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H I G H L I G H T S  

• Addressing customer satisfaction regarding fast-charging service expectation. 
• Developing an optimization model to reduce the expectation-performance gap. 
• Application of the model in a real-world case and four future cases. 
• Increased welfare and improved customer satisfaction by a gap reduction. 
• Rising importance with further expansion of battery electric vehicles.  
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A B S T R A C T   

Drivers of battery electric vehicles, especially along motorways, require fast-charging services and expect 
maximum charging power to overcome long servicing times. However, charging park operators cannot always 
meet customer expectations due to economic and technical restrictions. According to the expectation- 
disconfirmation theory, the resulting expectation-performance gap increases the dissatisfaction of vehicle 
drivers regarding the servicing time in a non-linear manner. Therefore, we present an optimization model with a 
utilitarian welfare function grounded in social choice theory. Besides a current real-world case based on a fast- 
charging park in Germany, we analyze further (technical) developments of electric mobility with four future 
cases. Compared to a uniform power allocation, our results display a reduced absolute average gap of up to 4 min 
(i.e., 13.3%) between expected and actual servicing time in the real-world case, thus, improving welfare by 
22.9%. With an increased average gap reduction of up to 5.2 min, our future cases show the importance of 
addressing the expectations of battery electric vehicle drivers. Without a smart power allocation, the gap and 
simultaneously the dissatisfaction of vehicle drivers regarding the servicing time can increase, and potentially 
more hardware upgrades may be necessary.   

1. Introduction 

Electric mobility is considered to be vital to reduce greenhouse gases 
in the mobility sector [1–3]. Today, the market penetration of battery 
electric vehicles (BEVs) differs between countries and often depends on 
government incentives and transport planning policies – including the 

expansion of charging infrastructure [4–6]. In terms of charging infra
structure, a critical barrier to the widespread adoption of electric 
mobility relates to long servicing times for charging BEVs. Long 
servicing times can be relevant for charging at home but especially holds 
for charging during long-distance trips [7,8]. The fast-charging service 
along motorways sets out to overcome this barrier by fulfilling vehicle 
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drivers’ mobility needs with fast servicing times that meet customer 
expectations for charging at the maximum possible charging power, 
depending on the BEV or the charging station [9–12]. However, previ
ous research argues that charging park operators (CPOs) do not or 
cannot always meet these customer expectations due to economic rea
sons or technical restrictions [13]. Technical restrictions such as limited 
grid capacities are usually set to a certain size when the charging park is 
built. According to expectation-disconfirmation theory (EDT), a growing 
gap between prior (individual) expectations and the actual performance 
regarding the servicing time of charging negatively impacts customer 
satisfaction [14,15]. Within this paper, the term “customer satisfaction” 
refers exclusively to the servicing time for fast charging; other aspects, 
such as the cost of charging or additional facilities at the charging park, 
which may also influence customer satisfaction during the charging 
process, are not considered in this paper. The expectation-performance 
gap regarding the servicing time will be referred to as the “gap” 
throughout this paper and is used as a measure of customer satisfaction. 
Allocating the limited available power among all charging BEVs at a 
charging park naively, i.e., uniformly, will not systematically address 
customer satisfaction in charging BEVs at a fast-charging park. This 
uniform power allocation potentially harms the acceptance of electric 
mobility. 

In this regard, Halbrügge et al. [13] present a highly simplified 
optimization model to reallocate limited power on a minimal fast- 
charging park setup featuring only two charging stations to reduce the 
gap. In designing a satisfaction-oriented power allocation mechanism, 
active consideration of large charging parks, including their specific 
characteristics as well as the distribution of different vehicle categories, 
is inevitable as BEVs and their market penetration increase [16]. In 
particular, the construction of charging parks with a larger number of 
charging stations will steadily become more relevant as fixed costs per 
charging station decrease with an increasing number of installed 
charging stations [17]. Thus, large charging parks will be more 
economical for CPOs and as a result more common in the future. Ex
amples of large charging parks are the charging park located along the 
A8 motorway near Augsburg, Germany, with 72 charging stations 
installed in 2021 [18,19] or the charging park at the intersection of 
Germany’s A3 and A46 motorways near Dusseldorf, with 144 charging 
stations [20]. Further international examples are charging parks in 
Shanghai and Beijing, China, with 50 charging stations already built in 
2017 by Tesla [21] and a charging park in Eidsvoll Verk in Norway with 
44 superchargers [22]. 

Ucer et al. [23] have already shown that in large charging parks, 
different parameters such as the number of charging stations, the 
available power of the charging park, and the charging power per 
charging station directly affect the average waiting time as well as the 
charging time and thus the resulting customer satisfaction of vehicle 
drivers. As the installation of additional charging stations is proposed to 
reduce queues, the aggregated power demand of occupied charging 
stations may exceed the available power limited by the grid coupling 
point. Ucer et al. [23] highlight the urgent demand for future research to 
optimize power allocation. Since other research approaches either take 
into account that vehicle parking time allows the charging process to be 
shifted over time [24,25], focus on other parameters, such as price, to 
improve service quality [26,27], or focus on stakeholders other than the 
BEV driver, such as the CPO [28,29], studying larger charging parks 
requires more research with a focus on driver satisfaction to analyze and 
balance the preferences of many vehicle drivers and the CPO. As to the 
best of our knowledge, no research has yet presented a power allocation 
with the aim to increase customer satisfaction regarding welfare in a 
fast-charging park for immediate fast charging in a bottleneck situation, 
this paper deploys concepts from social choice theory to address the 
complex balancing of individual preferences with arising gaps in larger 
charging parks. This theory focuses on collective decisions by aggre
gating individual preferences [30,31]. Thereby, we analyze the problem 
at hand with a theory-grounded optimization model based on a 

utilitarian welfare function that explicitly accounts for gaps associated 
with unexpected long(er) servicing times at large charging parks. In 
addition, we evaluate the applicability of the derived optimization 
model considering the above-mentioned charging park near Augsburg as 
our real-world case. Here, we simulate different utilization scenarios of 
the investigated charging park, e.g., by varying the number of charging 
BEVs and the power available for BEV charging. We use BEV-related 
data from registered vehicle types in Germany in 2021 [32] and 
consider a power allocation mechanism dividing the available power 
uniformly across all charging stations as a benchmark to compare 
against. Here, we use different evaluation metrics following the applied 
concepts from social choice theory. Besides current BEV data, we 
consider future cases to evaluate the influence of possible technical 
changes on the smart power allocation for fast-charging services. 

Summarizing, this paper sets out to contribute to the existing body of 
knowledge in the following four ways:  

• The paper grounds the formulation of an optimization model – which 
improves customer satisfaction regarding servicing times from a 
utilitarian point of view – in social choice theory.  

• The paper validates the developed optimization model by applying it 
to a large fast-charging park setup in Germany with BEV-related data 
from registered vehicle types in 2021. 

• By considering future cases, we evaluate the further growing pene
tration of electric mobility and corresponding technological change.  

• Based on our evaluation results, the first implications for investment 
decisions in future fast-charging infrastructure for a travel- 
satisfaction-oriented policy for transport planning are derived. 

This paper is organized as follows: In Section 2 we first present our 
model setting and give relevant background information. Then, in Sec
tion 3 we introduce our formal optimization model. In Sections 4 and 5 
we present our evaluation and shortly discuss our results. Finally, we 
conclude in Section 6 with implications, including limitations and future 
research. 

2. Background and setting 

In general, models addressing customer satisfaction with fast- 
charging servicing times must account for restrictions from three fields:  

(1) technical and economic restrictions of the fast-charging service; 
(2) the gap between service expectation and actual service perfor

mance (expectation-disconfirmation theory (EDT));  
(3) the CPO’s perspective, who manages power allocation and, 

therefore, must aggregate individual satisfaction of the vehicle 
drivers (social choice theory). 

In this section we will describe the model context building upon 
existing research from all three fields and highlight their essential in
tersections, illustrating our paper’s main contributions. Fig. 1 relates the 
three fields to each other. EDT (2) describes that technical and/or eco
nomic restrictions (1) cause a gap between vehicle drivers’ expected and 
actual servicing times leading to customer dissatisfaction. This dissat
isfaction regarding the servicing time for the fast-charging service exists 
on the level of each vehicle driver. Aiming to offer a “satisfying” 
charging service, the CPO must consider each vehicle driver (3) when 
managing the charging park and allocating the available power, i.e., 
aggregate the individual driver perspectives. 

