On this basis, we can determine under 
which circumstances the one or the other architectural strategy is superior. 

Keywords: Risk/Return Management; Service-Oriented Infrastructures; Grid Computing. 



1 Introduction 

The ongoing financial and economic crisis (FEC) caused unprecedented damage for the economy 
worldwide. Its reasons and consequences illustrate the complex and dynamic environment in which 
companies act nowadays: Increasingly harmonized markets and the growing use of information 
technology (IT) enable companies to be part of globally connected value networks and therefore to 
realize quick return opportunities all over the world. The FEC definitely showed that these value 
networks are also risk (spreading) networks: Companies took too much risk on assets they believed to 
understand but whose risk contribution was in fact completely unknown. Similar to a domino effect, 
these risks spread rapidly all over the world, not only in the financial sector. Due to a lack of equity, 
banks did for example not renew credit contracts of companies in production or service sectors. Their 
respective bankruptcy brought suppliers and customers who relied on their business partners into 
liquidity issues, especially, when they had problems with their own credit renewals. Although the 
financial services industry pulled the trigger, the problems and solutions presented in this paper apply 
to all industries: Producing and service industries highly depend on the reliability of customers, 
suppliers, and many also of resource prices. 

To enable decision support (particularly on capital market based hedging) the risk/return-position of 
the company has to be determined shortly before market actions, after market actions, and – due to 
dynamic markets – on a regular basis. Buhl et al. (2009) described, how to determine the optimal 
interval of these risk/return calculations. The computing capacity necessary can thereby be substantial, 
especially in globally acting enterprises. For a complete examination, the correlation between every 
possible pair of (relevant) assets has to be determined. This requires IT to be able to make extensive 
calculations in very short time, even when examining only parts of a company’s assets. Innovative 
approaches of distributed computing, like grid computing, cloud computing, or service-oriented 
architectures, are principal topics of IT related science and business which are offering potentially 
suitable infrastructures. 

We will speak of service-oriented infrastructures (SOI) as an instance of (the abstract principle of) 
service-oriented architectures where (mostly resource-intensive) distributed services are made 
available over a grid network. It is common practice in today’s financial services industry to calculate 
the risk exposure within fixed time intervals (e.g. several days). SOI based on grid technologies can 
embrace resources of the whole enterprise and even of external resource providers. Therefore, they 
offer huge amounts of computing capacity that can be used to accelerate calculations dramatically. A 
Dedicated System (DS, e.g. a computing cluster) where a fixed set of resources is dedicated to the 
risk/return calculations could nevertheless be a sensible alternative to a SOI. Building upon the results 
of Buhl et al. (2009), this paper aims at answering the following research question: Under which 
conditions is a SOI superior to a DS regarding calculations in risk/return management? We formulate 
an analytical optimization model delivering a solution to this decision problem. 

2 Grid Computing 

Grid computing can be regarded as an infrastructure technology enabling the virtualization of physical 
resources. Various proponents have agreed with Foster and Kesselman (1998) that “A computational 
grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and 
inexpensive access to high-end computational capabilities”. Grid technologies are one possibility to 
realize a SOA consisting of so called “grid services”. Grid services are based on specific web service 
standards, like the specifications “Open Grid Services Architecture“ and “Web Services Resource 
Framework”. They extend web services insofar as they imply the dynamic, yet for the user transparent, 
allocation of (physical) resources to services by a grid middleware and therefore are especially suited 
to fulfil resource intensive tasks. There is an extensive literature on service-oriented computing or grid 
computing in general (see e.g. Foster and Kesselman, 1998; Berman, 2005; Silva, 2006; Singh and 



Huhns, 2004). Some publications even consider the application of these technologies for portfolio 
management, derivatives pricing or other areas of financial risk management (Brownlees et al., 2006; 
Crespo et al., 2006; Schumacher et al., 2006). These approaches describe how grid technologies can be 
applied, but do not quantify the resulting business value. In the context of grid computing also 
resource allocation mechanisms have been widely discussed—most often under the term “grid 
economics”. We refer to Buyya et al. (2000), Nabrzyski et al. (2003) and Wolski et al. (2004) which 
provide an overview of this area. They dwell either on the question which principles are appropriate to 
resource management or on technical issues connected with the development of resource management 
systems. Accordingly, in most of the existing approaches demand for computational resources is 
merely an external factor whereas in our approach it is subject to optimization. 

