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Abstract 

As social media has increased the reach and speed of electronic word-of-mouth (eWOM), 
so it has intensified customers’ exposure to negative eWOM. Consequently, companies 
increasingly suffer from massive outbursts of negative eWOM, known as online 
firestorms. Because of their dynamics, it is nearly impossible to stop online firestorms if 
their emergence is not detected promptly. However, well-founded approaches that 
provide automated, real-time detection are missing. We design an Online Firestorm 
Detector that includes an algorithm inspired by epidemiological surveillance systems. 
Real-world data from a firestorm suffered by Coca-Cola is used to prove the utility and 
validity of the proposed approach. We show that online firestorms can be reliably 
detected shortly after the first piece of related negative eWOM has been generated, and 
that the number of false alarms is low. A comparison with competing artifacts shows that 
the Online Firestorm Detector is superior to approaches that could be alternatively used. 

Keywords: Word-of-mouth, social media, online firestorm, information diffusion, design science 
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Introduction 

When prospective customers search for information about products and services, publicly available online 
reviews, ratings, and critiques of fellow consumers are increasingly important (Chen and Xie 2008; 
Dellarocas 2003; Dellarocas et al. 2007; Moon et al. 2010). As more than 85% of online purchases are 
currently driven by such ratings and reviews (Stratus Contact Solutions 2014), this so-called electronic 
word-of-mouth (eWOM) has made social media a particularly important factor in companies’ marketing 
communications (Albuquerque et al. 2012; Faase et al. 2011; Forman et al. 2008). Hence, companies 
support the creation of customer-to-customer interactions in social media channels such as Facebook and 
Twitter (Harris and Dennis 2011; Poynter 2008). Indeed, prior research has shown that positive eWOM 
generated in social media creates tremendous business value (cf. e.g., Goh et al. 2013; Moe and Trusov 2011; 
Rishika et al. 2013). 

However, as social media has massively increased both the reach and speed of eWOM diffusion, so it has 
accelerated and intensified customers’ exposure to negative eWOM. An early famous example of customers 
being exposed to massive negative eWOM is often referred to as “Dell Hell” (Jarvis 2005). On June 21st 
2005, a blogger described his disappointing experience with Dell’s in-home service. Within hours, an 
increasing number of people had read the post, agreed with the blogger, and shared their own negative 
experiences with Dell. This domino effect has been cited as a major factor leading to a steep drop in Dell’s 
customer satisfaction rating, and even its share price (Furfie 2008). This example illustrates the 
considerable risks of eWOM: If the sentiment turns negative, it can spread like a firestorm, leading to a 
considerable loss of customers and damage to the firm’s reputation (Hennig-Thurau et al. 2010; Mochalova 
and Nanopoulos 2014; Pfeffer et al. 2014). Hence, practitioners and researchers coined the term “online 
firestorm”, which can be defined as “[…] the sudden discharge of messages containing negative [e]WOM 
and complaint behavior against a person, company, or group in social media networks” (Pfeffer et al. 2014, 
p. 118). Over recent years, companies from diverse industries have suffered from such online firestorms and 
their negative consequences (cf. Pfeffer et al. 2014).  

With the ability to reach thousands of (potential) customers in a very short time, it is nearly impossible to 
stop the diffusion of negative eWOM if the emergence of an online firestorm is detected too late (Stich et al. 
2014). Hence, a timely intervention is crucial to avoid (in the best case) the actual outburst of an online 
firestorm, or at least to initiate countermeasures as soon as possible (e.g., by showing public regret and 
apologizing, cf. Munzel et al. 2012). Because of the rapid nature and huge volume of eWOM, this can only 
be achieved by automated, real-time detection approaches. However, to the best of our knowledge, there is 
no well-founded approach for the automated, real-time detection of online firestorms in social media. 
Related prior research on sentiment analysis has confirmed the negative economic consequences of 
negative eWOM, but did not focus on the detection of online firestorms, whilst studies in the field of 
information diffusion in social networks focused on simulating the spread of negative eWOM on a user-to-
user path basis. However, the question of when to trigger an alarm if negative eWOM spreads across a 
network has not yet been addressed. 

We therefore design an IS artifact, that is, an Online Firestorm Detector based on an algorithm inspired by 
well-established research on epidemiological surveillance systems. The Online Firestorm Detector’s validity 
and utility are empirically evaluated using real-world data from an online firestorm suffered by Coca-Cola 
on Facebook. Additionally, we substantiate the quality of our Online Firestorm Detector by comparing its 
performance to competing artifacts that could be alternatively used. Thus, we account for changes in online 
customer-to-customer interactions that have been enabled by information systems (IS) (cf. e.g., Libai et al. 
2010) and their potential negative consequences such as online firestorms. This leads to theoretical and 
practical contributions: From a theoretical perspective, we enrich existing IS and marketing literature on 
the analysis of eWOM in social media to avert its potential dark side, demonstrate that research from the 
field of epidemiology can serve as a valid theoretical basis in the context of eWOM diffusion in social media, 
and extend the understanding of online firestorms by showing that negative eWOM is not the only factor 
that should be considered when detecting online firestorms. Thus, we contribute to the growing body of IS 
literature on social media, which has become an intensively researched topic over the last 10 years (cf. e.g., 
Berger et al. 2014; Heidemann et al. 2012; Probst et al. 2013). From a practical perspective, we show that 
common lightweight solutions are unsuitable for the reliable detection of online firestorms in social media, 
and provide a ready-to-use artifact that enables companies to mitigate risks from social media 
engagements. 
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This paper is based on the Design Science Research paradigm, and in particular on the publication schema 
of Gregor and Hevner (2013), which draws on the guidelines of Hevner et al. (2004) and the process model 
of Peffers et al. (2007). We perform five main steps: (1) We have discussed the “purpose and scope” of our 
artifact and its “relevance” to business practice within this introduction. (2) In the next section, we specify 
the problem context in more detail, and present findings from prior empirical research on the economic 
effects of positive and negative eWOM, which further emphasize that the detection of online firestorms 
constitutes an “important and relevant business problem”. Moreover, we focus on relevant existing 
“descriptive and prescriptive knowledge” by discussing related work on the diffusion of eWOM, 
epidemiological surveillance, and anomaly detection, which informs our design process. (3) We then 
present our “design artifact”, referred to as the “Online Firestorm Detector”. (4) Subsequently, we provide 
a “rigorous design evaluation” to demonstrate the validity and utility of the artifact using real-world data. 
The quality of our Online Firestorm Detector is evidenced by a comparison with “competing artifacts” that 
could be alternatively used. Afterwards, we critically “discuss and reflect” on our artifact in terms of its 
contribution, limitations, and future research. (5) Finally, we conclude with a brief summary. 

Problem Context and Related Work 

In this section, we first define the problem context of online firestorms in social media. Second, we provide 
an overview of existing findings from relevant related work within the contexts of information diffusion, 
epidemiological surveillance, and anomaly detection. 

Problem Context: Online Firestorms in Social Media 

Today, social media are the predominant platforms for communication and interaction between companies 
and customers, as well as among customers themselves (Goh et al. 2013; Kietzmann et al. 2011). Prior 
literature has classified social media into six different categories: (Micro-)blogs, online social networks 
(often also called social networking sites), virtual social worlds, collaborative products, content 
communities, and virtual game worlds (Kaplan and Haenlein 2010). Taking their common characteristics 
into account, social media can be defined as a “[…] group of Internet-based applications that build on the 
ideological and technological foundations of Web 2.0, and that allow the creation and exchange of User 
Generated Content” (Kaplan and Haenlein 2010, p. 61). A particularly important part of User Generated 
Content is eWOM, which can be defined as “[...] any positive or negative statement made by potential, 
actual, or former customers about a product or company, which is made available to a multitude of people 
and institutions via the Internet“ (Hennig-Thurau et al. 2004, p. 39). In social media, the underlying 
network is based on technical features that allow users to build online relationships with many other users 
(e.g., Facebook friends) and communicate intensively among one another (e.g., via wallposts and comments 
in Facebook). As a result, users form dense network clusters (Benevenuto et al. 2009; Mislove et al. 2007; 
Wilson et al. 2009). Within these clusters, the information flow is usually relatively constant and 
unrestrained. There is typically a very short period of time until the next piece of information (Pfeffer et al. 
2014), which supports the fast spread of information and provides the fuel for online firestorms (Lotan 
2012). Consequently, an enormous number of people can be reached by eWOM within a short period of 
time (Pfeffer et al. 2014). 

