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Abstract Process mining is a data-driven technique that

leverages event logs to analyze, visualize, and improve

business processes. However, data quality is often low in

real-world settings due to various event log imperfections,

which, in turn, degrade the accuracy and reliability of

process mining insights. One notable example is the elusive

case imperfection pattern, describing the absence of case

identifiers responsible for linking events to a specific pro-

cess instance. Elusive cases are particularly problematic, as

process mining techniques rely heavily on the accurate

mapping of events to instances to provide meaningful and

actionable insights into business processes. To address this

issue, the study follows the Design Science Research

paradigm to iteratively develop a method for repairing the

elusive case imperfection pattern in event logs. The pro-

posed Hybrid Elusive Case Repair Method (HERE) com-

bines a traditional, rule-based approach with generative

artificial intelligence, specifically the Transformer archi-

tecture. By integrating domain knowledge, HERE consti-

tutes a comprehensive human-in-the-loop approach,

enhancing its ability to accurately repair elusive cases in

event logs. The method is evaluated by instantiating it as a

software prototype, applying it to repair three publicly

accessible event logs, and seeking expert feedback in a

total of 21 interviews conducted at different points during

the design and development phase. The results demonstrate

that HERE makes significant progress in addressing the

elusive case imperfection pattern, particularly when pro-

vided with sufficient data volume, laying the groundwork

for resolving further data quality issues in process mining.

Keywords Process mining � Event log quality � Event log
repair � Generative artificial intelligence � Transformer �
Business process management

1 Introduction

Process mining analyzes event log data from information

systems to extract meaningful insights into business pro-

cesses (Rinderle-Ma et al. 2023). By examining historical

data on process executions, process mining uncovers

inefficiencies, identifies bottlenecks, detects deviations

from standard workflows, and ensures regulatory compli-

ance (van der Aalst 2022). These applications are in turn

associated with numerous economic benefits, including

cost reduction, higher process efficiency, and data-driven

strategic decision-making (Badakhshan et al. 2022; Galic

and Wolf 2021; Grisold et al. 2021).

As a data-driven technology, the success of process

mining initiatives is highly dependent on the quality of the

input data. Poor-quality data can lead to inaccurate out-

comes, a phenomenon known as garbage-in, garbage-out

(Beerepoot et al. 2023). For instance, many process mining

techniques, such as those focused on process discovery or

conformance checking, rely heavily on mapping events to

specific process instances using high-quality case identi-

fiers (IDs) (van der Aalst 2022). This mapping, also known
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as the primary correlation problem, is essential for recon-

structing the sequence of activities within each process

instance, allowing for accurate discovery and analysis (van

der Aalst 2016b). However, real-life event logs are often

subject to erroneous case IDs, leading to challenges in

process mining analyses (Fischer et al. 2022). One

notable example is the elusive case imperfection pattern,

describing a common problem (van der Aalst et al. 2012)

in which events are not linked to their corresponding case

IDs (Suriadi et al. 2017). This issue can significantly hinder

the efficacy of process mining endeavors, potentially

making them impractical or resulting in erroneous insights,

as case IDs are essential for capturing the relationships

between individual events (Tajima et al. 2023). Conse-

quently, organizations affected by this imperfection pattern

may fail to realize the full potential of process mining

(Suriadi et al. 2017).

Several repair methods have been developed to address

the elusive case imperfection pattern, which involve

reconstructing missing case IDs or establishing accurate

associations between events and process instances. For

instance, Martin et al. (2022) propose a query language to

detect events affected by elusive cases. Bayomie et al.

(2023) introduce a probabilistic optimization method for

grouping events into cases, while Pegoraro et al. (2022)

apply machine learning for the purpose of log segmenta-

tion. Additionally, De Fazio et al. (2024) suggest heuristics

for detecting case IDs. Despite these advancements, current

methods encounter challenges, as they either rely on sup-

plementary well-defined data alongside the event log or do

not fully leverage the potential of the existing data.