In this context an important characteristic of SOI based on grid technologies is the on-demand access 
to distributed resources. When resources stem from an external provider this concept is often labelled 
utility computing, meaning that resources can be consumed und priced as easy as for instance 
electricity or water. Utility computing has been subject to research as well. Bhargava and Sundaresan 
(2004) analyze pay-as-you-go pricing scenarios where providers guarantee computing capacity, but 
users do not make a commitment towards actual use. Our paper takes the perspective of a service user 
and presents a rationale for decisions on computing capacity in the context of risk/return management. 
This may be accomplished by investing into an own internal SOI or by making use of utility 
computing offers by major infrastructure providers like HP, SUN or IBM (Bhargava and Sundaresan, 
2004, p. 202) but also online service providers like Google, Amazon and Microsoft, whose services 
are today oftentimes marketed under the term “cloud computing”. The question underlying this paper 
is under which circumstances a SOI for risk quantification is favorable over (traditional) DS. 

3 Risk/Return Management 

The term “risk” is used heterogeneously in general speaking as well as in academic circles. While in 
the economic literature risk is often explained as the “possibility of missing a planned outcome” we 
will follow a more finance-related approach. From this point of view we define with Schröck (2001, p. 
24) risk as “the deviation of a financial value from the expected value”. A positive deviation is often 
referred to as “chance” while a negative deviation is characterized as “danger”. Because of this two-
sided perception of risk, variance or standard deviation of a risky value are suitable and well accepted 
measures of risk. We will use the standard deviation of historical portfolio returns as the risk measure 
later in this text. Synonymously we will speak of the volatility of a portfolio and define it as the 
“annualized standard deviation of percentage change in daily price” (Spremann, 2003, pp. 154). 

Enterprises are investing capital into investment objects in order to generate cash inflows and 
subsequently to increase the return of the invested capital. Typically risk-averse management is 
making risky investments hoping to achieve an excess return over the risk-free rate. There is a general 
connection between risk and return of an investment object: higher return is systematically associated 
with higher risk. This connection is theoretically explained by economic models like the “Capital 
Asset Pricing Model” which was originally developed by Sharpe (1964), Lintner (1965) and Mossin 
(1966) and empirically evaluated later on (an overview of relevant empirical studies can be found e.g. 
in Copeland and Weston (1988, pp. 212). Following the argumentation of Wilson (1996, pp. 194) it is 
therefore crucial for the survival and success of an enterprise to be able to allocate the available capital 
to the right combination of investment objects. Investment objects in this context are not necessarily 
restricted to securities. Almost all business transactions are associated with uncertainty and thus 
contribute to an enterprises overall risk exposure. 

One major goal of risk/return management in this context is the prevention of bankruptcy by 
restricting potential losses resulting from risky investment objects. The increasing importance of this 
goal is emphasized by the current economic crisis. A growing number of rules and regulations require 
enterprises to hold a part of their available capital to back their risky investments (Jackson et al., 1998, 
pp. 8). This share of the available capital then makes less or no contribution to the overall earnings. By 



management decisions these restrictions are broken down along the organizational hierarchies into 
guidelines on business unit or departmental level. We are assuming in the following text that those 
guidelines are essentially representing limits for the maximum risk a department, business unit and 
consequently an enterprise is willing (or able) to take. 

To evaluate whether an enterprise or department complies with a given risk limit, it is necessary to 
calculate the current risk exposure. We concentrate on one fundamental instrument in this paper: 
Covariances can be used for a comprehensive enterprise-wide risk/return management as described by 
Huther (2003, pp. 111) and Faisst and Buhl (2005, pp. 408) and as later picked up by Fill et al. (2007), 
Kundisch et al. (2007) and Gericke et al. (2009). Other publications are dealing with the empirical 
estimation and forecasting of covariances using historical data. For applicable techniques refer to 
Engle (1982), Kupiec (2007) and Hull and White (1998). An overview of the corresponding methods 
used in volatility and correlation forecasting can be found in Alexander (2008, pp. 89). Taylor (2005) 
presents recent approaches to volatility forecasting like conditional autoregressive Value-at-Risk 
(CAVaR) models. In our context, covariances are used for determining the overall risk position of an 
enterprise. Nevertheless, our methods are also applicable to other risk measures as long as they 
consider dependencies between single investment objects. 