Characteristics of the Diffused Information 

The diffusion of eWOM in social media depends on the characteristics of the information itself (Bampo et 
al. 2008; Goh et al. 2013), such as the type of emotion, sentiment, or level of physiological arousal (Berger 
and Milkman 2012). Negative, traditional word-of-mouth (WOM) has been found to be published more 
often and to influence users stronger than positive WOM (Anderson 1998), because individuals consider 
negative WOM to be more important (Rozin and Royzman 2001). Prior research has shown that individuals 
perceive also eWOM containing negative emotions such as awe, anger, or anxiety as more important and 
credible than positive eWOM (Berger and Milkman 2012). Therefore, eWOM with negative sentiment is 
particularly likely to diffuse more widely and with more extreme consequences than positive eWOM. 
Companies thus stand to suffer serious harm from the outburst of a massive amount of negative eWOM, 
that is, an online firestorm. As Table 1 shows, the existing literature broadly confirms the negative effects 
of eWOM with negative sentiment on economic measures such as revenue and customer cash flows. 
Tirunillai and Tellis (2012) even found that negative eWOM could decrease companies’ stock values.  
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Thus, negative eWOM can become a severe problem, if the overall sentiment toward a company turns 
negative. However, whereas research on the sentiment of eWOM in social media has confirmed the 
importance of avoiding the massive spread of negative eWOM, approaches that enable the automated, real-
time detection of online firestorms have not been investigated in this line of research. 

Table 1. Prior Research on eWOM Sentiment and its Economic Effects  
(adapted from Banz et al. 2015) 

Authors   Context   Economic Measure Pos. eWOM Neg. eWOM 

Chen et al. (2004) Books Sales rank   

Chevalier and Mayzlin (2006) Books Sales rank   

Chintagunta et al. (2010) Movies Revenue   

Dhar and Chang (2009) Music Sales rank   

Duan et al. (2008) Movies Revenue   

Liu (2006) Movies Revenue   

Ludwig et al. (2013) Books Conv. rate    

Moe and Trusov (2011) Beauty products Revenue   

Sonnier et al. (2011) Tech. products Revenue   

Goh et al. (2013) Apparel retailer Revenue   

Tirunillai and Tellis (2012) Tech. products Stock return   

 positive,  negative,  no influence on dependent variable confirmed 

Information Diffusion within Social Media and its Similarity to Epidemics 

Research on information diffusion within social networks is closely related to the study of online firestorms. 
Prior research on the diffusion of eWOM in communication networks studied the so-called “influence 
maximization problem” (cf. Domingos and Richardson 2001). This refers to the combinatorial optimization 
problem of identifying the target set of influential people that maximizes the information cascade in the 
context of viral marketing (cf. also Richardson and Domingos 2002). Based on these studies, Kempe et al. 
(2003, p. 138) investigated two of the “[…] most basic and widely-studied diffusion models” from research 
on the spread of diseases and viruses (epidemiology), that is, the linear threshold (LT) and the independent 
cascade (IC) model (cf. also Chen et al. 2009; Leskovec et al. 2007). In epidemiology, similar to information 
diffusion in social media, both the characteristics of the disease, such as transmission probability or 
complexity (Newman 2002), and “[t]he structures of human contact networks undoubtedly play a crucial 
role in [their transmission]” (Bansal et al. 2007, p. 881). In line with previous research, the spread of 
negative eWOM can be compared to the spreading behavior of pathogenic organisms (cf. e.g., Budak et al. 
2011; Kempe et al. 2003): Negative eWOM (like pathogenic organisms) may be disseminated via (virtual) 
social links between social media users (i.e., humans). The infection rate is thereby highly dependent on the 
characteristics of the diffused information (i.e., emotion such as negativity, the complexity of transmission), 
the underlying network structure (i.e., population density and interconnectedness), and the process of 
attaining information (i.e., the means of transmission through the network). Hence, LT and IC models have 
been intensively applied to model information diffusion in the context of social media (for an overview cf. 
Probst et al. 2013). Thereby, the main focus has been to identify an initial set of influential users that 
maximize the spread of usually positive eWOM (cf. Probst et al. 2013). A few studies have extended these 
models to analyze the emergence and propagation of negative opinions, as “[t]he problem of limiting the 
effect of misinformation in a social network can be seen as similar to the problem of epidemics […]” (Budak 
et al. 2011, p. 666). For instance, Chen et al. (2011) extended the LT model to simulate the natural behavior 
of people turning negative. Another study used the LT model to block the spread of a rumor in a network 
by selecting the right nodes and “injecting” the opposing opinion (He et al. 2012). Related work employed 
an extended IC model to identify users who are not surrounded by negatively influenced users in order to 
stop or restrict the spread of an online firestorm (Mochalova and Nanopoulos 2013; Stich et al. 2014). Taken 
together, existing research shows that the diffusion of negative eWOM in social media can be simulated and 
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influenced on a user-to-user path basis. However, the simulation of diffusion paths is not sufficient to 
trigger an alarm if some critical threshold of negative eWOM in an entire network is exceeded. Hence, these 
models do not allow for the automated, real-time detection of online firestorms. 

Anomaly Detection 

Whereas research on the diffusion of information within social media focuses on user-to-user paths, the 
field of anomaly detection provides approaches that allow the criticality of information diffusion to be 
investigated from a global perspective. In general, early detection is based on signal detection theory (cf. 
e.g., Kay 1998) and decision theory (cf. e.g., Von Neumann and Morgenstern 1947), whereas anomaly 
detection approaches address the specific “[…] problem of finding patterns in data that do not conform to 
expected behavior” (Chandola et al. 2009, p. 1). Classification-based anomaly detection techniques (e.g., 
Bayesian networks, rule-based systems, nearest neighbor-based techniques) operate under the assumption 
that a classifier is able to “[…] distinguish between normal and anomalous [instances]” (Chandola et al. 
2009, p. 19). For example, Bayesian networks estimate the posterior probability of an instance belonging 
to a normal or anomalous class (e.g., Wong and Cooper 2003). Rule-based systems determine a priori rules 
for understanding normal behavior and classifying instances that are not covered by these rules as 
anomalous (e.g., Agarwal 2005). Anomaly detection techniques using nearest-neighbor analysis classify 
instances according to their similarity or distance to classified instances (e.g., Lin et al. 2005). However, 
these existing anomaly detection techniques cannot be easily transferred to the detection of online 
firestorms in social media. First, these techniques are highly contextual in nature (Chandola et al. 2009), 
that is, approaches that work well in one context may perform poorly in a context such as eWOM in social 
media. Second, the detection of online firestorms requires the analysis of time-series data, which raises 
several statistical challenges such as seasonal and trend components that are not accounted for in the 
abovementioned approaches. 