2.1. Technical and economic restrictions of the fast-charging service 

The fast-charging service rests on the promise to charge BEVs to 
fulfill the mobility needs of vehicle drivers within fast servicing times for 
vehicle drivers, i.e. charging at the maximum possible charging power, 
depending on the BEV or the charging station. The available power of 
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the charging park to fulfill the mobility needs of vehicle drivers depend 
on several aspects: First, the grid coupling point that connects a set of 
charging stations to the external electricity grid limits the available 
power of the charging park. The grid coupling point consists of a 
transformer reducing the grid’s voltage as well as inverters to change the 
grid’s alternating current to direct current. The fast-charging service is 
particularly relevant along motorways [11], where traffic volume varies 
greatly, leading to peak times [33]. Such peak times cause an uneven 
power demand that needs to be considered by the CPO when planning 
and operating a charging park. Thus, for optimal planning and oper
ating, research literature already covers the location and sizing of fast- 
charging stations while considering the constraints of the electricity 
transportation and distribution network [34]. Upgrading or replacing an 
existing grid coupling point and its components comes at typically 
prohibitively high investments. Thus, a capacity extension to meet 
charging power demand at any time, as indicated by the grey dashed line 
in Fig. 2, is rarely economically rational due to low utilization of the 
additionally invested capacity. Second, there are operational costs 
involved with serving peak demand. Fast-charging parks face similar 
power tariffs to industrial consumers [35]: Energy billing consists of a 

payment for the energy used and a separate demand charge for peak 
demand. Demand charges typically represent the majority of costs for 
electricity [35], thus, serving peak demand is typically not economical 
for the CPO. For this reason, a CPO might decide to not serve all power 
demands with maximum charging power. Third, CPOs will typically 
place a sufficient number of charging stations in fear of customer queues 
[9]. This results in an aggregated power demand that might surpass the 
available power limited by the grid coupling point. Therefore, the CPOs 
would rather risk customers having to charge somewhat slower than 
forfeiting them. 

Consequently, due to economic considerations and technical re
strictions in times of peak demand, an “actively dimensioned bottle
neck” will occur (illustrated by the red line in Fig. 2). This implies that 
the CPO will typically not provide the aggregated maximum charging 
power (as advertised by car manufacturers) at every time for each 
charging station. Fig. 2 illustrates the aggregated demand for maximum 
charging power. In the following, we refer to these situations as 
bottleneck situations. 

2.2. Expectation-disconfirmation theory 

Given car manufacturers’ advertisements of the shortest technically 
possible servicing times for charging BEVs with maximum charging 
power, customers often have high expectations about charging service 
[36]. However, as described in the previous section, bottleneck situa
tions constrain the maximum charging power, which results in a gap 
between servicing time expectations and actual performance. Previous 
literature already identified that the gap between prior expectations and 
actual performance plays a central role in influencing customer satis
faction regarding fast-charging service [13]. In other research areas, 
such highly relevant gaps have been studied particularly concerning 
waiting time. For example, Thomson and Yarnold [37], as well as 
Cassidy-Smith et al. [38], consider the gap in the context of waiting time 
of hospital or emergency department patients and Davis and Heineke 
[39] in the context of waiting times for fast food. EDT suggests that a 
customer’s pre-purchase expectation and the subjective after-purchase 
evaluation can lead to possibly high (dis)satisfaction [14,15]. In the 
context of fast-charging service, customer satisfaction will generally be 
lower the larger the gap. In addition, the relationship between the gap 
and the resulting satisfaction appears to be non-linear. According to Lin 
et al. [40], this non-linear correlation seems to especially hold for 
negative service-expectation deviations. This implies that the more the 

Fig. 1. Context building for our optimization model.  

Fig. 2. Schematic power demand curve of a charging park. The grey dashed 
line represents the bottleneck dimensioned to meet power demand at any time, 
the red line gives the bottleneck dimensioned under technical and economic 
restrictions, and the grey dashed area describes bottleneck situations. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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duration of the charging process deviates from a customer’s expectation, 
the increasingly less satisfied the customer will be with the charging 
service. 

2.3. Social choice theory 

Based on the previous two sections, typically not all customer ex
pectations can be met at the same time, which results in customer 
dissatisfaction. Against this background, CPOs generally have two non- 
exclusive options to influence the gap: adjustment of expectations or 
adjustment of actual servicing performance. Changing expectations is 
generally difficult for customers even for the very same charging park 
due to, e.g., non-transparent power bottlenecks for customers and 
endogenous factors affecting the current charging situation like the 
charging power of other simultaneously charging BEVs. Therefore, this 
paper focuses on the service-performance side. 

In general, the CPO decides on the realized power allocation (among 
the BEVs) and might – due to the respective power bottleneck situation – 
allocate less power than the BEV can be charged with. By applying 
energy-quantity-based pricing for the charging service [19], reallocating 
the same overall amount of power at one point in time between different 
BEVs does not change a CPO’s costs. This is because power reallocation 
at one point in time does not increase demand peaks and, thus, the paid 
demand charges. Consequently, the CPO may benefit from reallocating 
power to address and improve overall customer satisfaction without 
(negative) effects on its costs. In other words, the CPO is indifferent 
between a given set of feasible power allocations from a cost perspec
tive, which directly enables a reallocation of power to increase the 
aggregated vehicle driver satisfaction. 

The allocation of a limited resource is also known as the “bankruptcy 
problem” in game theory. There are several established methods to 
address this problem, including equal distribution, proportional distri
bution, and priority-based distribution [41]. However, allocating power 
in proportion to the requested charging power may result in a bias to
ward less expensive BEVs with lower charging capacities. Similarly, 
priority selection proves challenging and potentially discriminatory in a 
charging park with a primary demand for immediate fast charging. 
Overall, for CPOs, equal distribution, i.e., uniform power allocation, 
seems to be the simplest way to (re)allocate power, as every vehicle 
driver is treated equally and there is no need to make “complex” cal
culations. For this reason, and in conjunction with research that has used 
uniform power allocation to compare newly developed power allocation 
approaches, we also use the uniform allocation as our benchmark power 
allocation [8,42,43]. The uniform power allocation is carried out 
through an iterative process, as illustrated in Fig. 3. The process first 
checks whether a uniformly allocated charging power, i.e., allocation 
power Powd =

power bottleneck
#BEVs , would exceed the maximum charging power 

of any plugged-in BEV (Powd > PowMaxBEV
s ). For those charging stations 

where PowMaxBEV
s of any plugged-in BEV is below the uniformly allo

cated charging power Powd, only the maximum charging power of the 
respective BEV is allocated. Following, to fully utilize the power 
bottleneck, the uniformly allocated Powd is recalculated by considering 
the remaining power and the remaining number of BEVs. The iterative 
process restarts and checks again if any PowMaxBEV

s is below the newly 
calculated and slightly increased Powd. The iterative process ends under 
two possible conditions: i) the maximum charging power of all 
remaining BEVs exceeds the uniform allocation of the remaining 
charging power (Powd ≤ PowMaxBEV

s ) or ii) every BEV is allocated a 
charging power. This approach guarantees maximum utilization of 
available power while ensuring equitable treatment to all BEV drivers. 

Uniform power allocation does not take into account the resulting 
gap between expected and actual servicing time. BEVs with lower 
maximum charging power tend to experience smaller gaps because they 
receive the (almost) expected power allocation. Conversely, BEVs with 
higher maximum charging power receive considerably less charging 
power than expected, resulting in a larger gap. Consequently, there is a 
spectrum of customers with small and considerably large gaps, respec
tively. According to EDT, specifically, large gaps lead to a high level of 
customer dissatisfaction. Moreover, the interdependency with other 
concurrently charging BEVs in the charging park introduces a notable 
degree of variability and uncertainty for BEV drivers across multiple 
charging events, further aggravating their dissatisfaction [44]. Hence, 
we challenge the hypothesis that allocating power uniformly is socially 
desirable and argue that a CPO can optimize the power allocation to 
increase vehicle drivers’ satisfaction. All allocations will be Pareto 
efficient in a bottleneck situation, i.e., no vehicle drivers’ satisfaction 
can be improved without harming another driver (as there is no tem
poral flexibility to shift charging processes in case of fast charging). In 
this context, social choice theory builds on welfare economics and ag
gregates the preferences/behaviors of individuals, resulting in the 
concept of social welfare. The possibility to aggregate, e.g., summing up, 
individual satisfaction is subject to interpersonal comparability. There 
are different ways how social welfare can be defined. One possibility is, 
to sum up each satisfaction and treat each individual equally. Maxi
mizing the social welfare of equally treated individuals (i.e., in a non- 
discriminatory way) refers to the utilitarian welfare function, also 
called the Benthamite welfare function [31]. 