Following the covariance approach, we can represent risky investment objects by random variables. 
Considering the portfolio risk and return merely on an aggregated level is not satisfactory because all 
information about the risk attributable to a single investment object is lost. It is crucial to separate the 
portfolio and decompose it into data per investment object. Only then the enterprise can perform 
economically rational investment decisions on different aggregation levels. With ߪଶ and ݒܥ 
denoting variance and covariance of investment objects respectively we can determine the overall risk 
of a portfolio ߪଶ, consisting of ݊ ب 0 investment objects (numbered from 1 to ݊), as ߪଶ ൌ
∑ ∑ ݒܥ

ୀଵ

ୀଵ . The so defined matrix is called covariance matrix. An important characteristic of 

covariances is that ݒܥ ൌ  . This makes the matrix symmetric and thus not all of its values haveݒܥ
to be calculated. The total number of covariance calculations necessary is given by ݊ሺ݊  1ሻ/2. 

4 A Valuation Model for fast Risk Quantification 

We consider an enterprise which has access to (and is possibly engaged in) a set of risky investment 
objects as well as to a risk-free investment alternative. It is frequently (re)calculating its overall risk 
position by estimating the covariance matrix of its portfolio. Our main hypothesis for the valuation of 
benefits is: the faster risk/return management calculations can be executed the higher will be the return 
of the enterprise because given risk limits can better be exploited. 

Since the enterprise is acting in an uncertain and dynamic environment its risk position is changing 
willingly (by investment decisions) or unwillingly (by “movement” of the markets). Because the 
estimation of risk cannot be accomplished in real-time the covariances at hand are always outdated. 
We are in the following recurring to the fact that the enterprise is adjusting its risk position to a value 
somewhere below a certain threshold thus constituting a “safety margin”. In the regulatory context this 
is often called “haircut”, like described by the Basel Committee on Banking Supervision (2004). The 
financial and economic crisis made clear, that – depending on the assets invested in – a high safety 
margin is necessary to account for changes of parameters, especially in liquidity. It is doing so by 
using the capital allocation between the risky investment objects and the risk-free alternative for 
balancing their overall risk position. Our model is therefore not addressing the evaluation of the 
efficient set of investment objects or portfolio optimization (both require covariances), but the 
aggregation and management of the risk position of an enterprise. Whenever covariances are available 
the safety margin can be adjusted immediately in a way that the resulting (and over time changing) 
overall risk position of the enterprise does not exceed the given risk limit at any time. Hence, the faster 
covariances are available, the smaller the safety margin can be. We will use this effect to quantify the 
benefits of fast estimations depending on the time needed for the completion of one covariance matrix. 



The time interval we consider consists of equidistant periods. ݐ ൌ 0 denotes the beginning of the first 
period. ߪ௧ e.g. indicates the value of a model parameter at the end of period ݐ. (Dis)investment 
decisions take effect at the end of each period. If not described differently, all variables are א Թ. The 
enterprise is equipped with a total capital of ܭ  0 which is always completely allocated to the risky 
portfolio and/or the risk-free alternative. We denote the risky portion of ܭ with ݔ  0 and furthermore 
use ݔ for risk adjustment. ܶ indicates the length of the calculation time frame, ܶ א Գ\ሼ0ሽ with Գ as 
the set of natural numbers. At the end of each time frame we choose ݔ in a way that the risk limit is 
“probably” not exceeded during the next time frame. We will formulate more precisely what is meant 
by “probably” later on. Future returns of the portfolio are modelled as independent random variables. 
Their probability distribution for each period can be characterized by mean and standard deviation. 
This implies that the investment objects can be marked to market, i.e. there is a price attached to them. 
We additionally need a set of assumptions for the deductions following thereafter. 

Assumption 1 The enterprise is generally risk-averse and striving for efficient combinations of 
investment objects. A sufficient number of investment objects (adjacent to the safety margin) are 
perfectly divisible, liquid, and traded on a no-frictions market. 

Assuming risk aversion is probably well justified by the experiences of the FEC. As liquidity was an 
issue there, we only assume investment objects to be liquid in the area adjacent to our safety margin. 

Assumption 2 The risky part of the enterprise’s capital yields the expected return ߤ, the risk-free 
investment pays the time-invariant risk-free interest rate i, which is equal to the borrowing rate. We 
always have ߤ  ݅  0. 

With the so defined parameters and x as decision variable we can determine the overall expected 
return ߤ௨ሺݔሻ and risk ߪ௧ሺݔሻ of the enterprise according to common rules of statistics as 
ሻݔሺߤ ൌ ߤݔ  ሺ1 െ ሻ݅ݔ ൌ ݅  ߤሺݔ െ ݅ሻ and ߪ௧ሺݔሻ ൌ  ௧ (1)ߪݔ

The overall risk of the enterprise is expressed by the portfolio risk and thus changes over time driven 
by the varying ߪ௧. Note that due to our focus on changing risk we do not regard a changing ߤሺݔሻ over 

time (which would result in an 
index ݐ as in ߪ௧ሺݔሻ). As we see, 
with ascending ݔ the overall 
returns as well as the overall risk 
of the enterprise are both 
increasing. On the one side the 
enterprise certainly strives for 
the highest possible return, on 
the other side the given risk 
limit constricts ݔ. 