Moreover, these approaches are often restricted to

regrouping all events, making it impossible to assign

individual events to existing groups of events with error-

free case IDs. This limitation becomes particularly prob-

lematic when only a small percentage of events are

affected, while the majority remain correct. Manual repair

of elusive cases, although theoretically feasible, is

impractical due to the massive volume of data, resulting in

substantial resource and cost constraints.

Generative artificial intelligence (AI) offers a promising

alternative to tackle these challenges. Its ability to under-

stand complex data patterns and reconstruct missing or

erroneous data makes it well-suited for this task (Hofmann

et al. 2021). Moreover, generative AI excels at capturing

intricate, long-term data patterns within event logs, an area

where traditional machine learning algorithms often fall

short (Banh and Strobel 2023). Accordingly, the capabili-

ties of generative AI have been showcased in various sub-

disciplines of process mining research. For instance, within

predictive business process monitoring, Transformer

architectures are utilized to forecast subsequent activities in

an ongoing process instance (Bukhsh et al. 2021). For

process discovery, generative AI enables the extraction of

processes from textual data (Busch et al. 2023). Using

generative adversarial networks (GANs), van Dun et al.

(2023) demonstrate that generative AI can facilitate the

generation of ideas for business process improvements. In

the domain of event log quality enhancement, GANs are

utilized to tackle timestamp-related data quality issues in

event logs (Schmid et al. 2023), while a Transformer

model has been applied to address activity-related quality

issues (Wu et al. 2024). Additionally, Nguyen et al. (2019)

employed an autoencoder to reconstruct missing activity

and timestamp values. Beyond these successful applica-

tions, vendors and market-research organizations assume

that generative AI has the potential to significantly

streamline data preparation tasks (Kerremans and Kerre-

mans 2023; Reinkemeyer et al. 2023), which currently

account for approximately 61% to 80% of the efforts

involved in applying process mining (Wynn et al. 2022).

Hence, we conclude that generative AI has the potential to

repair event logs that are subject to the elusive case

imperfection pattern. Consequently, this research addresses

the following research question: How can generative AI be

used to repair the elusive case imperfection pattern?

To answer this question, we follow the Design Science

Research (DSR) paradigm proposed by Peffers et al.

(2007) and introduce HERE, the Hybrid Elusive Case

REpair Method, which aims to reestablish the link between

events and their corresponding case IDs. Given the

potential for inaccuracies in outputs generated by genera-

tive AI models (Feuerriegel et al. 2024), we establish rule-

based methods by integrating human interactions into the

model’s architecture through domain knowledge, thus

enabling a human-in-the-loop approach (Mosqueira-Rey

et al. 2023). We instantiate HERE as an open-source

software prototype and evaluate it following the framework

for evaluation in DSR (FEDS) as proposed by Venable

et al. (2016). By doing so, we first refine our design

specification with the help of 11 interviews with practi-

tioners and researchers. Afterwards, we provide a proof of

concept of HERE by instantiating it as a real-world pro-

totype and using it to repair a total of three different event

logs with nine degrees of elusiveness each, hence demon-

strating feasibility and effectiveness. Lastly, a proof of

value with real users and tasks is given by letting ten

researchers and practitioners use the research prototype to

repair an event log in a simulated environment.

Our primary contribution is the development of a novel

method to address elusive cases in process mining. We

provide design knowledge on adapting existing architec-

tures for effective event log repair. This work builds on

prior research at the intersection of generative AI and event

log quality improvement, advancing the field of process

data quality management. Additionally, we provide an
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open-source software tool that enables both researchers and

practitioners to repair elusive cases.

This paper is structured as follows: In Sect. 2, we dis-

cuss previous work in the field. Section 3 provides a

detailed account of our activities within the DSR paradigm.

Section 4 presents our artifact HERE, while Sect. 5 dis-

cusses its evaluation within FEDS. In Sect. 6, the results

are discussed. Lastly, Sect. 7 provides a summary of our

findings.