2.4. Power allocation related work 

After presenting the theoretical background in the previous sub
sections, we will now delve into the related work to highlight our 
contribution in this area. In general, the allocation of limited power to 
different charging stations falls into the broad research area of smart 
charging, which serves a variety of goals such as maximizing profits, 
improving resilience, increasing the share of renewable energy, and 

Fig. 3. Uniform power allocation process (in the above figure, Powd describes the allocated charging power and PowMaxBEV
s describes the maximum charging power 

of BEV s). 

J. Bollenbach et al.                                                                                                                                                                                                                             



Applied Energy 365 (2024) 122735

5

minimizing operating costs, power losses, or emissions [45]. In many 
cases, smart charging helps to make better use of available resources to 
avoid bottleneck situations in the first place so that each BEV driver gets 
the power they demand [24,25]. 

When it comes to allocating limited power to multiple charging 
stations, academic literature already elaborates on allocation limited 
power to multiple charging stations by developing a variety of ap
proaches. For example, Kumar et al.’s [46] prioritization approach is 
based on information about the state of charge (SoC), the available slack 
time for charging, and the energy already charged, which are weighted 
individually for each use case. Another approach is to consider the user’s 
parking time by proposing a new policy called Least Laxity Ratio in the 
use case of a parking garage with longer parking times [42], or to 
identify the essential power needs during a power outage with a corre
sponding evaluation using an adapted fairness index [43]. Furthermore, 
a smart charging algorithm allocates the limited power by considering 
the travel time of the upcoming trip [8]. For this branch of research, it is 
essential to emphasize that the optimal power allocation is always 
highly dependent on the specific charging use case. In this context, most 
research has considered smaller charging stations without fast charging. 
Additionally, it is often assumed that at least a certain proportion of BEV 
drivers will have longer parking times that allow them to postpone the 
charging process. Therefore, the existing literature does not take into 
account the need for immediate charging with maximum charging 
power due to the location along the motorway. 

A related stream of research focuses on the Quality of Service to 
increase customer satisfaction, which is, for example, determined by the 
achieved SoC of the BEV, service delay, BEV arrival rates, or pricing 
[26,27,47]. While here the Quality of Service is optimized individually 
for the BEV driver, the aggregated welfare view is often neglected. 

The stream of research dealing with welfare maximization pursues a 
more holistic approach. Huang et al. [26], for example, consider the 
arrival rate of BEVs, the pricing scheme, and the quality of service to 
increase welfare. Other studies integrate additional stakeholders besides 
the BEV driver, such as the charging station operator or power genera
tion facilities [28,29,48]. To calculate the associated welfare these 
studies include, for example, electricity consumption or the charging 
price. Various theories and approaches have been used to maximize 
welfare, such as non-cooperative game pricing strategy [29], individual 
cost functions to account for inconvenience [48], or the development of 
various utility functions [28]. The utilitarian welfare function is a well- 
established social welfare function in the electric mobility domain. For 
example, Stein et al. [49] address a scheduling problem for charging 
services. Rahimi-Eichi and Chow [50] study an auction-based energy 
management to allocate resources between customers with different 
budgets by maximizing utilitarian welfare. Further, Zhao et al. [51] use 
utilitarian welfare as a criterion to analyze the results of their energy and 
reserve management. So far, however, the utilitarian welfare function 
has not been applied to reduce the gap between BEV drivers’ expecta
tions and the actual performance of charging services. 

Summarizing existing literature, to the best of our knowledge, no 
research study has yet developed an optimal power allocation model to 
increase customer satisfaction in a fast-charging park for immediate fast 
charging in a bottleneck situation by maximizing welfare with an 
average gap reduction between expected and actual servicing time. 

3. Optimization model 

Based on prior research that uses a simplified power-allocation 
model with only two charging stations [13], in this paper, we develop 
an optimization model that is capable of managing service performance 
in bottleneck situations, considering the gap for an arbitrary number of 
BEVs. As introduced before, our model addresses the gap by grounding it 
in social choice theory and allows us to apply a corresponding power 

management system on real-world charging parks as they exist along 
motorways. In the following, we first present the model setting and 
corresponding model components in Section 3.1 to Section 3.3. Then, we 
introduce the complete mathematical problem formulation in Section 
3.4. 

3.1. General economic and technical model setting 

The model considers a public charging park with fast-charging 
technology. The charging park comprises different system compo
nents, i.e., a grid coupling point, charging stations, connected BEVs, 
eventually further power demanding or generating components, and a 
power management system. The CPO, as the relevant decision maker, 
allocates the power to the charging stations and aims to satisfy the 
charging demand of all customers. Within the scope of this paper, our 
objective is to enhance welfare through optimized power allocation 
while operating at a pre-defined power bottleneck. Hence, our optimi
zation model is the final layer in a holistic control system for the 
charging park that allocates the available power in real-time to the 
charging stations with plugged-in BEVs in bottleneck situations, as 
shown in Fig. 4. 

In particular, our model setting considers a set of different vehicle 
drivers D that are currently charging their BEV at the charging park. The 
charging park consists of multiple charging stations S with a maximum 
charging power of PowMaxCS

s . As mentioned before, the grid coupling 
point is the physical connection to the public electricity grid, which 
limits the power for all charging stations of the charging park technically 
or economically. This limit is described by the parameter PowMax that 
can be either fixed or variable over time due to economic reasons. The 
different stations are accessible to all BEVs. Each station is either 
occupied by a BEV or vacant. Since our model allocates power in real- 
time, only the currently charging BEVs are considered. A new power 
allocation is determined by the optimization model every time relevant 
circumstances change, such as when a BEV initiates or terminates a 
charging process or the available power PowMax varies. The optimiza
tion model communicates the power allocation to the power manage
ment system, which is located at the grid coupling point and initiates the 
actual power flow. As the CPO of the charging park of our real-world 
case, we model energy-quantity-based pricing for the charging service 
for a specific power range, i.e., each vehicle driver pays the same price 
per kWh regardless of the applied power allocation within the respective 
power range [19]. Considering that pricing can also affect customer 
satisfaction, and that these power ranges vary, it would be interesting for 
future research to consider pricing when optimizing power allocation, 
which could mean that the price depends on the charging power. 

3.2. Expected servicing time 

The expected servicing time Timeexp
d of a vehicle driver d reflects and 

is based on information available to the respective vehicle driver. In our 
setting, each vehicle driver d is aware of the initial SoC, SoCinit

d , as in
formation given by the vehicle. In addition, each driver knows the target 
SoC, SoCtarget

d , as the intended charging target based on the remaining 
distance to drive and the consumption of the BEV. The battery capacity 
BCd and the maximum charging power PowMaxBEV

d of the BEV are 
technical information and relate to the car model. Information about the 
maximum charging power of the charging station s, denoted by 
PowMaxCS

s , is listed in directories of charging stations today [33] and is 
known when the BEV connects to the charging station at the latest. Both 
the initial and the target SoC are given in percent of the battery capacity. 
For this reason, the (absolute) required electricity for vehicle driver d to 
reach the target SoC is given by the product of the SoC charged (in 
percentage) and the battery capacity, formally described by 
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(
SoCtarget

d − SoCinit
d

)
⋅BCd. As we model an energy-quantity-based pricing 

for the charging service, vehicle drivers do not have monetary incentives 
to slow down charging processes. Therefore, for each vehicle driver we 
model the expected servicing time on a rule of proportion basis [33], 
where the mathematical operator δ(d) gives the station s where vehicle 
driver d is currently charging at. The calculation of the expected 
servicing time Timeexp

d is based on all charging restrictions observable by 
vehicle driver d. In particular, Eq. (1) uses the minimum of both the 
BEV’s maximum charging power and the maximum charging power of 
the charging station to determine the expected servicing time for each 
vehicle driver d. As customers adapt their expectations according to 
experiences [52], we assume that vehicle drivers may know or “learn” 
the charging process’ efficiency ηexp

d . 