It is common practice to use 
some variation of a random 
walk for the price movement on 
security and commodity 
markets. This approach goes 
ultimately back to Louis 
Bachelier (1900) who compared 

the stock market with a “drunkards walk”. Although controversially discussed, it was picked up more 
than half a century later by Mandelbrot (1963; 1972) and Fama (1965) among others. Following this 
theory of random walks historical (e.g. daily or weekly) portfolio returns can be used for estimating 
mean ߤ and standard deviation ߪ௧ of future portfolio returns. It is important to understand that in our 
model the standard deviation is possibly changing in each period (indicated by its index ݐ). 

Figure 1.   Period Model and Relevant Time Intervals. 
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Assumption 3 The initial calculation of covariances starts in ݐ ൌ 0 and is finished after ܶ periods. 
Each new covariance calculation begins in the finishing period of the previous covariance calculation. 

According to assumption 3, whenever a covariance matrix is completed, the input data used for its 
calculation are ܶ periods old. We can immediately determine the portfolio risk by summing up the 
covariances in the matrix. This can then be used for rebalancing the portfolio. The moment before the 
next matrix is finished the input data used for risk calculations are already 2ܶ periods outdated. 

Therefore the uncertainty interval that has to be taken into account spans 2ܶ periods: in the worst case 
the risk has been going up over 2ܶ periods before the enterprise realizes that it is exceeding the 
maximum risk it is willing (or able) to take (see figure 1). Without loss of generality we will 
concentrate our analysis on the first covariance matrix calculation and the corresponding adjustment 
decision, therefore focussing on the time interval ሾ0; 2ܶሾ. During this time the portfolio risk is 
fluctuating in a non-predictable way. 

As originally introduced by Buhl et al. (2009), we now dwell on the portfolio risk in ݐ, denoted as ߪ௧, 
modelling it as a random variable. This relates to a phenomenon known from the behaviour of stock 
market prices called heteroscedasticity (see e.g. Spremann, 2003, pp. 152). In analogy to returns we 
assume: 

Assumption 4 The ߪ௧ are normally distributed. 

 This distribution assumption can (and would in practice) be relaxed by approximating the distribution 
of the ߪ௧ delivered by the calculated sequence of standard deviations. Arranged in increasing order one 
can easily deduce the quantiles needed in our model. Nevertheless, for reasons of simplicity and 
without significantly changing the general result we assume ߪ௧ to be normally distributed here. 

We will again focus on two distribution parameters: Our notation for the (strictly positive) mean will 
be ߤఙ, for the standard deviation ߪఙ (both tagged with an ߪ indicating that the distribution applies to 
the portfolio risk), thus ߪ௧~ܰሺߤఙ;  .ఙሻ with ܰ short for the normal distributionߪ

The standard deviation of the portfolio risk can be taken as an estimate for the expected portfolio risk 
 in equation (1) we ݔ ௧. In order to maximizeߪ ఙ and thus as the starting point for the random walk ofߤ
have to consider the uncertainty interval ሾ0; 2ܶሾ. Therefore, the standard deviation of the expected 
portfolio risk after 2ܶ periods is again normally distributed with ܰሺߤఙ;  ,ఙ√2ܶሻ. As a consequenceߪ
we have ߪ௧ሺݔሻ~ܰሺߤݔఙ;  .ఙ√2ܶሻ for the overall risk of the enterpriseߪݔ

In order to rephrase the fuzzy formulation “the risk limit is probably not exceeded” we will follow an 
approach comparable to the VaR for quantifying portfolio risk. It is important to understand, that the 
VaR is not sufficient for this purpose, as is in our model the risk itself (and not the “value”) is risky. 
We speak of a Risk-at-Risk over a holding period and a confidence level 0 ,ߙ ا ߙ ൏ 1 and think of it 
as the standard deviation ߪത which is exceeded within the holding period only with the probability of 
ሺ1 െ  ሻ denoting the standardized normal distribution function, we know for theݔሻ. With Φሺߙ
distribution of ߪ௧ሺݔሻ over 2ܶ periods that ܲሺߪ௧ሺݔሻ  തሻߪ ൌ Φቀఙഥି௫ఓ