2 Theoretical Background

2.1 Process Mining and Event Log Quality

Process mining focuses on optimizing business processes

by systematically examining event data (van der Aalst

2022). The objectives of process mining may be backward-

(e.g., finding causes of past bottlenecks) or forward-look-

ing (e.g., making predictions for ongoing process execu-

tions) (van der Aalst 2022). The process mining discipline

encompasses various activities. Process discovery focuses

on deriving process models from event data, whereas

conformance checking seeks to detect discrepancies

between the event data and the process model (van der

Aalst 2016c). Additionally, enhancement involves refining

an existing process model using event data (van der Aalst

2016c).

Typically stored as an extensible event stream (XES)

file, process data is often represented in event logs (van der

Aalst 2016b). Within an event log, various process

instances known as cases are recorded where distinct

events are associated with it (van der Aalst 2016b). The

definition and boundaries of a case vary depending on the

context (van der Aalst 2016a). An event log must typically

contain three essential attributes: case ID, activity name,

and timestamp (De Weerdt and Wynn 2022). In addition to

these essential attributes, event logs may also include

supplementary attributes such as the executing resource or

the associated costs (van der Aalst 2022). Thus, event logs

may contain both discrete and continuous attributes.

Employing data quality metrics allows to assess the

quality of an event log. Such metrics may address different

aspects of data quality and are categorized into dimensions

such as accuracy, completeness, redundancy, readability,

accessibility, consistency, usefulness, and trust (Batini and

Scannapieco 2016). Among these metrics, accuracy, com-

pleteness, and consistency are particularly important for

event log repair. Accuracy is generally defined as the

closeness between a representation and the actual data

value. Completeness refers to the extent to which data is

not missing and is sufficiently comprehensive for the task

at hand. Consistency can be assessed by verifying

adherence to integrity constraints, which are properties that

all instances must satisfy (Batini and Scannapieco 2016).

Event log quality issues can stem from various root

causes, such as manual data entry errors, system design

flaws, or problems encountered during the extraction of

event logs (Andrews et al. 2022). To shed light on specific

quality problems in event logs, Suriadi et al. (2017) clas-

sified them into 11 event log imperfection patterns.

Thereby, the elusive case describes scenarios where events

are not explicitly linked to their corresponding case ID.

This absence of a case ID poses a significant challenge,

rendering process mining analyses infeasible (Suriadi et al.

2017).

Several methods have been proposed to address imper-

fection patterns in event data, each with distinct objectives,

including detection and repair. Detection approaches aim

to identify existing errors in event data. For example,

Andrews et al. (2018) introduced a log query language

capable of identifying five imperfection patterns. Expand-

ing on this work, Martin et al. (2022) proposed an approach

based on activity logs, which extends detection to a total of

ten imperfection patterns and tackles additional event log

quality issues not covered previously. Furthermore,

Sadeghianasl et al. (2019) presented a detection method

that takes into account the context of activities. Lastly,

approaches focused on quantifying quality metrics have

been proposed (Fischer et al. 2022).

Repair approaches aim to improve the quality of event

logs by rectifying errors. For instance, gamified crowd-

sourcing techniques have been utilized to enhance activity

labels (Sadeghianasl et al. 2020, 2024). Such approaches,

involving human-in-the-loop interactions and integrating

domain knowledge, hold the potential to improve overall

data quality (Chen et al. 2020). Moreover, hybrid

methodologies offer diverse advantages (Raisch and

Fomina 2024). For instance, the integration of domain

knowledge can be leveraged to establish declarative

integrity constraints, which, in turn, facilitate the devel-

opment of declarative process models for process specifi-

cation (Di Ciccio and Montali 2022; Pesic et al. 2007).

Additionally, there exist repair approaches based on gen-

erative AI such as GANs or variational autoencoders

(Nguyen et al. 2019; Schmid et al. 2023).

Various methods are employed to determine case IDs

(Ferreira and Gillblad 2009; Pourmirza et al. 2017).