In contrast to classification-based techniques, parametric statistical anomaly detection (cf. e.g., Horn et al. 
2001; Laurikkala et al. 2000) assumes that anomalous observations are not generated by the same 
stochastic model as normal observations (Anscombe and Guttman 1960; Brown 1971). Parameters for the 
underlying parametric model are estimated from normal data instances, and anomalous instances are 
classified, for instance, by applying hypothesis tests or evaluating instances against some threshold 
(Chandola et al. 2009). Other common procedures for detecting contextual anomalies (such as negative 
eWOM) also build on statistical, regression model-based techniques (cf. Chandola et al. 2009), which have 
been extensively investigated for time-series data (e.g., Fox 1972). The basic idea consists of two steps (cf. 
Chandola et al. 2009): First, a regression model is fitted; second, the residual for each test instance is used 
to determine the so-called anomaly score (cf. Anscombe and Guttman 1960). Based on this general 
principle, Farrington et al. (1996) described the “[…] standard reference method, routinely used […]” 
(Guillou et al. 2014, p. 5026) that allows viral outbreaks of epidemics to be detected (cf. e.g., Freeman et al. 
2013; Guillou et al. 2014). In contrast to other epidemiological surveillance approaches, Farrington et al. 
(1996) developed a general outbreak detection system. That is, without loss of general validity, the 
algorithm reliably performs on “[…] a very diverse range of organisms with different frequencies, trends 
and seasonality and […] can be completely automated” (Noufaily et al. 2013, p. 1206). This is due to the fact 
that it focuses on general outbreaks, neglecting additional complexity (e.g., special, clustering). By virtue of 
its reliability and generalizability, the Farrington algorithm is actively used in several countries as part of 
their public health surveillance programs (Freeman et al. 2013; Hulth et al. 2010). Recently, Noufaily et al. 
(2013) improved the original algorithm by extending the period of the input data used in the regression 
analysis and adapting the re-weighting of unusual observations in the historical data used to forecast the 
expected development. These modifications brought about a substantial reduction in the false positive rate 
(i.e., type I errors) (Freeman et al. 2013). Hence, we base the design of our novel algorithm for the detection 
of emerging online firestorms on techniques for the early detection of outbreaks of infectious diseases.  
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Design of the Online Firestorm Detector 

The proposed Online Firestorm Detector comprises three successive steps: (A) Monitoring social media and 
collecting eWOM, (B) conducting a sentiment analysis, and (C) detecting the emergence of online firestorms 
(cf. Figure 1). In step (A), the Online Firestorm Detector must perform the real-time monitoring and 
collection of company-related eWOM generated across social media. For most social media, publicly 
available application programming interfaces (APIs) can be utilized (cf. prototype in the following section). 
In step (B), the Online Firestorm Detector analyzes the sentiments of the collected eWOM. This is effectively 
a “[…] computational study of people’s opinions, appraisals, attitudes, and emotions toward entities, 
individuals, issues, events, topics and their attributes” (Liu and Zhang 2012, p. 415). Hence, the polarity of 
an opinion expressed in a given text unit (e.g., wallpost/comment on Facebook) can be identified (Thet et 
al. 2010), and the sentiment can be classified into categories such as “positive,” “negative,” and “neutral” 
(Kennedy 2012). In step (C), the actual emergence of an online firestorm must be detected. Whereas for 
steps (A) and (B) existing techniques can be leveraged, the detailed design of the novel algorithm utilized 
in step (C) is presented in the following. 

 

Figure 1. Main Steps of the Online Firestorm Detector 

As outlined in the previous section, there are no existing approaches for the automated, real-time detection 
of the emergence of online firestorms. However, related problems have been researched in the field of 
epidemiological surveillance systems (cf. previous section). As emphasized by Gregor and Hevner (2013, p. 
347), it is common in IS research that “[…] effective artifacts may exist in related problem areas that may 
be adapted or, more accurately, exapted to the new problem context”. Therefore, our novel algorithm for 
the detection of emerging online firestorms builds on prior work on the early detection of outbreaks of 
infectious diseases by Farrington et al. (1996), which was further improved by Noufaily et al. (2013). We 
selected these specific algorithms for three reasons. First, the generalizability of the Farrington algorithm 
(cf. previous section) is an important factor in the context of online firestorms, as they are highly context-
sensitive (e.g., depending on the company, topic, and so on). Second, the Farrington algorithm is highly 
reliable, and has been practically validated in many different contexts (e.g., different countries, different 
viruses). As a single online firestorm can significantly reduce a company’s value (cf. discussion in the 
previous section), this reliability is of utmost importance in the context of online firestorms. Third, the 
improvements made by Noufaily et al. (2013) have ensured that very few false alarms (type I errors) occur. 
This is particularly important, as “[t]he optimal level of sensitivity relative to specificity depends on the 
consequences of false alarms and the benefits of true alarms. These consequences are not fundamental 
properties of the detection method itself, but are specific to the use to which the detection method is being 
applied” (Wagner et al. 2001, p. 52). In the case of online firestorms, this means that a small delay (of the 
order of a couple of seconds) in detection time might be acceptable, whereas a high number of false alarms 
would significantly decrease confidence in the firestorm detection and cause alarms to receive less attention 
over time. Moreover, each time a false alarm was raised, unnecessary resources would be used to check 
whether it was in fact correct. The general algorithm behind the Online Firestorm Detector is depicted in 
Figure 2. 

Monitoring Social Media 
and Collecting eWOM

Conducting Sentiment 
Analysis

Detecting the Emergence 
of Online Firestorms

A B C
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Figure 2. Overview of the Three Phases of the Online Firestorm Detection Algorithm 

As shown in Figure 2, step (C) of the Online Firestorm Detector consists of three phases. In the first, the 
detector preprocesses data and checks whether a sophisticated prediction based on Poisson regression 
models can be applied, or whether the volume of eWOM in the periods under investigation has been too 
low. If a prediction can be made, the second phase of the algorithm identifies the best-fitting Poisson model. 
For this, a defined number of past periods are taken into account, and the algorithm runs several  
(un-)weighted Poisson regressions with and without a trend component. In the third phase, the best-fitting 
model is used to predict the expected volume of negative and overall eWOM for a defined future period and 
to calculate thresholds (to a predefined confidence level). If the actual volume of overall and negative eWOM 
exceeds these thresholds at any point in time within this future period, an alert is triggered. The detailed 
design of all three phases is described in the following. 

Phase 1: Preprocessing Data 

To analyze whether an online firestorm is emerging in the current period 𝑡0, we must first quantify the 
number of messages (i.e., volume of negative eWOM) in each past (micro-)period 𝑡𝑖 , where  
𝑖 = −𝑛, −𝑛 + 1, … , −2, −1, of length ∆𝑡. To do so, the algorithm counts the previously observed, collected, 

and analyzed (discrete) number of negative eWOM 𝐶𝑖
neg

∈ ℕ0∀𝑖. We consider the overall volume of eWOM 

𝐶𝑖
all ∈ ℕ0 ∀𝑖 as well as the volume of negative eWOM. This is justified as follows: First, as the proposed 

approach aims to detect the outburst of online firestorms, we intuitively include negative eWOM to capture 
the cause of the online firestorm. Second, we incorporate a measure for the reach of negative eWOM, as the 
overall activity (total eWOM) on a company’s fan page — whether negative, neutral, or positive — raises 
attention on all content published on the fan page. Therefore, the reach of negative eWOM increases with 
the volume of total eWOM. If both the volume of total and negative eWOM exceeds a certain threshold (cf. 
Phase 3), an online firestorm becomes likely. Figure 3 visualizes the time periods considered by the 
algorithm to predict the expected volume of overall and negative eWOM. 
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Figure 3. Visualization of Considered Time Periods 

The second phase of the algorithm predicts the expected volume of overall and negative eWOM in the 
defined future time period 𝑡0. However, to yield reliable statistics and avoid rank deficiency within machine 

precision, the second phase of the algorithm is only executed if at least q percent of all 𝐶𝑖
all and 𝐶𝑖

neg
 are non-

zero. Otherwise, the algorithm jumps directly to the third phase, and applies a default threshold to detect 
the emergence of an online firestorm (cf. Figure 2). 