௫ఙ√ଶ்
ቁ. At the same time we require 

the probability to be greater than or equal to the confidence level ߙ: 
ܲሺߪ௧ሺݔሻ  തሻߪ  ݐ for ߙ ൌ 2ܶ (2) 

In the marginal case both sides of the equation are equal and we can therefore state—with ݍఈ as the 
(onesided) ߙ-quantile of the standardized normal distribution—that 
തߪ െ ఙߤݔ
ఙ√2ܶߪݔ

ൌ ఈݍ  ݔ ൌ
തߪ

ఙ√2ܶߪఈݍ  ఙߤ
 (3) 

 gives us the portion of risk-free and risky investment objects in a way that equation (2) holds. We ݔ
can calculate the overall expected benefits of the enterprise, given this capital allocation, as  
ሻݔሺܤ ൌ ሻݔሺߤ · ܭ ൌ ሺ݅  ߤሺݔ െ ݅ሻሻ ·  ሻ from equationݔሺߤ from equation (3) into ݔ By inserting .ܭ



(1) we find for the benefits (with the number of periods needed for the completion of one covariance 
matrix as the independent variable) 

ሺܶሻܤ ൌ ቆ݅ 
ߤതሺߪ െ ݅ሻ

ఙ√2ܶߪఈݍ  ఙߤ
ቇ ·  ܭ

(4) 

Considering equation (4) an enterprise could maximize its benefit by minimizing the time ܶ that is 
needed to calculate a covariance matrix. Yet there is a trade-off between the benefits and the cost, i.e. 
cost caused by the infrastructure that is necessary to compute the calculations. 

5 Determining the Required Computing Capacity on a SOI 

From a SOI point of view the risk calculation can be regarded as a service providing its user with up-
to-date information for the relevant investments. In this section we derive the relationship between the 
computing capacity (i.e. cost) allocated to risk quantification and the time needed for the computation. 
We denote with ݖ the computing capacity necessary for estimating one covariance matrix in exactly ܶ 
periods. We use CPUs as a measure for computing capacity and are aware of the fact that this means a 
one-dimensional view on matters as other determinants of system performance are ignored. We denote 
with ݓ the workload—measured in CPU hours—for estimating one covariance. Applying a simple 
moving average technique with a rolling sample of historical data (Elton and Gruber, 1972, pp. 409) 
we get unbiased estimators of the expected value and (co)variances for every point in time. 

Assumption 5 The same workload w is necessary for estimating variances and covariances. 
Furthermore every covariance is estimated from scratch, i.e. no intermediate results are used. 

Variance estimation requires only one historical time series, so its intrinsic workload is smaller than 
the workload for covariance estimation. Nevertheless, this effect can be neglected since for ݊ 
variances there are ݊ሺ݊ െ 1ሻ/2 covariances in a given covariance matrix. With n sufficiently large the 
variances have merely no effect on the number of calculations. Using no intermediate results could be 
considered awkward for the simple moving average procedure but is a realistic approach for more 
sophisticated methods. 

Assumption 6 The length of the calculation time frame ܶ depends solely on the time needed for the 
computation, neglecting e.g. latency or transmission times. Correspondingly the only cost relevant is 
cost for computation which occurs in the form of a (internal or external) factor price per CPU hour 
over a given time. 

Note that for the calculation of covariance matrices on a SOI it is convenient that the computations can 
be distributed on several nodes and executed in parallel, as all pairwise covariances can be calculated 
independently from each other. Thus efficiency losses are considerably low. We can now deduce the 
computing capacity ݖሺܶሻ (workload per time) that is required in every period over ܶ periods. We 
already know that for ݊ investment objects ݊ሺ݊  1ሻ/2 covariances have to be calculated. Multiplied 
with the workload per covariance this determines the total number of CPU hours needed. This in turn 
leads to the functional relationship 

ሺܶሻݖ ൌ
݊ሺ݊  1ሻݓ

2ܶ
֞ ܶሺݖሻ ൌ

݊ሺ݊  1ሻݓ
ݖ2

 
(5) 