Decision tree methods, for instance, are applied with

behavioral profiles and statistical heuristics to identify case

IDs. However, they encounter difficulties in complex or

overlapping cases due to ambiguities and missing infor-

mation (Bayomie et al. 2016a, b). Optimization-based

approaches align event logs with detailed process models

but depend heavily on specific domain knowledge, which

limits their adaptability in dynamic or incomplete process
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environments (Bayomie et al. 2019, 2022). Domain

knowledge-driven techniques, such as the one by De Fazio

et al. (2024), leverage expert-defined heuristics for event

similarity. This method demands significant input from

experts, making it resource-intensive and challenging to

scale, particularly with large or rapidly changing datasets.

Similarly, Bayomie et al. (2023) apply domain-specific

rules within an optimization framework, but the reliance on

predefined rules restricts the method’s applicability across

diverse processes. Expert-driven approaches like the one

proposed by Burattin and Vigo (2011) involve manual case

review, which enhances accuracy but introduces subjec-

tivity and potential inconsistency. Machine learning tech-

niques, such as the neural network approach by Pegoraro

et al. (2022), automate case ID assignment. These methods

require extensive labeled data and may lack interpretabil-

ity. Overall, these limitations underscore the need for a

more flexible and scalable approach to case ID determi-

nation. An effective solution would minimize dependence

on domain knowledge, handle complex cases without

expert intervention, and ensure explainability of machine-

learning-driven processes.

2.2 Generative Artificial Intelligence in Process

Mining

Machine learning algorithms have proven to be effective in

handling incomplete event data (Weinzierl et al. 2024). As

a subset of AI, machine learning encompasses algorithms

that learn to perform tasks by processing data, rather than

relying solely on explicit programming instructions (Banh

and Strobel 2023). A commonly used approach within

machine learning is supervised learning, where a model is

trained using a dataset that includes both input data and the

corresponding correct outputs (Janiesch et al. 2021).

Within the broader field of machine learning, more spe-

cialized techniques exist. Deep learning involves the use of

multi-layer neural networks to model complex data pat-

terns. These networks learn hierarchical representations of

data, allowing the model to identify increasingly abstract

patterns as it processes more layers of information. Gen-

erative AI as a subclass of deep learning, models complex

data distributions to generate new samples that closely

mirror the structure, patterns, and characteristics of the

training data. Discriminative AI, on the other hand, focuses

on modeling the boundary between different classes in the

data, rather than the data distribution itself (Banh and

Strobel 2023). Prominent architectures of generative AI

include GANs, Transformers, and variational autoencoders

(Feuerriegel et al. 2024).

In recent years, generative AI and Transformers, in

particular, have gained significant popularity, driven by the

success of large language models like ChatGPT

(Feuerriegel et al. 2024). Transformers, as introduced by

Vaswani et al. (2017), use a mechanism called self-atten-

tion to process input data all at once rather than sequen-

tially. This mechanism allows the model to focus on

different parts of the input when making predictions, cap-

turing complex dependencies that might exist between

various elements, such as activities in an event log or

relationships between words in a sentence. This makes

Transformers particularly effective for tasks involving

sequential data with long-range dependencies, a common

characteristic of event logs. Unlike traditional methods that

struggle with such dependencies, Transformers excel at

capturing these relationships, which makes them particu-

larly useful in tasks involving complex, sequential data

(Vaswani et al. 2017). The Transformer architecture is

comprised of two main components: the encoder and the

decoder (Vaswani et al. 2017). The encoder processes the

input data, extracting key features, while the decoder uses

this information to generate the output. Both the encoder

and decoder are built from layers of self-attention mecha-

nisms, allowing the model to refine its understanding of the

data at each step. While the encoder and decoder work

together during training, the decoder operates indepen-

dently during inference, when the model is used to make

predictions.

Machine learning, including generative AI, has been

successfully applied in various process-related contexts

(Weinzierl et al. 2024). For instance, in the domain of

predictive business process monitoring, Bukhsh et al.