Phase 2: Predicting the Expected Volume of Overall and Negative eWOM 

As the following steps are performed for overall and negative eWOM, we define 𝑣 ∈ {all, neg} and introduce 
a further variable 𝐶𝑖

𝑣 ∈ ℕ0∀𝑖, 𝑣 referring to either the overall or negative eWOM to simplify the notation. 

After determining the two time series 𝐶𝑖
𝑣 of overall and negative eWOM, we predict the expected volume 𝐶̂0

𝑣 
for the future period 𝑡0 . Therefore, we assume 𝐶𝑖

𝑣  to be Poisson distributed with mean 𝜇𝑣 ∀𝑣  and 
variance 𝜙𝑣𝜇𝑣 ∀𝑣. This is in line with prior work predicting aspects of human activity (Malmgren et al. 
2009), such as the purchase of consumer goods (Ehrenberg 1972; Fader et al. 2005; Schmittlein et al. 1987) 
and the spread of diseases (Farrington et al. 1996; Noufaily et al. 2013). The transferability of this concept 
to the context of online communication behavior should be discussed critically (Malmgren et al. 2009), as 
circadian cycles (that is, for example, some people’s habit of only answering e-mails in the morning and the 
evening) have been reported to lead to heavy-tailed power-law distributions of inter-communication times 
(Malmgren et al. 2009). However, many studies have confirmed the applicability of a homogeneous Poisson 
process for modeling repeated communication behavior within these cycles, that is, for the above example, 
while being in one e-mail answering session (e.g., in the morning) (Malmgren et al. 2009). Because online 
firestorms emerge quickly and the window of opportunity for initiating countermeasures is very small (cf. 
previous section), only a relatively small number n of foregoing periods with a relatively short length ∆𝑡 are 

considered when predicting the expected volume 𝐶̂0
𝑣 for the future period 𝑡0. In line with prior research 

(e.g., Probst 2011), we therefore assume that social media users are in one cycle while generating eWOM in 
the considered periods. Note that by taking only the direct foregoing periods into account, we implicitly 
consider seasonal variations in both volume and sentiment. 

Based on the Poisson assumption, the algorithm identifies the most suitable Poisson model using the last 𝑛 
periods. The identified model is then used to forecast the overall number of eWOM as well as the number 
of negative eWOM for the future period 𝑡0, allowing the corresponding thresholds to be calculated. In line 
with Farrington et al. (1996) and Noufaily et al. (2013), we apply the following regression equation: 

 log( 𝐸[𝐶𝑖
𝑣]) = log (𝜇𝑣) = 𝛼𝑣 + 𝛽𝑣 ∗ 𝑡𝑖      ∀𝑖 , (1) 

where 𝛼𝑣  is a constant, 𝛽𝑣  denotes the trend, and 𝑖 is a control variable for all parameters of the last 𝑛 

periods. For an accurate prediction of the expected volume of eWOM 𝐶̂0
𝑣 in the future period 𝑡0, we must 

identify the most suitable Poisson regression model using maximum likelihood estimation. This selection 
procedure is iterative, and is performed two or four times in accordance with Noufaily et al. (2013) (cf. 

time

nt 1nt
2t 1t 0t

∆t ∆t ∆t ∆t ∆t
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all

nC

neg
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1nC

neg

2C
neg

1C

neg

0C

all
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2C

all

1C

all
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Figure 2). The first, unweighted Poisson regression (i.e., the first iteration) is required to identify potential 
outliers, whose errors are down-weighted in the Maximum Likelihood estimation of the second, weighted 
Poisson regression (i.e., second iteration). This second iteration is used to examine whether the trend 
component 𝛽𝑣 is significant (e.g., p-value < 0.05), and leads to a realistic prediction. In line with Noufaily 
et al. (2013), we assume every prediction to be unrealistic if it is smaller than min

𝑖=−𝑛,…,−1
𝐶𝑖

𝑣  or greater than 

max
𝑖=−𝑛,…,−1

𝐶𝑖
𝑣 . In both cases (i.e., insignificant and/or unrealistic predictions), we perform a third, unweighted 

Poisson regression without a trend component (i.e., third iteration) to identify the outliers, which are again 
down-weighted in a weighted Poisson regression without considering the trend component (i.e., fourth 
iteration). 

In the second and fourth iterations, the down-weighting procedure on the identified outliers is achieved 
with weights 𝜔𝑖

𝑣 based on the Anscombe residuals (cf. Davison and Snell 1991), ensuring that values 𝐶𝑖
𝑣 with 

high residuals receive low weights and vice versa. To this end, the dispersion parameter 𝜙𝑣 is estimated as: 

 𝜙̂𝑣 = 𝑚𝑎𝑥 {
1

𝑛−𝑝𝑣
∑ 𝜔𝑖

𝑣 (𝐶𝑖
𝑣−𝐶̂𝑖

𝑣)
2

𝐶̂𝑖
𝑣

𝑛
𝑖=1 , 1} ,    𝜙̂𝑣 ≥ 1 , (2) 

where 𝑝𝑣 = {1; 2} denotes the degrees of freedom, which depend on whether a time trend is fitted (cf. 

Noufaily et al. 2013). The values of 𝐶̂𝑖
𝑣 represent the fitted values, which are obtained by 𝐶̂𝑖

𝑣 = 𝑒𝛼𝑣+𝛽𝑣∗𝑡𝑖. The 
weights 𝜔𝑖

𝑣 are computed by: 

 𝜔𝑖
𝑣 = {

𝛾𝑣(𝑠𝑖
𝑣)−2, 𝑠𝑖

𝑣 > 1

𝛾𝑣    , otherwise
  , (3) 

where 𝛾𝑣 is a constant such that ∑ 𝜔𝑖
𝑣 = 𝑛 ∀𝑣−𝑛

𝑖=−1 , and 𝑠𝑖
𝑣 are the scaled Anscombe residuals, defined by: 

 𝑠𝑖
𝑣 = 𝐴𝑛𝑠𝑐𝑜𝑚𝑏𝑒 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 ∗ 𝑠𝑐𝑎𝑙𝑎𝑟 =  

3(𝐶𝑖
𝑣2/3

−𝐶̂𝑖
𝑣2/3

)

2𝐶̂𝑖
𝑣1/6 ∗

1

𝜙̂𝑣1/2
(1−ℎ𝑖𝑖

𝑣 )
1/2 , (4) 

where ℎ𝑖𝑖
𝑣  are the elements of the trace of the hat matrix.  

The scaled Anscombe residuals, dispersion parameter, and weights are necessary to identify the most 
suitable Poisson model, from which the constant 𝛼𝑣  and the trend component 𝛽𝑣  can be inferred. The 
algorithm continues by calculating the expected volumes of overall and negative eWOM in the future period 
𝑡0 by applying the following formula: 

 𝐶̂0
𝑣 = e𝛼𝑣+𝛽𝑣∗𝑡0. (5) 

Phase 3: Calculating Thresholds and Checking whether to Raise an Alarm 

If the actual volume of eWOM 𝐶0
𝑣 in the future period 𝑡0 exceeds the threshold 𝑇𝑣, the algorithm raises an 

alarm about the (statistical) emergence of an online firestorm.  