Timeexp
d =

(
SoCtarget

d − SoCinit
d

)
⋅BCd

min
{

PowMaxBEV
d ,PowMaxCS

δ(d)

}
⋅ηexp

d

∀d ∈ D. (1)  

3.3. Actual servicing time 

In contrast to the expected servicing time, the actual servicing time 
Timeact

d represents the actual time between the initiation and the termi
nation of a vehicle driver d’s charging process. The relevant information 
to calculate the actual servicing time for a vehicle driver d consists of the 
initial SoCinit

d of its BEV, the target SoCtarget
d , the battery capacity BCd, the 

allocated charging power Powd of the CPO and the actual charging 

efficiency ηact, as described in Eq. (2) [33].1 In a large charging park and 
especially at peak demand times, relevant circumstances may change as 
other BEVs initiate or terminate their charging process, leading to a 
newly optimized power allocation. Thus, we note that in a real-world 
application of our optimization model, the actual servicing time is 
only known after the BEV driver terminates the charging process. During 
the charging process, the optimization model may decide multiple times 
on the then time-dependent actual power allocation Powt

d with updated 
SoCt

d (the calculation is based on the prior power allocation Powt− 1
d and 

the time passed).). However, in a model analysis over time, the charging 
processes of newly arriving BEVs overlap with still-charging BEVs, 
complicating the analysis of the direct impact on welfare for each power 
allocation, power bottleneck, and charging BEVs. Thus, a resulting 
analysis may provide less detailed insights on the observed effects. 
Further, possible combinations of BEV types and charging demand 
variations increase rapidly due to the subsequent BEVs. Since this study 

Fig. 4. Model setting based on Halbrügge et al. (2020). The stated numbers along the different lines indicate the number of components or actors that are connected.  

1 We note that additional restrictions that slow down the charging process (e. 
g., due to restrictions on the side of the BEVs or the charging station) and which 
are not considered in our simulation, only extend actual servicing times. Such 
extended servicing times will imply an increase of the gap, as customers’ ex
pectations will typically not change due to additional technical restrictions that 
are non-transparent to the customer, in our case the vehicle driver. Therefore, 
we deliberately constrain power allocations by the necessary minimum of 
technical restrictions. 
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examines the general potential of optimized real-time power allocation 
to maximize welfare, we focus on a power allocation at one point in time 
for further analysis. We conduct a sensitivity analysis by varying input 
parameters to compare various combinations and identify when our 
optimization model is most beneficial (see Section 4). 

Timeact
d (Powd) =

(
SoCtarget

d − SoCinit
d

)
⋅BCd

Powd⋅ηact ∀d ∈ D. (2)  

3.4. Customer satisfaction and utilitarian welfare function 

The CPO – as the relevant decision maker – aims at maximizing social 
welfare of all vehicle drivers who are currently charging their BEVs at 
the charging park. To treat each vehicle driver equally (i.e., in a non- 
discriminatory way), we apply the utilitarian welfare function and 
thereby account for individual satisfaction [31]. Bentham [31] and Mill 
[53] initially considered utility as a measure of satisfaction and pleasure. 
As EDT can infer vehicle driver’s satisfaction, vehicle drivers are sup
posed to form a preference relation on the continuum of feasible 
charging alternatives. As stated by Debreu [54], these relations can be 
formalized as a utility function under certain conditions. Concerning the 
given feasible charging alternatives, we note that they are typically 
defined to a large extent by the BEV, e.g., in the form of the maximum 
charging power and, most importantly, by the CPO when it comes to 
bottleneck situations. 

Based on EDT, the gap between service expectation and actual ser
vice performance is at the core of each vehicle driver’s evaluation of the 
servicing process. Thus, we measure satisfaction with a charging process 
by the gap between actual and expected servicing time for each vehicle 
driver d, i.e., ΔTimed = Timeact

d (Powd) − Timeexp
d . Maximizing the vehicle 

driver’s satisfaction, this gap needs to be minimized. A vehicle driver is 
(completely) satisfied if the actual servicing time is equal to or even less 
than the expected servicing time, i.e., ΔTimed ≤ 0. If the actual servicing 
time is longer than the expected servicing time, i.e., ΔTimed > 0, the 
vehicle driver is dissatisfied with the charging service. The more the 
actual servicing time exceeds the expected servicing time, the increas
ingly less satisfied the vehicle driver tends to be. Here, the utilitarian 
welfare function uses preference orders over the set of alternatives to 
describe the vehicle driver’s (dis)satisfaction. When assuming that a 
vehicle driver expects maximum charging power, the continuum of 
feasible alternatives is defined over all gaps in the interval [0,∞[

measured in time units, e.g., minutes. In the following, we additionally 
assume that the satisfaction of a given vehicle driver d does not only 
decrease monotonously with an increasing servicing gap ΔTimed (or 
equivalently with an increasing actual servicing time Timeact

d (Powd)), but 
define (dis-)satisfaction to be non-positive u(ΔTimed) ≤

0 for all ΔTimed ≥ 0. Here, u(ΔTimed) gives the actual customer (dis-) 
satisfaction of vehicle driver d for a gap of ΔTimed. 

As described in Section 2 and in line with Lin et al. [40], customer 
satisfaction might decrease non-linear with a growing servicing gap 
ΔTimed. Therefore, we use monomials to model the effect that stronger 
forms of aversion lead to larger gaps: ΔTimed

q, with q > 1 indicating 
some form of dissatisfaction aversion. Note that for all integer q, the 
corresponding monomials ΔTimed

q have a joint intersection point at 
(1,− 1), as shown in Fig. 5. This directly leads to an inversion of the effect 
of an increasing gap on satisfaction for different exponents q: For 
0 ≤ ΔTimed < 1, the higher the exponent q, the higher the customer 
satisfaction for the given gap. On the opposite, for a gap in the range of 
]1,∞[, the higher the exponent q, the lower the customer satisfaction for 
the given gap. As an example, we consider a gap of 0.5 h for two different 
vehicle drivers A and B: Vehicle driver A has q = 2 and vehicle driver B 
has q = 3. Then, we have uA(0.5) = − (0.5)2

= − 0.25 < − 0.125 = −

(0.5)3
= uB(0.5) and paradoxically would conclude that B is less 

unsatisfied despite the larger aversion (see marking in Fig. 5). To avoid 
such situations, we model the satisfaction of a vehicle driver by the 
function u(ΔTimed) = − (ΔTimed + 1)q, with q > 1 and ΔTimed ≥ 0. As 
can be seen in Fig. 6, this shifts the corresponding functions u(ΔTimed) to 
the left and, in this way, indeed avoids such paradoxical situations. 

Following the social choice theory, we aggregate individual utilities 
using a utilitarian welfare function W(Pow1,…,Pow|D|): 

W(Pow1,…,Pow|D|) = −
∑

d∈D
(ΔTimed + 1)q (3)  

Fig. 5. Function before adjustment. The dashed line represents the function 
f 2(x) = − (x)2 and the grey line the function f 3(x) = − (x)3. The black dot vi
sualizes the exemplary value x = 0.5 for vehicle driver A before adjustment and 
indicates that vehicle driver B is less unsatisfied despite the larger aversion 
(visualized by the white dot). 

Fig. 6. Function after adjustment. The dashed line represents the function 
f 2(x) = − (x + 1)2 and the grey line the function f 3(x) = − (x + 1)3. The black 
dot visualizes the exemplary value x = 0.5 for vehicle driver A after adjustment 
and indicates that vehicle driver B is more unsatisfied in line with the larger 
aversion (visualized by the white dot). 
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3.5. Complete welfare-maximization problem 

In total, our final welfare maximization problem writes as follows: 

max W(Pow1,…,Pow|D|) = −
∑

d∈D
(ΔTimed + 1)q (4a)  

ΔTimed = Timeact
d (Powd) − Timeexp

d ∀d ∈ D. (4b)  

Powd ≤ min
{

PowMaxBEV
d ,PowMaxCS

δ(d)

}
∀d ∈ D. (4c)  

Powd ≥ PowMinCS
s ∀d ∈ D. (4d)  

∑

d∈D
Powd ≤ PowMax (4e) 

The above constraints ensure that an optimal solution satisfies the 
relevant technical and service constraints: First, the power that each 
vehicle driver d’s BEV is charged with must be non-negative. It cannot 
exceed the charging station’s maximum charging power and the 
maximum charging power of the BEV according to Eq. (4c). Note that we 
defined a minimum charging power of each charging station s PowMinCS

s 
in Eq. (4d), as a minimum charging power should be guaranteed for 
every BEV connected to a charging station. Finally, the sum of the power 
allocated to all charging BEVs must account for the given maximum 
power available for charging (see Eq. (4e)). 

4. Evaluation 

We evaluate our model using an exemplary fast-charging park near 
Augsburg, Germany. For the evaluation, we distinguish between five 
cases: one real-world case and four future cases that consider the further 
growing penetration of electric mobility and the corresponding tech
nological changes. Within each case, we perform a sensitivity analysis, 
resulting in corresponding scenarios that vary with respect to the 
number of charging BEVs and power bottlenecks. Across all cases and 
scenarios, the characteristics of the charging park remain consistent. 