Given ݊ investment objects and a computing capacity of ݖ CPUs, the covariance matrix will be 
completed after ܶሺݖሻ periods (In the following outcomes are assumed real-valued. In reality and in 
order to fit it to the discrete-time period model one has to check the neighboring integer values to 
obtain the discrete optimum). This constitutes an important parameter of the covariance estimation 
service since it describes the economic value that should be attributed to the consumption of capacity. 
By inserting (5) into equation (4) and neglecting the mean risk compared to the standard deviation of 
the risk (The exact quantification would be tedious to continue with in our analysis. In order to avoid 



writing overhead we deliberately simplify our objective function by neglecting the mean risk, which is 
a numerically justifiable approximation in our context.) we quantify the benefits as 

ሻݖሺܤ ൌ ܽ  ܽ with ݖ√2ܾ ൌ ܭ݅  0, ܾ ൌ ఙഥሺఓିሻ
ଶഀఙඥሺାଵሻ௪

 0 

ሻݖᇱሺܤ ൌ 
√௭
 ሻݖሺ"ܤ ,0 ൌ െ 

ଶ√௭య
൏ 0 (6) 

 .ሻ is a strictly increasing and concave functionݖሺܤ

In the following we will consider two alternatives for balancing the benefits described by equation (6) 
with the cost of computation: SOI vs. DS. 

6 Service-Oriented Infrastructures vs. Dedicated Systems 

As a base of the decision on SOI vs. DS, the enterprise faces the problem of determining the required 
computing capacity for its risk-/return management in advance. Especially in a DS setting, it is 
obviously necessary to acquire or reserve resources for a longer planning horizon (e.g. one year). Even 
in a SOI scenario, where one might expect capacity planning to be superfluous, under realistic 
conditions it is still necessary: In the case of internal provision the enterprise needs to decide on the 
overall capacity of its SOI thus affecting the availability and prices of the resources. When resources 
are provided externally it may be required to forecast and reserve capacity in advance. This is in 
accordance with the findings of Bhargava and Sundaresan (2004) who find that a pure pay-as-you-go 
model without reservation is not reasonable in most cases. 

We will therefore determine suitable cost functions depending on the computing capacity used for risk 
quantification both on the DS and the SOI. In our notation of the model parameters, we will use the 
lower indices ܦ for the DS and ܵ for the SOI, respectively. For the DS, we apply a cost function ܥሺݖሻ 
proportional to the computing capacity ݖ provided per period which in fact assumes that there exist 
suppliers for DS with virtually any capacity. This leads us to a continuous cost function with a price of 
  per computing capacity used over one period. For the SOI we also specify a proportional cost
function with slope ௌ, but with a fixed minimum cost of ௌݖ, ݖ  0. Thus the SOI cost function 
has a slope of 0 to the point ݖ and afterwards a constant slope of ௌ, i.e. for all ݖ    every unit ofݖ
capacity over one period cost ௌ. The break at point ݖ accounts for the following situations that need 
to be considered in practice for an internal and external provisioning scenario respectively: 

• The SOI capacity is obtained by an external service provider for the usage price ௌ. The service 
consumer on the other side is obligated to a minimum purchase of ݖ. Consuming less capacity 
nevertheless induces cost of ௌݖ. 

• The SOI is instituted by an investment project of the enterprise. After initial investment cash-
flows free capacity up to the amount of ݖ is available for covariance estimations at variable cost 
of 0 because of pooling existing internal resources, until the free capacity generated by the SOI 
project is fully exploited. A capacity demand exceeding ݖ induces a usage price of ௌ – because 
of competing service consumers in the case of an internal SOI or because of additional external 
capacity priced with pS. 

We assume that always 0 ൏ ௌ ൏   reflecting the typical advantages of a SOI. Firstly, an intrinsic
characteristic of a SOI is that a potentially high number of services share a common infrastructure. 
Capacity must not be determined by summing up the requirements of each single service 
independently. Instead multiplexing gains resulting from less than perfectly correlated demand 
structures need to be considered (Chandra et al., 2003). Therefore, total capacity may be significantly 
smaller compared to independent dedicated systems. Additionally, a SOI may comprise standardized 
components which can be assumed to be substantially cheaper. Finally, on a SOI capacity can be 
varied by adding or removing resources. Thus, it is possible to react to varying environment conditions 
which is a crucial part of the results of our optimization model. 