(2021) employed a Transformer to predict the next activity

in a trace, defined as a sequence of events within a given

process. Similarly, Rivera Lazo and Ñanculef (2022)

employed a Transformer for the same task, with their

architecture allowing for multiple input attributes. Addi-

tionally, some approaches leverage GANs for this purpose

(Hoffmann et al. 2022; Taymouri et al. 2020). Generative

AI architectures have also been implemented for business

process improvement. For instance, van Dun et al. (2023)

used a GAN to generate improvement ideas, while

Beheshti et al. (2023) proposed a Transformer to derive

improvement recommendations. Furthermore, generative

AI has been employed to enhance the quality of event logs.

Nguyen et al. (2019) utilized an autoencoder architecture

to reconstruct missing attribute values for activity and

timestamp, whereas Schmid et al. (2023) addressed iden-

tical timestamp errors using a GAN. These applications

demonstrate how generative AI models can be effectively

adapted for solving challenges in business process

management.
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3 Research Method

The objective of this study is to develop an approach uti-

lizing generative AI to repair the elusive case imperfection

pattern, specifically focusing on determining case IDs for

events that were previously lacking them. Elusive cases,

among other event log quality issues, cause the results of

process mining analyses to be misleading (Suriadi et al.

2017). Hence, this study addresses a significant business

problem and thus falls under Type I machine learning

research as per the categorization proposed by Padman-

abhan et al. (2022). This category, which aims to resolve

significant problems within economic and social contexts

by developing machine learning methods (Padmanabhan

et al. 2022), aligns closely with DSR, which in turn aims to

design purposeful artifacts that solve real-world problem

classes (Tuunanen et al. 2024). Moreover, DSR artifacts

can specifically manifest as methods encompassing sys-

tematic procedures and techniques to solve a real-world

business problem (Gregor and Hevner 2013; March and

Smith 1995). Consequently, DSR is generally a suit-

able framework for our research endeavor. A fundamental

principle of DSR is the iterative process of searching for an

artifact that provides a satisfactory solution (Hevner et al.

2004; Tuunanen et al. 2024). Established DSR processes

can facilitate this search process. In this study, we adopt the

approach outlined by Peffers et al. (2007), which com-

prises six steps. Figure 1 illustrates these six steps and

summarizes our activities in each step. In Sect. 1, we

already (1) identified and motivated the problem, ensuring

that the objective of our DSR project addresses a signifi-

cant business problem. This paper aims to (6) communicate

our findings.

3.1 Design Objectives

Based on our analysis of the research problem and existing

literature in Sect. 2, we (2) define design objectives (DOs)

aimed at integrating essential solution components (Peffers

et al. 2007). A central challenge identified is the elusive

case imperfection pattern, where events lack corresponding

case IDs. Our primary emphasis lies in restoring these

associations. Given the diverse nature of data attributes in

event logs, a solution to the problem should encompass

both discrete and continuous data types. Moreover, the

incorporation of external sources of implicit knowledge is

crucial for improving contextual understanding. Therefore,

we summarize the first DO as follows:

DO 1. An approach to repairing the elusive case imper-

fection pattern should accommodate diverse input

attribute types and integrate external knowledge

beyond the event log.

Sometimes, historical process data may not fully reflect the

current process reality, such as when control flows have

changed over time or new dominant process variants are

underrepresented in the data. In these cases, it is important

to capture this new knowledge as an additional input. Since

such information often cannot be inferred directly from the

data, human expertise becomes essential. A human-in-the-

loop approach facilitates this interaction, allowing humans

to provide contextual insights that algorithms lack.

Through a mutual exchange of information, humans and

algorithms work together to refine the repair process,

delivering the best possible outcomes. Therefore, the sec-

ond DO is summarized as follows:

DO 2. An approach to repairing the elusive case imper-

fection pattern should incorporate external knowl-

edge by means of a human-in-the-loop approach.