4.1. Parameterization of the cases: BEV characteristics and market shares 

The five cases, illustrated in Table 1, differ in the characteristics of the 

BEVs and the associated market shares. For the real-world case, we refer 
to the currently registered BEVs in Germany and their corresponding 
market shares. Since >75 different vehicle types of fast-charging-capable 
BEVs with different battery capacities and with different maximum 
charging power were already registered in Germany in 2021, we assign 
the vehicle types to a corresponding vehicle category (according to the 
Electric Vehicle Database [55], cf. Table 1). For each vehicle category, we 
determine the mean value for the battery capacity (BC) and the mean 
value for the maximum charging power (PowMaxBEV). Further, to 
determine the market share of each vehicle category, we utilize the 
number of registered BEVs for each vehicle type [32,55] and aggregate it 
to the market share of each vehicle category. Thus, we determine the 
likelihood of occurrence for a BEV belonging to a given vehicle category 
at the simulated charging park using a discrete distribution function. This 
means the market shares define the probable combination of BEVs with 
different characteristics charging at the same time at the charging park. 

In future case 1, we investigate how adjusted vehicle category mar
ket shares affect our results compared to the considered real-world case. 
Since the development and commercialization of BEVs are still in the 
ramp-up phase, the market shares of the vehicle categories are strongly 
influenced by the current supply. Thus, the distribution of BEVs is highly 
distorted compared to the distribution of combustion engine vehicles 
[32]. We expect a full transition to electric mobility will lead to a similar 
BEV distribution as we see today for combustion engine vehicles. This 
assumption is based on the fact that the choice of vehicle category 
largely depends on individual circumstances, including neighborhood 
design, travel disposition, personality, lifestyle, mobility, and socio
demographic characteristics [56,57]. Thus, a currently used combustion 
engine vehicle is substituted by a BEV of the same vehicle category for 
the entire population. The distribution of vehicle categories published 
by the German Federal Motor Transport Authority in 2022 [32] is, 
therefore, applied to the BEV vehicle category market shares. Note that 
the technical characteristics of SUVs vary widely and cannot be assigned 
to one of our vehicle categories. Therefore, the market share of SUVs was 
excluded from the calculation, and the remaining market share values 
were scaled up proportionately. The mapping to our vehicle categories 
for calculating market shares is listed in Table A.1 in the appendix. 

Additionally to future case 1, we consider three more cases for further 
(technical) developments. Since electric mobility is still undergoing 
extensive development, significant technological changes will occur in 

Table 1 
Parameterization of vehicle categories including market shares.    

Vehicle category   

Mini and small 
vehicles 

Middle and compact- 
class vehicles 

Upper-middle-class and 
upper-class vehicles 

Commercial 
vehicles 

Real-world case BC 34 64 92 50 
PowMaxBEV 56 127 180 75 
Market share in % 50 44 5 1 

Future case 1 
with adjusted market shares of vehicle categories 

BC 34 64 92 50 
PowMaxBEV 56 127 180 75 
Market share in % 29 57 7 7 

Future case 2 
with adjusted market shares of vehicle categories 
and technical changes (I) 

BC 40 70 95 55 
PowMaxBEV 60 140 190 80 
Market share in % 29 57 7 7 

Future case 3 
with adjusted market shares of vehicle categories 
and technical changes (II) 

BC 40 75 100 60 
PowMaxBEV 60 150 200 90 
Market share in % 29 57 7 7 

Future case 4 
with adjusted market shares of vehicle categories 
and technical changes (III) 

BC 40 80 105 65 
PowMaxBEV 60 160 210 100 
Market share in % 29 57 7 7  
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the coming years. Two main trends can be observed: The first trend relates 
to decreasing battery costs leading to larger batteries and, thus, higher 
battery capacities [58–60]. The second trend relates to the fact that en
ergy density has already reached a plateau at present, which is why an 
upper limit may be reached in terms of battery capacity, especially for 
mini and small vehicles where the size of the battery is primarily limited 
[61,62]. To investigate these trends in further future cases, we increased 
the values for battery capacity and maximum charging power depending 
on the vehicle category. We made a higher adjustment for the mean value 
of maximum charging power compared to the battery capacity because 
the maximum charging power of a BEV is already up to 270 kW, and the 
charging stations installed today can charge up to 300 kW. Thus, after the 
first adjustment in future case 2, we further increased the mean values of 
the battery capacity by 5kWh and the mean value of the maximum 
charging power by 10 kW. The exception here is the mini and small ve
hicles category, which, due to the plateaued energy density, probably 
already reached their maximum. The adaptions for the future cases also 
fall within the range of forecast values from 2019 [60]. The BEV char
acteristics and market shares of all cases are displayed in Table 1. 

4.2. Parameterization of the scenarios: Charging park and BEV drivers 

In August 2022, the real-world charging park near Augsburg serves 
72 fast-charging stations with exactly one charger per station [18,19]. 
Further fast-charging stations are planned up to a total number of 144. 
All 72 installed charging stations have a maximum charging power of 
140 kW. In addition, 12 of the 72 charging stations at the charging park 
have a maximum charging power of up to 300 kW [19]. However, only a 
few BEVs can charge >140 kW, so in this case study, we set the 
maximum charging power PowMaxCS at 140 kW for all 72 charging 
stations in the simulated charging park. To ensure at least the minimum 
charging power that is defined as fast charging (≤22 kW is defined as 
normal charging), we set the minimum charging power of each charging 
station, PowMinCS

s , to 23 kW [63]. 
With the defined charging park consisting of 72 charging stations, 

each with a minimum and maximum charging power, and the maximum 
charging power per vehicle category, it is now possible to identify 
bottleneck situations, i.e., the scenarios for our sensitivity analysis. In a 
bottleneck situation the available power for charging is limited by 
economic or technical restrictions. Such sensitivity analysis of the 
available power allows us to quantify the benefit of our model for 
different fast-charging park setups and charging demand. As technical as 
well as economic restrictions of the charging park are not publicly 
available, we define bottleneck situations based on the charging park 
characteristics: To be more precise, given the minimum charging power 
of 23 kW and the maximum charging power of 140 kW for each of the 72 
charging stations, we vary PowMax between 1,656 kW (= 23kW⋅72) and 
10,080 kW (= 140kW⋅72). Within these bounds, we consider 200 kW 
increments, i.e., from 1,800 kW to 10,000 kW. Simultaneously with an 
increasing PowMax, the minimum number of charging BEVs must also 
increase to analyze bottleneck situations. Therefore, we divide PowMax 
by the maximum charging power (140 kW) to get the minimum number 
of BEVs that could lead to a bottleneck situation. The maximum number 
of BEVs for the evaluation is always 72 BEVs, i.e., all charging stations 
are occupied. In summary, for each of the five cases presented in the 
previous section, we conduct a sensitivity analysis with increasing 
PowMax from 1,656 kW to 10,080 kW and increasing number of 
charging BEVs, starting at the lowest number to create a potential 
bottleneck situation. This results in 1,340 analyzed scenarios per case 
and a total of 6,700 simulations with 350 runs each, illustrated in Fig. 7. 

In terms of the actual charging process efficiency ηact, we refer to the 
built-in technology on the charging park and set it to 98% [64]. 
Regarding the expected servicing time (which in turn depends on the 
expected charging efficiency), most countries still face the problem that 
a major part of the population has little or no experience with charging 

BEVs. Especially when vehicle drivers charge at a public (fast) charging 
park for the first time, they might either not be aware of the underlying 
physics or refrain from the computational hassle of getting information 
on the actual efficiency. In addition, car manufacturers are advertising 
maximum charging power. Therefore, we use an efficiency of ηexp = 1 as 
a starting point for calculating the expected servicing time by the vehicle 
driver in absence of detailed empirical data. In order not to favor or 
disadvantage any driver, we use the same ηexp for all vehicle drivers. 
Finally, we note that as the experience of BEV drivers increases, the 
expected efficiency may indeed adjust toward the actual efficiency. With 
this in mind, this value may be further investigated in future work and 
can easily be adjusted in our model. 