Consequently, we define the cost functions, ܥ and ܥௌ, as well as the objective functions, ܼ and ܼௌ, 
for the DS and the SOI with recourse to equations (5) and (6) for ݖ  0 as 
ሻݖሺܥ ൌ  ,ݖ

ሻݖௌሺܥ ൌ maxሺௌݖ;   ,ሻݖௌ

ܼሺݖሻ ൌ ሻݖሺܤ െ  ሻݖሺܥ

ܼௌሺݖሻ ൌ ሻݖሺܤ െ   ሻݖௌሺܥ

ܼሺݖሻ and ܼௌሺݖሻ are again strictly concave functions. ܥሺݖሻ, ܥௌሺݖሻ and ܼሺݖሻ, ܼௌሺݖሻ are intersecting 
at ݖଵ ൌ

ೄ௭
ವ

൏ ܿ . We setݖ ൌ ݖௌ ൌ  .ଵ and obtain a cost setting as depicted in figure 2ݖ

  
Figure 2. Cost Functions for DS and SOI. Figure 3. Objective Functions for DS and SOI. 

In practice one would insert realistic numbers (e.g. expected values for the planning interval) into the 
model parameters. In the following we will deduce analytically the conditions under which a long-
term investment in a DS and a SOI respectively is optimal. We will achieve this in three steps. 

Step 1: Obviously we have, as illustrated in figure 3, ܼሺݖሻ  ܼௌሺݖሻ ֞ 0 ൏ ݖ   ଵ, with equalityݖ
exactly for ݖ ൌ ሻݖଵ. The first derivative ܼԢሺݖ ൌ


√௭
െ  features its only null at 

మ

ವ
మ  0. Due to the 

strict concavity of ܼሺݖሻ the only maximum of ܼሺݖሻ on ሿ0; כݖ ଵሿ is atݖ ൌ ݉݅݊ ቀ
మ

ವ
మ ;  ଵቁ. Theݖ 

associated value of the objective function is 

ܼሺݖכ ሻ ൌ

ە
ۖ
۔

ۖ
ۓ ܼ ቆ

ܾଶ

ଶ
ቇ ൌ ܽ 

ܾଶ


 for

ܾଶ

ଶ
൏ ଵݖ and thus כݖ ൌ

ܾଶ

ଶ

ܼሺݖଵሻ ൌ ܽ െ ܿ  2ܾඥݖଵ for
ܾଶ

ଶ
 ଵݖ and thus כݖ ൌ ଵݖ

 

(7) 

Step 2: Furthermore we have ܼௌሺݖሻ  ܼሺݖሻ ֞ ݖ  ݖ ଵ, with equality exactly forݖ ൌ  ሻݖଵ. Since ܼௌሺݖ
is strictly increasing on ሿ0; ሻݖ;∞ሾ. The first derivative ܼԢௌሺݖሾ the maximum can only occur on ሾݖ ൌ

√௭
െ ݖ ௌ for   features its only null at ݖ

మ

ೄ
మ  0. 

• Case 1: మ

ೄ
మ  ݖ ֜ ܼԢௌሺݖሻ ൏ 0 for ݖ  ݖ ֜ ܼௌሺݖሻ ൌ ܼௌሺݖሻ   ܼԢௌሺݐሻ݀ݐ

௭
௭

൏ ܼௌሺݖሻ for 

ݖ  כௌݖ . Therefore in this caseݖ ൌ  . is the only maximumݖ

• Case 2: మ

ೄ
మ  ݖ ֜ ݖ  ሻݖ with ܼԢௌሺݖ  0 and hence ܼԢௌሺݖሻ  0 for ݖ ൏ ݖ   ݖ

֜ ܼௌ has its only maximum on the right side of ݖ at the point 
మ

ೄ
మ, i.e. ݖௌכ ൌ

మ

ೄ
మ in this case. 

Due to the strict concavity of ܼௌሺݖሻ for ݖ  כௌݖ ଵ;∞ሾ is atݖሻ on ሾݖ the only maximum of ܼௌሺݖ ൌ
ݔܽ݉ ൬

మ

ೄ
మ ;  ൰. The associated value of the objective function isݖ



ܼௌሺݖௌכሻ ൌ

ە
ۖ
۔

ۖ
ۓ ܼௌ ቆ

ܾଶ

ௌଶ
ቇ ൌ ܽ 

ܾଶ

ௌ
 for

ܾଶ

ௌଶ
 ݖ and thus כௌݖ ൌ

ܾଶ

ௌଶ

ܼௌሺݖሻ ൌ ܽ െ ܿ  2ܾඥݖ for
ܾଶ

ௌଶ
 ݖ and thus כௌݖ ൌ ݖ

 

(8) 

Step 3: Finally the optimal values of the objective functions have to be compared. We have 