To correct the skewness in the Poisson-distributed counts, we apply a 2/3 power transformation (cf. 
Farrington et al. 1996; Noufaily et al. 2013). Thus, we have an approximately symmetric distribution, and 
can derive accurate thresholds. The threshold 𝑇𝑣 is an approximate 100(1 − 𝛼)% quantile for 𝐶0

𝑣, where 𝑧𝛼  
is the 100(1 − 𝛼) percentile of the standard normal distribution with 𝛼 ∈ (0; 1). However, if the check in the 
first phase has shown that less than q percent of all 𝐶𝑖

𝑣 are non-zero, the threshold is set to a default value 

𝑇default
𝑣 ∈ ℝ+. This value is equal to the value from the period prior to 𝑡0. Hence, whenever it is not possible 

to determine (statistically) reliable thresholds, the previously calculated threshold remains valid. It could 
be argued that this increases the efficiency of the Online Firestorm Detector, as no update of previously 
calculated thresholds is required in periods of low activity. When the default threshold is required in the 
first iteration after the Online Firestorm Detector has been activated, we set it to the average eWOM level 

over the past n (micro-)periods, that is, 
∑ 𝐶𝑖

𝑣−1
𝑖=−𝑛

𝑛
. Taken together, the threshold 𝑇𝑣 is defined as: 

 𝑇𝑣 = {
𝐶̂0

𝑣 [1 + 2/3𝑧𝛼
1

𝐶̂0
𝑣 (𝜙̂𝑣𝐶̂0

𝑣 + 𝑣𝑎𝑟(𝐶̂0
𝑣))]

3
2⁄

, ∑ 1{𝐶𝑖
𝑣>0}

−1
𝑖=−𝑛 ≥ 𝑞𝑛

𝑇default
𝑣 ,  otherwise

 . (6) 
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After both 𝑇all  and 𝑇neg  (for the overall and negative eWOM, respectively) have been calculated, the 

algorithm determines the actual overall volume 𝐶0
all and negative volume 𝐶0

neg
 of eWOM within the period 

𝑡0 to check whether the thresholds are exceeded. It is important to note that the alarm can be raised at any 
point in time, and not just at the end of every period ∆𝑡. As discussed before, our algorithm relies on both 
the volume of negative eWOM and the overall volume of eWOM to control for the level of attention on the 
fan page. This decreases the frequency of false alarms (type I errors), which might decrease the 
trustworthiness of the Online Firestorm Detector and lead to its warnings receiving less attention over time. 
However, the algorithm needs to be sensitive enough to detect online firestorms as soon as possible. 

Accounting for this trade-off, the algorithm raises an alarm if both the overall volume 𝐶0
all and negative 

volume 𝐶0
neg

 eWOM in the future period 𝑡0 exceed the thresholds 𝑇all and 𝑇neg, respectively:  

 𝐴𝑙𝑎𝑟𝑚 = {
1,  𝐶0

all > 𝑇all  ∧ 𝐶0
neg

> 𝑇neg

0,  otherwise
, (7) 

where 𝐴𝑙𝑎𝑟𝑚 ∈ {0; 1} denotes a dummy variable indicating whether an online firestorm alarm is raised 
(𝐴𝑙𝑎𝑟𝑚 = 1) or not (𝐴𝑙𝑎𝑟𝑚 = 0). At this stage, all responsible stakeholders (e.g., social media managers) 
could receive an alert via numerous possible channels (e.g., e-mail, SMS, phone-call). 

Demonstration and Evaluation 

In this section, we demonstrate the applicability of our proposed Online Firestorm Detector and evaluate 
its performance to “[…] measure how well the artifact supports a solution to the problem” (Peffers et al. 
2007, p. 56). For this purpose, we implemented a prototype based on the software design paradigm of 
service-oriented architectures (cf. Papazoglou and Van Den Heuvel 2007). Hence, the prototype consists of 
several modules with clearly defined interfaces. Individual modules can be incrementally modified, 
maintained, or expanded if requirements or features change over time (e.g., to monitor different social 
media platforms or to conduct varying sentiment analyses). The three steps of the Online Firestorm 
Detector and the related implemented modules are illustrated in Figure 4. 

 

Figure 4. Main Steps and Corresponding Modules of the Online Firestorm Detector 

To empirically evaluate the proposed approach, we require a past online firestorm that meets three criteria: 
First, the outburst of negative eWOM must be in line with the definition of online firestorms provided by 
Pfeffer et al. (2014). Second, the online firestorm should be large enough or have sufficient press coverage 
(i.e., reporting in channels outside of social media) to substantiate its impact. Third, the social media 
presence of the company had to be (generally) highly penetrated by eWOM, so that manual surveillance 
was inapplicable, and automated, real-time detection was therefore reasonable. Considering all three 
criteria, the authors manually investigated news portals and mutually agreed that the online firestorm 
suffered by Coca-Cola on its Facebook page (/cocacola) was suited to our purposes. Additionally, we 
examined the reason for the online firestorm (controversial commercial featuring “America the Beautiful” 
during Super Bowl XLVIII) and the point at which it started (i.e., time when the first related negative eWOM 
was created: February 3rd 2014, 00:50 GMT). For demonstration and evaluation, we consider the three 
months before (“pre-firestorm-era”) and one month after the beginning (“post-firestorm-era”). The pre-
firestorm-era allows the frequency of false alarms (type I errors) to be evaluated, and the post-firestorm-
era allows the duration until the online firestorm was detected to be measured. 
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Step (A): Monitoring Social Media and Collecting eWOM 

As outlined above, the Online Firestorm Detector must first monitor and collect company-related eWOM 
generated across social media in real time. Therefore, the prototype implemented for the demonstration 
and evaluation of the Online Firestorm Detector contains a module that allows eWOM to be retrieved from 
Facebook, as this is a particularly important source of eWOM (cf. e.g., Berger et al. 2014; Heidemann et al. 
2012). In general, the module was implemented in Java using the external library “RestFB” for connecting 
to the Facebook API, authorizing (via “OAuth”), and processing the returned data (“JSON” format). As a 
result, a unique ID, timestamp, and the content of each eWOM (i.e., the message) can be extracted (i.e., 
wallposts and related comments from a company’s fan page). Thus, the module allows for the extraction of 
all past data and the continuous collection of wallposts and comments (i.e., eWOM) from a company’s 
Facebook fan page (in this case, /cocacola). Table 2 presents the number of overall eWOM for both the 
(three-month) pre-firestorm-era and the (one-month) post-firestorm-era. The daily mean and standard 
deviation (SD) for both eras are also shown. It can be observed that the mean and standard deviation rise 
considerably after the beginning of the online firestorm (cf. Table 2). 

Table 2. Summary Statistics for Step (A) of the Online Firestorm Detector 

Number of Overall eWOM  Mean (SD) of Overall eWOM per Day 

Pre-firestorm-era Post-firestorm-era  Pre-firestorm-era Post-firestorm-era 

51,909 27,669  559.5 (664.4) 936.8 (1080.8) 

Step (B): Conducting Sentiment Analysis 

Step (B) complements the existing unique ID, timestamp, and content of each piece of eWOM by a flag 
indicating whether the eWOM is of negative sentiment (cf. previous section). For the prototype 
implementation, we created a module in Java utilizing the API of the Free Natural Language Processing 
Service (loudelement.com), which allows eWOM to be classified as “negative,” “neutral,” or “positive.” We 
chose this particular provider based on four requirements. First, whole text and not only single words 
should be classified. Second, multiple languages should be supported. Third, the service had to be free of 
cost for the prototype to meet budget constraints. Fourth, the reliability of the sentiment analysis had to be 
sufficient. To assess the quality of sentiment analysis tools, evaluation datasets can be used (cf. e.g., Saif et 
al. 2013). Therefore, we applied the Free Natural Language Processing Service to a manually classified 
dataset that has been used in previous research on eWOM in social media (cf. Scholz et al. 2013). The quality 
of the resulting classification was assessed as being sufficient. As we are only interested in flagging negative 
eWOM, we did not distinguish between neutral and positive sentiment. While the sentiment analysis 
provider executes the classification, the module is able to receive eWOM collected in step (A) and to serve 
step (C) with the classified results (negative or not negative) via defined interfaces. In the future, further 
(proprietary) sentiment analysis tools (e.g., SPSS Clementine) could be integrated to provide multiple 
sentiment analysis results, which would help to minimize the likelihood of incorrect classifications. We 
applied the module to the eWOM collected from the Coca-Cola Facebook fan page to analyze its sentiment. 
As we can see from Table 3, about 9% of the overall eWOM from the pre-firestorm-era is classified as 
negative. In the post-firestorm-era, this number increases to over 16%. Furthermore, we can observe that 
both the mean and standard deviation of the daily negative eWOM increase. 