To create realistic charging setups, we combine real-world data from 
the charging park with information from a database about vehicle types 
registered in Germany in 2021 [32,55]. To determine the appropriate 
distribution functions of the different SoCs at the start and end of a 
charging process, we utilize real-world data regarding SoCinit and 
SoCtarget 2provided by the charging park over three months. Since the SoC 
is given in percent, the corresponding SoC in kWh can be calculated for all 
vehicle categories. For the final dataset, there were 1,448 charging pro
cesses available for the calculation. The final dataset represents a filtered 
data basis, i.e., charging processes where SoCinit is equal to or higher than 
SoCtarget were filtered out. Further, we did not consider charging pro
cesses where SoCinit equals 0%, as we assume that the BEVs arrive at the 
charging park with a small “buffer” SoCinit to avoid stopping beforehand. 
In addition, we detected and eliminated outliers utilizing the inter
quartile range method. Afterward, we tested over 100 distribution 
functions with the python fitter package and selected the one with the 
lowest residual sum of squares respectively for SoCinit and SoCtarget. 

Table 2 summarizes the parameterization of the charging park and 
simulated BEV drivers. 

Finally, following Lin et al. [40], we consider the effect that customer 
satisfaction decreases non-linearly with a growing servicing gap with 
q > 1. But we do not take into account that vehicle drivers may have 
different levels of customer satisfaction concerning servicing time. 
Analyzing how different levels of customer satisfaction might affect 

Fig. 7. Overview of simulated cases and scenarios.  

2 Note: The real- world data here refers to the actual SoC reached at the end 
of the charging process, not the SoCtarget desired by the vehicle driver. Due to a 
change of mind triggered by external circumstances, the desired SoCtarget may 
differ from the SoC actually achieved. However, we assume that the possible 
difference between the desired SoCtarget and the SoC actually achieved is 
moderate across the large number of customers in the data set and is, therefore, 
a sufficiently close approximation for the parameterization of our model. 
Nevertheless, for our power allocation, as well as for many other smart charging 
approaches, it would be very helpful to know the desired SoCtarget of the vehicle 
drivers (see Section 6). 
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power allocation is subject to future research. Since the magnitude of the 
deviation is not crucial for the allocation, we set q = 2 in the following. 

4.3. Evaluation metrics 

In our evaluation, we compare the power allocation of our optimi
zation model – in the following called “optimized power allocation” – 
with a benchmark power allocation. The benchmark power allocation 
reflects a uniform power allocation among all charging BEVs. We then 
compare the optimized power allocation with the benchmark power 
allocation using different metrics as described below. 

The central concept of this study is the utilitarian welfare function. 
This metric is a utilitarian construct that focuses on the welfare of a col
lective by giving equal weight to all individual satisfaction levels. It will 
serve as the primary metric in this paper. In each scenario, we expect non- 
negative welfare gains when comparing the benchmark with the opti
mized power allocation, i.e., an improvement through the optimization. 
In the following, we present both absolute and relative gains in welfare. 

As welfare (gain) is an abstract measure, we also analyze two mea
sures that are may be more “intuitive” from the perspective of a vehicle 
driver: (1) The average gap in minutes between expected and actual 
servicing time for each combination of bottlenecks and number of BEVs 
that is in line with EDT as introduced in Section 2. (2) As the literature 
suggests that uncertainty in outcomes additionally negatively affects 
satisfaction [44], we decided to capture the uncertainty of the gap by its 
average standard deviation. 

4.4. Results 

Looking at the welfare results for the real-world case and comparing 
the benchmark with the optimized power allocation, we find that when 
the utilization rate of the charging park is low (e.g., a low number of 
charging BEVs) or the bottleneck is very high (i.e., every BEV will get its 
maximum charging power), the welfare values of both power allocations 
are nearly identical for all cases. Theoretically, the maximum level of 
welfare can be observed when every vehicle driver’s expectations can be 
met and, therefore, no gap exists between actual and expected servicing 
time. In this sense, the maximum level of welfare will be zero. For our case 
study, however, such a maximum level of welfare only theoretically exists 
due to the difference between expected and actual charging efficiency. 
Further, we only analyze scenarios in which a bottleneck situation can 
arise, and thus the available power capacity does not meet the demand. At 
a low charging park utilization or high available power, there is a low 
probability that an actual bottleneck occurs. Thus, the welfare is close to 
the maximum level of welfare (see Fig. 8). Nevertheless, as mentioned 

before, a low utilization rate of a charging park or a grid coupling point 
with too much connected power is not in the interest of the CPO for 
economic reasons. Therefore, in this paper, we focus on bottleneck situ
ations where the optimization model can improve welfare. We identify 
several findings regardless of the type of power allocation (benchmark or 
optimized). First, welfare decreases with an increasing number of BEVs, 
while in contrast, welfare increases with an increasing bottleneck value 
and, thus, more available power for charging. Second, welfare decreases 
increasingly faster as the number of BEVs increases and the available 
power decreases. The absolute minimum welfare, i.e., the minimum of the 
aggregated vehicle drivers’ satisfaction, can be observed for 72 BEVs and 
a bottleneck of 1,656 kW over all cases. Here, each vehicle only receives 
the minimum amount of 23 kW. 

When turning to differences between the benchmark and the opti
mized power allocation, welfare is generally higher in all scenarios and 
cases when applying the optimized power allocation. This is best 
demonstrated by the following two examples of our real-world case. 
First, the scenario (3,000 kW, 54 BEVs) for the benchmark power allo
cation and the scenario (3,000 kW, 60 BEVs) for the optimized power 
allocation lead to the same welfare of approximately − 21. This suggests 
that 6 more BEVs can be served at the same welfare level using the 
optimized power allocation. Second, the scenario (3,000 kW, 72 BEVs) 
for the benchmark power allocation and the scenario (2,600 kW, 72 
BEVs) for the optimized power allocation lead to the same welfare of 
approximately − 56. This suggests that using the optimized power allo
cation, 72 BEVs can be served at the same level of welfare in a situation 
with 400 kW less available power. Fig. 8 illustrates the levels of welfare 
for all scenarios of the real-world case and both the benchmark and the 
optimized power allocation graphically. 

Turning to welfare gains for the real-world case generated by the 
optimized instead of the benchmark power allocation (Fig. 9), we find 
that for our real-world case the absolute gains range from 0 (where there 
is no bottleneck situation, i.e., no improvement possible) to 24.07 under 
the scenario of 2,000 kW available power and 72 BEVs. The higher the 
bottleneck, the more charging BEVs are needed to generate a welfare gain 
without the optimization model, i.e., until some BEVs no longer receive 
their maximum charging power. Interestingly, however, the largest ab
solute welfare gain is not observed when the available power is scarcest, 
i.e., 1,656 kW and a full utilization rate of 72 BEVs. This is because in the 
latter case, power is so scarce that each BEV gets the minimum of 23 kW 
charging power, and our model cannot find any more efficient realloca
tion(s) compared to the benchmark. When looking at the relative welfare 

Table 2 
Parameterization.  

Parameter Data values Source 

|S| 72 [18,19] 
PowMaxCS 140 kW [65] 
PowMinCS 23 kW [63] 
PowMax Depending on |S|and PowMaxCS :Sensitivity 

analysis for the values between [1,656, 10,080] 
[18,19,65] 

|D| Depending on |S|and PowMaxCS :Sensitivity 

analysis for the values between [
PowMax
140kW

, 72] 

[18,19,65] 

ηact 0.98 [64] 
ηexp 1.00 Own assumption 
SoCinit Johnson’s SB-distribution over [0.01, 0.96] Based on real- 

world data 
SoCtarget Beta distribution over [0.04, 1.00] Based on real- 

world data 
BC Depending on the vehicle category and the case, 

see Table 1 
[32,55,60] 

PowMaxBEV Depending on the vehicle category and the case, 
see Table 1 

[32,55,60]  

Fig. 8. Levels of welfare for all scenarios – Real-world case.  
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gains from the optimized to the benchmark power allocation, it is evident 
that they do not align with the absolute welfare gains (Fig. 10). The power 
bottleneck of 6,000 kW and 70 BEVs resulted in a maximum relative 
welfare gain of 44.2%, with an absolute welfare gain of only 1.23. On the 
other hand, the highest absolute welfare gain of 24.07 only yields a 
relative improvement of 20%. At a highly limited power availability, the 
resulting gaps are considerably larger. Consequently, a higher absolute 
reduction is achievable but with only a moderate relative impact. The 
greatest relative welfare gains occur in cases with considerably more 
degrees of freedom and smaller gaps. 