ܼሺݖכ ሻ ሾୀሿ ܼௌሺݖௌכሻ ֞ ܽ 
ܾଶ


ሾୀሿ ܼௌሺݖௌכሻ, 

 

since ܼሺݖଵሻ ൌ ܼௌሺݖଵሻ ൏ ܼௌሺݖௌכሻ. This is equivalent to 

ܽ  మ

ವ
ሾୀሿ ܼௌሺݖሻ ൌ ܽ െ ܿ  2ܾඥݖ,  

since ܼௌ ൬
మ

ೄ
మ൰ ൌ ܽ  మ

ೄ
 ܽ  మ

ವ
, which again can only be satisfied (with ܿ ൌ  ) forݖௌ 

2ܾඥݖ െ మ

ವ
൏ሾୀሿ ݖௌ ֞ ௌ ሾୀሿ

ଶඥ௭ି
್మ

ವ
௭

. 
 

The overall optimum כݖ and the associated type of system can then be expressed without loss of 
generality depending on the value of the parameter ௌ relative to the other relevant model parameters 

. Substituting for simplicity ݖ , ܾ and
ඥ௭

ൌ  ଵ and
ଶඥ௭ି

್మ

ವ
௭

ൌ  ଶ we can state the overall

optimum (in the case ௌ ൌ ଶ  the DS as well as the SOI are optimal). 

כݖ ൌ

ە
ۖ
۔

ۖ
ܾۓ

ଶ

ଶ
֞ ଶ  ௌ and ଵ  ௌ ֜ DS optimal

ݖ ֞ ଵ  ௌ   ଶ ֜  SOI optimal
ܾଶ

ௌଶ
֞ ௌ ൏ ଵ ֜  SOI optimal

 

(9) 

This can be interpreted as a decision rule determining whether or not the investment into a SOI or into 
a DS is ex ante economically rational. Clearly, the investment into a DS is optimal when the variable 
cost of the SOI exceeds a certain threshold relative to the other relevant model parameters. For ௌ at 
this threshold the enterprise would be indifferent on the DS and the SOI (with different capacities 
each). Below the threshold the SOI is optimal with a capacity – depending on ݖ – of either ݖ or 

మ

ೄ
మ. 

From a managerial perspective it is an important aspect that IT investment decisions in this specific 
context can be based on cost as well as benefits. In general cost for IT infrastructures can be quantified 
quite well, whereas benefits most often are only roughly estimated. With our model we provide an 
overall quantification (under certain assumptions). We can moreover examine how input parameters 
like ߤ ,ܭ or ݅ affect investment decisions. For example the larger the capital ܭ, the higher is ܾ and ଵ 
respectively. Accordingly, the price ௌ is likely to be lower than ଵ and thus investing into SOI 
becomes more attractive. The same argumentation holds for the risk premium ሺߤ െ ݅ሻ. 

7 Limitations of the Model and Conclusion 

In this paper we demonstrated how the economic value that can be derived from risk/return 
management calculations can be measured considering an enterprise that has to decide on the amount 
of capital to be reserved to cover potential losses resulting from a risky investment portfolio. Several 
assumptions were necessary to achieve an analytical solution. Using the covariance approach as an 



example we moreover developed an optimization model that delivers the optimal amount of 
computing capacity to be allocated to risk calculations at a time. Although covariances are 
fundamental and widely used in financial applications we covered only one element of numerous 
risk/return management methods and algorithms. Other approaches and applications for SOI concepts 
have to be examined as well. In fact, most of the basic principles introduced in this paper can be 
adapted to more sophisticated and complex scenarios. 

From a managerial view, a SOI is especially advantageous when market parameters determining the 
benefits of risk calculations are highly volatile as could be observed during the crisis since July 2007 
resulting in varying demand for computing capacity. With a SOI, resources can be reallocated at any 
time to reach an economic optimum. As discussed, not only benefits but also (opportunity) cost may 
vary depending on the total demand for capacity. E.g., during “quiet times” risk calculations may be 
computed more frequently generating added value out of readily available excess capacity even if 
benefits are comparably small. On a DS on the other hand an economical allocation cannot be 
guaranteed. When expected values are applied for capacity planning of a DS the economic optimum is 
systematically missed when parameters are deviating from expectations. Accordingly, while a DS for 
risk quantification might be less expensive in “quiet times”, a SOI might deliver the required 
flexibility during a crisis. 

After all, this paper is a contribution to understand the application of service-oriented infrastructures in 
the specific domain of risk/return management. Although a validation of our findings based on real-
world data is still subject to further research, in our point of view, such a systematic and economic 
analysis is a requirement as a first step for the further development of the new concepts like service-
oriented computing or utility computing. 
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