Table 3. Summary Statistics for Step (B) of Online Firestorm Detector 

Number of Negative eWOM 

(% of overall eWOM) 

 Mean (SD) of 

Negative eWOM per Day 

Pre-firestorm-era Post-firestorm-era  Pre-firestorm-era Post-firestorm-era 

4,551 (8.77%) 4,520 (16.33%)  49 (23.2) 152 (382.1) 
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Step (C): Detecting the Emergence of Online Firestorms 

The actual calculation in step (C) was implemented within MATLAB. Before applying the Online Firestorm 
Detector, we had to initialize its three main parameters: 

Length of (micro-)period ∆𝑡: A necessary condition for the early detection of an online firestorm is the 
continuous surveillance of ongoing activity in terms of generated eWOM. However, there is a trade-off 
between shorter and longer (micro-)periods 𝑡𝑖. On the one hand, the shorter the length of ∆𝑡, the better the 
consideration of short-term variations in both overall and negative eWOM. On the other hand, the 
corresponding overall and negative eWOM counts 𝐶𝑖

𝑣  become (on average) very small, leading to lower 
default thresholds and a higher volatility between the (micro-)periods’ overall and negative eWOM. In 
interviews with experts from business practice, the average time from the detection of an online firestorm 
until effective countermeasures must be implemented has been identified as 7 min. Therefore, we selected 
a lower default value of ∆𝑡 = 5 min. However, to evaluate the Online Firestorm Detector’s robustness, we 
also applied ∆𝑡 = 15 min and ∆𝑡 = 60 min.  

Number of (micro-)periods n: There is also a trade-off when choosing the number of (micro-)periods 𝑛. On 
the one hand, a prediction based on fewer periods may consider seasonality, but more periods may improve 
the statistical explanatory power of the prediction. Considering this, we selected a default value of 𝑛 = 30, 
and also applied 𝑛 = 15 and 𝑛 = 45 to verify the Online Firestorm Detector’s robustness.  

Probability of error 𝛼: The third parameter to be determined is the probability of error 𝛼. Again, although 
a lower probability of error reduces false alarms, there is a trade-off because this will lower the probability 
of detecting the emergence of an online firestorm. As suggested in the literature on epidemiological 
surveillance, we applied a default value of 𝛼 = 0.05 (Freeman et al. 2013; Noufaily et al. 2013). We varied 
this parameter to 𝛼 = 0.01 and 𝛼 = 0.10, which are common levels of significance. 

Besides these three main parameters, we must determine a value for q, that is, the percentage of zeros that 
determines whether a new threshold is calculated. We set q = 25% to increase the likelihood of nonsingular 
and well-conditioned matrices, and to increase the Online Firestorm Detector’s efficiency. As variations in 
q had little effect on the Online Firestorm Detector’s results, we do not include them here. However, the 
authors are happy to share these results upon request. Based on the collected and classified eWOM, the 
Online Firestorm Detector executed the three phases of the detection algorithm (cf. Figure 2). In the first 
phase, that is, the preprocessing of the data, the algorithm counts the number of overall and negative eWOM 
generated during the last 𝑛 (micro-)periods. As outlined in the previous section, the algorithm applies the 

default thresholds 𝑇default
all  and 𝑇default

neg
 (i.e., the previously calculated thresholds) if the activity in the 

previous periods has been too low (here: in less than 25% of the n last (micro-)periods any eWOM has been 
generated) to determine (statistically) reliable new thresholds for the future period 𝑡0. This helps to increase 
the efficiency of the algorithm, as it removes the need to fit the Poisson models in periods of low activity, 
thus reducing the computation time. In the second phase, the algorithm predicts the expected volume of 
overall and negative eWOM by applying Formulas (1)–(5). In the third phase, new thresholds are calculated 
based on Formula (6). Furthermore, the Online Firestorm Detector continuously determines the actual 

volume of overall 𝐶0
all and negative 𝐶0

neg
 eWOM within the future period 𝑡0 to check whether the thresholds 

are likely to be exceeded. Based on Formula (7), the algorithm raises an alarm as soon as both the volume 

of overall 𝐶0
all and negative 𝐶0

neg
 eWOM reach the respective thresholds 𝑇all and 𝑇neg. 

As shown in Table 4, regardless of the chosen parameters (∆𝑡, 𝑛, and 𝛼), our proposed Online Firestorm 
Detector reliably detected the outbreak of Coca-Cola’s online firestorm 46–79 s after the first firestorm-
related eWOM. In the default setting, the online firestorm was detected within 60 s. The number of false 
alarms (type I errors) was low (from 1–17 during the three months of the pre-firestorm-era, cf. Table 4). In 
the default setting, only one false alarm was raised before the actual outburst after three months of 
observation. Regarding the Online Firestorm Detector’s sensibility to variations in the parameter settings, 
Table 4 shows that variations in the length of (micro-)periods ∆𝑡 and in the number of (micro-)periods 𝑛 
had a very small influence on the time until the online firestorm was detected. At the same time, the number 
of false alarms increased with the length and number of (micro-)periods, as the thresholds were less 
frequently adapted and variations of eWOM over time were less well accounted for. With respect to the 
probability of error α, we can observe the intuitively expected behavior of a reduction in detection time and 
an increasing number of false alarms as the probability of error increased. Taken together, the variations in 
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the parameters summarized in Table 4 show that the Online Firestorm Detector is robust to parameter 
changes and its results are reliable. 

Table 4. Summary Statistics for Step (C) of the Online Firestorm Detector 

 

𝑛 = 15 𝑛 = 30 𝑛 = 45 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

∆𝑡 = 5 min 
time elapsed1 60 54 46 71 60 54 72 60 54 

type I errors2 1 2 5 1 1 3 1 1 2 

∆𝑡 = 15 min 
time elapsed1 60 54 46 72 60 54 73 60 54 

type I errors2 2 6 17 2 3 11 2 2 7 

∆𝑡 = 60 min 
time elapsed1 73 60 54 73 60 60 79 71 60 

type I errors2 5 18 63 5 11 36 5 10 22 

1 Duration between first firestorm-related eWOM and alarm in seconds  
2 Number of false alarms during the pre-firestorm-era 
  Online Firestorm Detector’s default parameters and related results highlighted in grey 

Competitive Benchmarking 

As mentioned before, we know of no alternative approaches for the detection of online firestorms from prior 
research (so-called “competing artifacts”, Hevner et al. 2004). Thus, a comparison against existing scientific 
approaches is not possible. Instead, we evaluate the Online Firestorm Detector against two potential rules 
of thumb (i.e., thresholds based on the mean and maximum of eWOM within the last 𝑛 periods), as well as 
against a straightforward linear regression estimation. To underpin the need for both the sentiment analysis 
in step (B) and the decision to consider negative as well as total eWOM within step (C), we provide two 
further internal benchmarks by varying our Online Firestorm Detector.  

First, it may appear appropriate to rely solely on descriptive statistics of past negative eWOM, for example, 
using the mean or maximum value of past eWOM as a threshold and triggering an alarm as soon as the 
actual number of negative eWOM exceeds the respective mean or maximum from the last period. To allow 
for a fair comparison, we decided to keep the underlying parameters (i.e., ∆𝑡 and 𝑛) unchanged. Looking at 
Table 5, regardless of variations in ∆𝑡 and 𝑛, both the mean and maximum approach detect the outbreak of 
the online firestorm within 60 s. However, the several hundred false alarms (cf. Table 5) are not acceptable. 
Thus, considering the crucial trade-off between detection time and false alarms (cf. e.g., Wagner et al. 2001), 
the Online Firestorm Detector performs considerably better than common rules of thumb that could 
alternatively be used. 