Regarding future cases 1 to 4, the basic pattern of the welfare gain 
does not change (see Fig. 11, Fig. 12, Fig. 13 and Fig. 14). However, the 
optimization model can considerably improve welfare for a higher 
number of scenarios. Likewise, the magnitude of the maximum welfare 
gain increases up to 38.2. In future case 1, the adjusted market share of 
vehicle categories causes a decline in the mini and small vehicles and a 
significantly higher market share in middle and compact-class vehicles. 
Thus, this case results in a higher demand for maximum charging power 
and battery capacity. The incremental technical changes in future cases 
2 to 4 further accelerate this development and increase the spread be
tween minimum and maximum required charging power and battery 
capacity. Fig. 11, Fig. 12, Fig. 13 and Fig. 14 illustrate that all future 
cases cause effects in the same direction. First, the optimization model 
already achieves a welfare gain with fewer BEVs since there is a higher 
demand for charging power. Second, the realized maximum welfare gain 
increases for each case. Interestingly, the maximum welfare gain can be 
achieved across all cases at a bottleneck of 2,000 kW. 

We now focus on the vehicle driver perspective and discuss the average 
gap and gap reduction between expected and actual servicing time for 
each scenario as well as the average standard deviation of this gap for the 
real-world case. The pattern across all scenarios of the average gap is 
analogous to the pattern of the previously explained welfare. Only the axis 
labeling of the Figure changes from “welfare” to “average gap”, with a 
value between 0 (no improvement since there was no optimization 
possible) and − 45 min (see Fig. B.1). The gap increases with a growing 
number of BEVs or decreasing power availability of the bottleneck. In line 
with the identified welfare gains, the highest absolute gap reduction oc
curs at a power bottleneck of 2,000 kW. Interestingly, however, the sce
nario with the largest absolute average gap reduction of 4 min occurs in 
the scenario with 64 BEVs, whereas the largest welfare gain occurs in the 
scenario with 72 BEVs. Nevertheless, the overall course of the average gap 
reduction resembles the welfare gain with minor deviations as the model 
optimizes for welfare gain (see Fig. B.2). Similarly, the relative gap 
reduction resembles the relative welfare gain with 13.3% improvement at 
the largest absolute average gap reduction and 43.6% highest relative 
improvement with an absolute gap reduction of 0.5 min (see Fig. B.3). 

Fig. 9. Absolute welfare gain for each scenario – Real-world case.  Fig. 10. Relative welfare gain for each scenario - Real-world case.  

Fig. 11. Welfare gain for each scenario - Future case 1 with adjusted market 
shares of vehicle categories. 

Fig. 12. Welfare gain for each scenario - Future case 2 with adjusted market 
shares of vehicle categories and technical changes (I). 
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Turning to the average standard deviation of the gap, the optimized power 
allocation results in a considerably lower standard deviation at bottleneck 
situations compared to the benchmark power allocation (see Fig. 15). 

While the benchmark and the optimization model allocate the same 
amount of power to charging stations within the charging park, the 
optimization model achieves improvements across all evaluation met
rics. The following underlying effect drives such improvements: Section 
2.3 describes the uniform power allocation with BEV drivers experi
encing small gaps as well as BEV drivers experiencing substantial gaps 
between expected and actual servicing times. Following EDT, large gaps 
lead to higher individual dissatisfaction (in this paper, parameterized 
through a quadratic formulation), resulting in lower welfare. The opti
mization model allocates the available power to minimize the occur
rence of large, substantial gaps, albeit at the expense of small gaps now 
appearing for customers with lower charging power expectations — 
consequently, overall welfare increases. The same principle underlies 
the reduction of the average gap in minutes. Extreme values of large 
gaps significantly impact the calculation of the average gap for all BEV 
drivers in the charging park. Hence, applying the optimization model 
reduces the average gap over all customers. For clarity, Table B.1 ex
emplifies this principle. In addition, variability and uncertainty across 
multiple charging events decrease, further contributing to dissatisfac
tion mitigation. In summary, welfare enhancement is not achieved by 

shortening the overall servicing time – which is technically unattainable 
with constant available power – but rather by reallocating charging 
power and avoiding extreme gaps for some customers. 

5. Discussion 

Our model and the optimized power allocation indicate improve
ments compared to the benchmark power allocation mechanism. This is 
not only reflected in improving overall customer satisfaction (see the 
increased welfare gain) but also at the individual vehicle driver’s level 
(see the reduction of the average gap in minutes). Improvements for 
individual vehicle drivers can especially be realized concerning 
decreasing standard deviations of servicing times, as uncertainty addi
tionally negatively affects satisfaction. It should be emphasized that 
welfare gains of our model – associated with generally reduced gaps – 
increase with a scarcer average available power per BEV compared to 
the benchmark power allocation, as long as there are sufficient planning 
degrees of freedom. Such effects may be considered “positive” as they 
add the more welfare, the more critical the bottleneck. However, the 
absolute level of welfare generally declines the stronger, the scarcer the 
available power per BEV. We can, therefore, conclude that our model 
will generally utilize resources more “efficiently” than a uniform power 
allocation between all charging BEVs (i.e., our benchmark power allo
cation). However, our model may not overcompensate for poor charging 
park planning, where power bottlenecks appear to be very large [34]. 
This may be the case when such a big gap between expected and actual 
servicing time results that the vehicle driver cannot recognize an 
improvement due to the optimized power allocation. Overall, we 
quantitatively support the initial hypothesis that allocating power uni
formly across all charging stations is not optimal concerning customer 
satisfaction using a utilitarian welfare function. 

Our results generally point out that applying our optimization model 
to a charging park for the allocation of charging power can improve 
customer satisfaction. However, for implementation in reality, it is 
essential to recognize that the added value depends on the occurring 
power bottlenecks, the maximum charging power of the charging BEVs, 
and the overall utilization rate of the charging park. Thereby, our model 
complements a holistic control system of the charging park (see Section 
3.1 and Fig. 4), which often includes further components such as a 
photovoltaic (PV) and an energy storage system (ESS) [66]. A PV system 
provides low-cost and emission-free power. However, it is highly volatile 
and delivers only limited power during the early morning and evening 

Fig. 13. Welfare gain for each scenario – Future case 3 with adjusted market 
shares of vehicle categories and technical changes (II). 

Fig. 14. Welfare gain for each scenario – Future case 4 with adjusted market 
shares of vehicle categories and technical changes (III). 

Fig. 15. Standard deviation of the average gap between expected and actual 
servicing times for all scenarios – Real-world case. 
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hours, when traffic and charging demand are still high. Therefore, PV 
systems can relieve the grid coupling point during the day, however, 
power bottlenecks will still occur during bad weather days or at night. An 
ESS can perform various functions within holistic control systems of 
charging parks. The highly fluctuating load from BEVs plugging and 
unplugging at high charging power can affect power quality, which can 
be mitigated by an ESS connected directly ahead of the grid coupling 
point [67–70]. In addition, an ESS can significantly reduce operational 
costs, which consist of power consumed (per kWh) and monthly peak 
demand costs (highest power peak per kW) [71,72]. Sizing the ESS to 
match the configuration of the charging park can reduce peaks and, in 
turn, reduce these peak demand costs. However, optimizing the size of an 
ESS for cost reduction is complex and depends on investment costs, un
certain electricity consumption and peak demand costs, as well as 
charging demand [73,74]. Haupt et al. [74] demonstrated that charging 
parks with a high proportion of immediate charging demand require large 
ESS, which would only be economically viable with meager ESS invest
ment costs. Furthermore, predicting long-term charging requirements is 
challenging, as the forecasts for the deployment of electric vehicles still 
vary significantly [75]. To conclude, even with optimal planning in the 
design phase, it is foreseeable that bottleneck situations will continue to 
occur. Therefore, managing customer satisfaction during peak demand 
periods is necessary due to changing circumstances and fluctuating PV 
generation. Our optimization model is the last layer in the holistic 
charging park control system. It receives the input parameter PowMax 
after the power management system determines the optimal energy flow 
from the grid coupling point, PV, and ESS. Regardless of the other com
ponents, the customer satisfaction effects investigated in this study 
remain constant. Therefore, the parameters of each charging station need 
to be considered to decide if the investment for implementing our opti
mization model including a power management system is worthwhile. 
However, with technological progress (which our future cases account 
for) and an additional increase in the number of BEVs on roads, it is 
important to emphasize that our approach is becoming increasingly rele
vant as bottleneck situations will occur even faster and more frequently. 