Table 5. Summary Statistics for the Mean/Maximum Benchmark 

 
𝑛 = 15 𝑛 = 30 𝑛 = 45 

Mean Max Mean Max Mean Max 

∆𝑡 = 5 min 
time elapsed1 30 31 30 31 30 31 

type I errors2 2,464 395 2,457 223 2,456 160 

∆𝑡 = 15 min 
time elapsed1 30 32 30 46 30 46 

type I errors2 1,421 313 1,403 182 1,388 137 

∆𝑡 = 60 min 
time elapsed1 31 60 30 60 30 60 

type I errors2 295 154 298 89 285 69 
1 Duration between first firestorm-related eWOM and alarm in seconds  

2 Number of false alarms during the pre-firestorm-era 

Second, to challenge the Online Firestorm Detector, we used linear regression estimation instead of the 
adapted (iterative) Poisson model. To enable a fair comparison, we again decided to keep the common 
parameters (i.e., ∆t, n, and α) unchanged. As depicted in Table 6, the online firestorm was detected 
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within 79 s, although up to 673 false alarms were raised. Considering the crucial trade-off between detection 
time and false alarms (cf. e.g., Wagner et al. 2001), the Online Firestorm Detector therefore performs 
considerably better than a linear regression procedure that could alternatively be used. 

Table 6. Summary Statistics for the Linear Regression Benchmark 

 

𝑛 = 15 𝑛 = 30 𝑛 = 45 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

∆𝑡 = 5 min 
time elapsed1 30 30 30 30 30 30 30 30 30 

type I errors2 77 279 544 108 369 624 135 393 673 

∆𝑡 = 15 min 
time elapsed1 31 31 30 32 31 31 32 31 31 

type I errors2 36 165 319 54 190 344 66 207 356 

∆𝑡 = 60 min 
time elapsed1 79 60 46 71 46 40 71 46 40 

type I errors2 25 77 142 23 74 124 19 61 111 
1 Duration between first firestorm-related eWOM and alarm in seconds  

2 Number of false alarms during the pre-firestorm-era 

Third, it may seem feasible to skip the sentiment analysis within step (B) and rely on (unclassified) total 
eWOM within the novel algorithm utilized in step (C). As shown in Table 7, with the same common 
parameter values (i.e., ∆t, n, and α), both the detection time and the number of false alarms increased 
considerably. These results emphasize the need to consider the sentiment of eWOM, and thus the sentiment 
analysis within step (B). 

Table 7. Summary Statistics Considering Solely Total eWOM 

 

𝑛 = 15 𝑛 = 30 𝑛 = 45 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

∆𝑡 = 5 min 
time elapsed1 73 60 54 60 71 83 60 71 83 

type I errors2 29 140 409 24 73 209 20 47 139 

∆𝑡 = 15 min 
time elapsed1 90 79 71 117 83 79 127 90 80 

type I errors2 48 188 415 32 110 259 27 77 192 

∆𝑡 = 60 min 
time elapsed1 183 166 157 171 163 155 200 169 163 

type I errors2 82 181 237 46 118 168 32 89 152 

1 Duration between first firestorm-related eWOM and alarm in seconds  

2 Number of false alarms during the pre-firestorm-era 

We also benchmarked the proposed approach against an adapted approach that considers only negative 
eWOM. Again, the common parameters (i.e., ∆t, n, and α) were kept the same. As shown in Table 8, the 
detection times were similar to those in the proposed approach. However, the number of false alarms 
generally increased. Even though these results might look promising at first sight, those from the proposed 
approach were significantly better in terms of false alarms (p-value: 0.014).   
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Table 8. Summary Statistics Considering Solely Negative eWOM 

 

𝑛 = 15 𝑛 = 30 𝑛 = 45 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

𝛼 = 

0.01 

𝛼 = 

0.05 

𝛼 = 

0.10 

∆𝑡 = 5 min 
time elapsed1 60 46 45 70 54 46 71 54 46 

type I errors2 1 2 6 1 2 4 1 1 4 

∆𝑡 = 15 min 
time elapsed1 60 46 45 70 54 46 73 60 46 

type I errors2 3 3 25 3 3 13 3 3 7 

∆𝑡 = 60 min 
time elapsed1 79 70 54 80 70 60 83 71 60 

type I errors2 7 25 59 6 14 35 5 11 27 

1 Duration between first firestorm-related eWOM and alarm in seconds  

2 Number of false alarms during the pre-firestorm-era 

Discussion on Contribution, Limitations, and Further Research 

Contribution to Theory and Practice 

As shown in the previous section, the proposed Online Firestorm Detector (“design artifact”) can reliably 
detect the emergence of online firestorms shortly after the first piece of related negative eWOM has been 
generated. Furthermore, the number of false alarms (type I errors) is low. The demonstration and 
evaluation hence shows that the proposed and prototypically implemented Online Firestorm Detector “[…] 
works and does what it is meant to do” (”validity”, Gregor and Hevner 2013, p, 351). By using real-world 
data directly collected from a Facebook fan page, we also demonstrated the usability of our artifact in 
business practice (”utility”, Hevner et al. 2004). By means of competitive benchmarking, we were moreover 
able to show that the proposed Online Firestorm Detector outperforms competing artifacts (”quality”, 
Gregor and Hevner 2013). The design, demonstration, and evaluation of our Online Firestorm Detector 
contribute to both theory and practice. From a theoretical perspective, our contribution to the literature on 
IS and marketing is threefold:  

First, we enrich existing IS and marketing literature on the analysis of eWOM in social media to avert its 
potential dark side: Existing IS and marketing literature on the analysis of eWOM in social media has 
mainly focused on the positive aspects (cf. Berger et al. 2014). For instance, multiple studies investigated 
the diffusion of positive eWOM through social networks to increase marketing efficiency by targeting a set 
of influential users (cf. Probst et al. 2013). However, research focusing on the potential negative 
consequences of companies’ social media engagement (“dark side of social media”), and particularly 
negative eWOM, is rare (cf. Probst et al. 2013). Although a few studies deal with the dynamics (Pfeffer et al. 
2014; Stich et al. 2014) or restriction of online firestorms (Mochalova and Nanopoulos 2014; Munzel et al. 
2012), the question of when to trigger an alarm if negative eWOM spreads over an entire network has not 
yet been addressed. Hence, the design of our Online Firestorm Detector constitutes an essential element in 
averting the potential negative consequences of companies’ social media engagements by promoting 
research on early detection approaches for online firestorms.  

Second, we have contributed to a valid theoretical basis for research on eWOM diffusion in social media: 
We argued that epidemics and online firestorms share commonalities, and that approaches for combating 
epidemics may deductively be adapted to combat online firestorms. The successful empirical demonstration 
and evaluation of our artifact shows that research findings regarding the early detection of outbreaks of 
infectious disease may indeed be exapted to the context of social media. Hence, this study supports earlier 
work which argued that the spread of negative eWOM can be compared to the spreading behavior of 
pathogenic organisms (cf. e.g., Budak et al. 2011; Kempe et al. 2003). Furthermore, our results encourage 
the use of regression model-based techniques (cf. Chandola et al. 2009) and the adoption of existing 
approaches from epidemiological surveillance systems relying on so-called anomaly scores (cf. Anscombe 
and Guttman 1960) to identify contextual anomalies in social media. Thus, we have demonstrated that 
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research from the field of epidemiology can serve as a valid theoretical basis for design science research in 
the context of eWOM diffusion in social media. 