6. Conclusion and future research 

In this paper, we develop a welfare-maximization model addressing 
service performance gaps of fast charging, which we explicitly ground in 
social choice theory. The developed optimization model is evaluated 
using data from a large charging park in Augsburg, Germany. Our 
evaluation of the real-world case shows that the developed model serves 
up to six more BEVs with the same power bottleneck at the same level of 
welfare as compared to a uniform power allocation mechanism – the 
latter constitutes our benchmark. Second, we can serve the same number 
of BEVs at the same level of welfare even at an up to 400 kW smaller 
bottleneck. Both findings potentially suggest reduced investments for 
hardware upgrades such as transformers, inverters, etc. Looking at 
additional future cases we analyzed in this paper, we can see that cor
responding results are only becoming even more relevant. Increasing 
volatile power generation from on-site renewable energy installations, 
such as photovoltaics, further increases demand for a smart power 
allocation. These results and trends underline the need for a travel- 
satisfaction-oriented policy for transport planning and highlight their 
relevance for the future of electric mobility. 

However, this study is also subject to some limitations. A more 
detailed charging curve would identify the resulting gap for each BEV 
more accurately since, at high SoC values, the maximum charging power 
of the BEV can no longer be fully utilized. However, as we focus on the 
average gap, the results should only vary slightly. Further, we only 
consider a maximum charging power of 140 kW, whereas charging parks 

often offer several different charging power products. The analysis of 
multiple charging power products requires further research on how 
different charging prices can be incorporated into this model. Addition
ally, while this paper focuses on managing service performance, it re
mains an open topic to study the expectation side of the considered gap, 
i.e., the expectations of vehicle drivers. Since advertisements often set 
inflated customer expectations [36], like car manufacturers typically 
advertise the shortest technically possible servicing times, addressing the 
expectation side would be a relevant topic for further research. To 
adequately model the expected servicing time, the expectations of each 
vehicle driver must be known. In this context, artificial intelligence could 
be a relevant approach for future considerations, as argued by Baumgarte 
et al. [76]. Apart from the expected servicing time, the target SoC is also a 
key factor. A limitation of our work is that we used the actual SoC at the 
end of the charging process for the parameterization of our model. To 
avoid such limitation, it would be crucial for our power allocation, as well 
as for other smart charging approaches, to know the target SoC desired by 
the vehicle drivers. Since the target SoC is difficult to predict due to many 
different influencing parameters, the target SoC would have to be asked at 
the beginning of the charging process. Additionally, integrating our 
model into a holistic charging park control system that includes PV, ESS, 
and varying power bottleneck over time could provide further interesting 
insights. This would allow for a temporal analysis of individual customer 
satisfaction and welfare over a day or year. Power allocation would be re- 
optimized at each change on the supply or demand side, and specific 
circumstances with significant potential for enhancing welfare may be 
identified. Finally, it might also be important to consider the potential 
improvement of waiting conditions, e.g. by offering additional services 
that could be used during the charging process such as open working 
spaces, or using expectation management by displaying and explaining 
waiting or servicing time [39,77,78]. These extensions of our current 
research will open up several opportunities to further increase the 
acceptance of electric mobility and fast charging in specific. 
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Appendix A. Additional parameterization  

Table A.1 
Calculation of market shares.  

Vehicle category [55] German Federal Motor Transport Authority vehicle categories [32] Market Shares 

Mini and small vehicles Mini vehicles 
Small vehicles 

6.9% 
18.2% 

28.7% 

Middle and compact-class vehicles Compact-class vehicles 
Middle-class vehicles 
Mini-Vans 
Vans 
Off-road vehicles 

24.2% 
12.3% 
3.9% 
4.0% 
6.0% 

57.5% 

Upper-middle-class and upper-class vehicles Upper-middle-class vehicles 
Sport car 
Upper-class vehicles 

3.8% 
1.9% 
0.6% 

7.2% 

Commercial vehicles Utilities 
Camper 

4.2% 
1.6% 

6.6%   

87.6% 100%  

Appendix B. Additional Results

Fig. B.1. Average gap between expected and actual servicing times for all scenarios - Real-world case.  

Fig. B.2. Absolute average gap reduction - Real-world case.   
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Fig. B.3. Relative average gap reduction - Real-world case.   

Table B.1 
Exemplary illustration of the average gap and welfare reduction in a charging park with a 180 kW bottleneck situation and two charging stations.   

BEV driver 1 BEV driver 2 Average gap and welfare 

Characteristics SoCinit
1 = 0.5 

SoCtarget
1 = 0.8 

BC1 = 64 kWh 
PowMaxBEV

1 = 127 kW 

SoCinit
2 = 0.2 

SoCtarget
2 = 0.9 

BC2 = 64 kWh 
PowMaxBEV

2 = 127 kWh  
Expected servicing time 64⋅(0.8 − 0.5)

min{127, 140}⋅1
= 0.15 [h]

64⋅(0.9 − 0.2)
min{127,140}⋅1

= 0.35 [h]

Actual servicing time with uniform power allocation 64⋅(0.8 − 0.5)
90⋅0.98

= 0.22 [h]
64⋅(0.9 − 0.2)

90⋅0.98
= 0.51 [h]

Gap 0.15 − 0.22 = − 0.07 [h] 0.35 − 0.51 = − 0.16 [h] Average gap of − 6.9 min; Welfare = − 2.48 
Actual servicing time with optimized power allocation 64⋅(0.8 − 0.5)

72⋅0.98
= 0.27 [h]

64⋅(0.9 − 0.2)
108⋅0.98

= 0.42 [h]
]

Gap 0.15 − 0.27 = − 0.12 [h] 0.35 − 0.42 = − 0.07 [h] Average gap of − 5.7 min; Welfare = − 2.41    

Gap reduction of 1.2 min (17%)  

References 

[1] Muratori M, Greene D, Kontou E, Dong J. The role of infrastructure to enable and 
support electric drive vehicles: a transportation research part D special issue. 
Transp Res Part D: Transp Environ 2020;89:102609. 

[2] Xu L, Yilmaz HÜ, Wang Z, Poganietz W-R, Jochem P. Greenhouse gas emissions of 
electric vehicles in Europe considering different charging strategies. Transp Res 
Part D: Transp Environ 2020;87:102534. 

[3] Straubinger A, Verhoef ET, de Groot HL. Going electric: environmental and welfare 
impacts of urban ground and air transport. Transp Res Part D: Transp Environ 
2022;102:103146. 

[4] Fluchs S. The diffusion of electric mobility in the European Union and beyond. 
Transp Res Part D: Transp Environ 2020;86:102462. 

[5] Fetene GM, Hirte G, Kaplan S, Prato CG, Tscharaktschiew S. The economics of 
workplace charging. Transp Res Part B: Methodol 2016;88:93–118. 

[6] Tsiropoulos I, Siskos P, Capros P. The cost of recharging infrastructure for electric 
vehicles in the EU in a climate neutrality context: factors influencing investments 
in 2030 and 2050. Appl Energy 2022;322:119446. 

[7] Nastjuk I, Marrone M, Kolbe LM. Less is sometimes more – The impact of in-vehicle 
information systems on perceived range stress. In: Proceedings of the 37th 
international conference on information systems; 2016. 

[8] Fridgen G, Thimmel M, Weibelzahl M, Wolf L. Smarter charging: power allocation 
accounting for travel time of electric vehicle drivers. Transp Res Part D: Transp 
Environ 2021;97:102916. 

[9] Jabbari P, MacKenzie D. EV Everywhere or EV Anytime? Co-locating multiple DC 
fast chargers improves both operator cost and access reliability. EVS29 
international battery, hybrid and fuel cell electric vehicle symposium 2016: 
Montreal, Canada. 

[10] Neaimeh M, Salisbury SD, Hill GA, Blythe PT, Scoffield DR, Francfort JE. Analysing 
the usage and evidencing the importance of fast chargers for the adoption of 
battery electric vehicles. Energy Policy 2017;108:474–86. 

[11] Jochem P, Szimba E, Reuter-Oppermann M. How many fast-charging stations do 
we need along European highways? Transp Res Part D: Transp Environ 2019;73: 
120–9. 
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Betrieb von öffentlich zugänglichen Ladepunkten für Elektromobile. April 14, 
2023. Available from: https://www.bmwk.de/Redaktion/DE/Downloads/V/vero 
rdnung-ladeeinrichtungen-elektromobile-kabinettbeschluss.pdf?__blob=publi 
cationFile&v=3. 

[64] eLoaded GmbH. DC Cube 140kW the Power Utility up to 420kW. 2023. 
[65] Lapp UI. GmbH. Safe charging with direct current. April 14, 2023. Available from: 

https://lappconnect.lappgroup.com/en/projects/safe-charging-with-direct-current/. 
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