Third, we have extended the understanding of online firestorms by showing that not only negative eWOM 
should be considered in their detection: In the literature, online firestorms are defined as an “[…] sudden 
discharge of […] negative [e]WOM” (Pfeffer et al. 2014, p. 118). However, our empirical demonstration and 
evaluation has shown that the design of the Online Firestorm Detector in considering both negative and 
total eWOM leads to significantly less false alarms than alternative implementations relying solely on 
negative eWOM. This is particularly important, as the competitive benchmarking with common rules of 
thumb and linear regression has shown that it is rather straightforward to achieve short detection times but 
difficult to avoid a high error rate. Moreover, we must emphasize the importance of reliable sentiment 
classification techniques, as alternative implementations building solely on the total volume of eWOM 
performed considerably worse in terms of both detection time and error rate.  

Alongside these theoretical contributions, we have also contributed to business practice.  

First, we have shown that common lightweight solutions are unable to reliably detect online firestorms in 
social media: By means of competitive benchmarking, we have demonstrated that mean or maximum rules, 
or even apparently more sophisticated procedures such as linear regression estimation, deliver insufficient 
reliability, that is, too many false alarms. Consequently, unnecessary resources would be needed to verify 
whether an alarm is actually correct. Moreover, confidence, trust, and attention would quickly dissolve, as 
the behavioral intention to use technology depends, among other things, on “performance expectancy”, that 
is, “[…] the degree to which a person believes that using a particular system would enhance his or her job 
performance” (Venkatesh et al. 2003, p. 447). Our suggested Online Firestorm Detector represents a well-
founded approach for the automated, real-time detection of emerging online firestorms in social media that 
allows for timely detection and a small number of false alarms.  

Second, we have provided a ready-to-use artifact that enables companies to mitigate risks from social 
media engagements: To prevent a domino effect and avoid a steep drop in customer satisfaction ratings or 
even share prices (cf. Dell Hell), timely and reliable detection is crucial to the initiation of countermeasures. 
Thus, this study contributes to business practice by both emphasizing the importance of an automated real-
time detection system and providing a ready-to-use artifact. The suggested Online Firestorm Detector 
allows high-profile, hard-to-predict, and rare events such as online firestorms to be detected, thus enabling 
risk mitigation within organizations. This is particularly valuable for large companies that have widely 
adopted eWOM marketing in social media, as well as small companies that lack dedicated resources for 
extensive social media monitoring. 

Limitations and Further Research 

As well as the promising results described above, there are limitations that provide room for improvement 
and starting points for further research.  

First, we evaluated our artifact based on a single firestorm suffered by Coca-Cola on Facebook. Thus, the 
detection of online firestorms in other social media outlets has not yet been assessed. However, we intend 
to implement further modules that allow access to company-related eWOM generated in other social media 
such as micro-blogging and blogs. Furthermore, we focused on one online firestorm that could be manually 
and ex post detected within Facebook. Therefore, even though we successfully proved the reliability of our 
artifact by varying certain parameters, its generalizability remains to be confirmed in future research (e.g., 
by analyzing different firestorms or different social media).  

Second, the parameterization of the number and length of the (micro-)periods needs to be critically 
examined. Based on the underlying trade-offs discussed in this paper, we chose default parameters in line 
with statistical practice (regarding the number of (micro-)periods) and based on the findings of expert 
interviews (regarding the length of (micro-)periods). Even though we generalized our results by comparing 
the output from different parameterizations, and these variations in the parameters did not lead to 
unexpected deviations, future research could improve the parameter settings by training the algorithm on 
past online firestorms related to comparable companies (e.g., approximated in terms of mean and volatility 
of eWOM, homophily of customers). 
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Third, sentiment analysis of eWOM in social media is challenging for both practitioners and IS researchers 
because of personal, cultural, and contextual factors such as irony (cf. Feldman 2013; Pang and Lee 2008). 
Although we assessed the quality of our sentiment analysis using an evaluation dataset from previous 
research (cf. Scholz et al. 2013), the automated classification of eWOM may potentially differ among 
humans. To enable an easy exchange of the sentiment analysis service when newer or better algorithms 
emerge, we deliberately designed our Online Firestorm Detector based on the software design paradigm of 
service-oriented architectures (cf. Papazoglou and Van Den Heuvel 2007). We suggest that varying 
sentiment analysis services should be used in future research to compare their results.  

Fourth, we did not explicitly address potential interaction effects between negative, neutral, and positive 
eWOM. For example, there might be situations, where a positive reaction of the fan base on negative eWOM 
(leading to a strong increase in positive eWOM) avoids the outburst of an online firestorm. However, such 
interaction effects have not been sufficiently empirically studied yet and are beyond the scope of this paper. 
As we discussed before, the Online Firestorm Detector’s reliability is of utmost importance; so is a low 
number of false alarms. One could argue that our current design is very sensitive, because we raise an alarm 
even though there might be enough positive eWOM to stop the diffusion of negative eWOM. Due to the low 
number of false alarms, however, we believe that neglecting potential interaction effects is reasonable in a 
first step. Future work is encouraged to study the interplay of negative, neutral, and positive eWOM. 

Finally, we did not address the question of how to deal with online firestorms after their emergence has 
been detected. Though this is beyond the scope of the current paper, we encourage research that builds on 
existing studies (Mochalova and Nanopoulos 2014; Munzel et al. 2012) to develop strategies for the actual 
mitigation of online firestorms. Moreover, the organizational acceptance of artifacts such as our Online 
Firestorm Detector in dependence of their reliability (here: false alarms) should be studied in future IS 
research. 

Conclusion 

In line with the publication schema for Design Science Research proposed by Gregor and Hevner (2013), 
we can summarize as follows: First, we specified the “purpose and scope” of our artifact, stated its 
“relevance” for business practice, and identified the absence of approaches for an automated, real-time 
detection of online firestorms as research gap. Second, we emphasized that we address an “important and 
relevant business problem” (Hevner et al. 2004, p. 83) by presenting prior empirical research, which 
provided evidence that negative eWOM leads to negative economic effects. Moreover, we discussed 
“descriptive and prescriptive knowledge” by discussing related work on the diffusion of eWOM as well as 
the context of anomaly detection and epidemiological surveillance, which informed the design of our 
artifact. Third, we developed our “design artifact”, the Online Firestorm Detector, which has led to two 
design science research contributions (cf. Gregor and Hevner 2013, p. 342): As the first contribution, we 
designed an algorithm for the detection of emerging online firestorms (i.e., “level 2 research contribution”), 
which was inspired by prior work from the field of epidemiological surveillance systems (i.e., “knowledge 
contribution by exaptation”). To support a “rigorous” definition and presentation, we formally denoted the 
algorithm (Hevner et al. 2004). As the second contribution, we implemented a prototype of the Online 
Firestorm Detector (i.e., “level 1 research contribution”), comprising three main steps: (A) Monitoring 
social media and collecting eWOM, (B) conducting sentiment analysis, and (C) detecting the emergence of 
online firestorms by applying the abovementioned algorithm. Subsequently, we provided a “rigorous 
design evaluation” to demonstrate the validity and utility of the artifact by applying the Online Firestorm 
Detector to the situation suffered by Coca-Cola on Facebook, thus evaluating it “in depth in business” 
(Hevner et al. 2004). We thereby showed that the Online Firestorm Detector’s algorithm reliably detects 
emerging online firestorms shortly after the emergence of the first piece of related negative eWOM, and 
that the number of false alarms is low. We furthermore provided empirical evidence that our design artifact 
is superior to potential competing artifacts, such as common rules of thumb (mean and maximum) or linear 
regression estimation. Finally, we critically “discussed and reflected” on our artifact by pointing out its 
theoretical and practical contributions, limitations, and areas for further research. We are confident that a 
further developed prototype can soon be applied in business practice, and that our Online Firestorm 
Detector already serves as a sound starting point for future research. 
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