The quality of event logs is multidimensional, hence a

solution should address several key quality metrics. First,

accuracy ensures that the reconstructed process represents

reality, maintaining close alignment between predicted and

actual case IDs. Second, completeness ensures a sufficient

number of events are mapped to case IDs. Third, consis-

tency ensures adherence to known process patterns and

rules during event reconstruction. Consequently, the third

DO is summarized as follows:

Fig. 1 Research activities within DSR
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DO 3. An approach to repairing the elusive case imper-

fection pattern should satisfy multiple data quality

dimensions, such as accuracy, completeness, and

consistency.

These objectives guide the design and development phase

towards achieving a robust solution that comprehensively

repairs the elusive case.

3.2 Design and Development

The (3) design and development of our artifact follows an

iterative process, as shown in Table 1, guided by the DOs

and continuously refined by evaluation insights. During the

initial iteration, our primary goal was to identify the most

suitable generative AI architecture. After a comprehensive

literature review, we selected the Transformer architecture

due to its proven effectiveness in handling sequential data.

This capability was crucial for our needs, as repairing the

elusive case involves reconstructing case IDs for erroneous

events based on other attributes in the event log. This

process transforms the input from a sequence lacking case

IDs to an output sequence where each event is accurately

linked to the corresponding case ID. Therefore, this con-

stitutes a sequence-to-sequence translation in machine

learning, where input sequences are mapped to output

sequences (Sutskever et al. 2014). In the subsequent iter-

ation, our objective transitioned to achieving DO 1. We

implemented architectural modifications, which enabled

the determination of case IDs. In the third iteration, we

addressed DO 2 to enhance the model’s input by incor-

porating a human-in-the-loop and supplementing it with a

rule-based approach grounded in domain knowledge.

Finally, in the fourth iteration, we focused on DO 3,

employing hyperparameter tuning to improve output

quality.

3.3 Demonstration and Evaluation

To (4) demonstrate the feasibility of the design, it is

instantiated as a Python software prototype1. Prototyping is

a well-established method for evaluation in DSR (March

and Storey 2008). We use our prototype to repair three

publicly accessible event logs: two synthetic logs repre-

senting a journal paper review process (van der Aalst 2010)

and the low-discrimination variant of a rental process (Pohl

and Berti 2023), and one real-life log detailing a medical

service billing process (Mannhardt 2017). Through these

demonstrations, the prototype showcases the artifact’s

utility and suitability (Peffers et al. 2012).

The prototype itself also contributes to the (5) evalua-

tion of our artifact. Our evaluation framework follows

FEDS, a structure guiding evaluations in DSR projects

(Venable et al. 2016). This framework categorizes evalu-

ation strategies along two dimensions. The first dimension

concerns the functional purpose of the evaluation episode,

distinguishing between formative and summative evalua-

tions. Formative evaluations aim to improve an artifact

during its development phase through continuous feedback

and iteration, whereas summative evaluations assess the

Table 1 Design iterations for developing HERE

Iteration Design Activities Evaluation Results Key Insights

1 Reviewing literature on various

generative AI architectures

Identified limitations in handling long-term

dependencies and sequential data in some

architectures

Transformer found superior in performance and

scalability

Self-attention mechanisms in Transformers

effectively manage long-range

dependencies

Transformer architecture is recommended

2 Establishing a preprocessing

pipeline

Designing baseline Transformer

architecture for case ID

determination

Reasonable output is produced

Preprocessing pipeline accommodates multiple

input attributes

Transformer can repair elusive cases

3 Integrating domain knowledge into

the Transformer model

Developing complementary rule-

based approaches for sequence

validation

Rule-checking enables higher consistency and

accuracy

Overall model performance increased with

domain knowledge

Rule-based systems enhance

Transformer’s output with specific domain

expertise

4 Conducting extensive

hyperparameter tuning

Achieved optimized model performance and

efficiency

Significant reduction in prediction errors

Proper hyperparameter selection is critical

for maximizing model effectiveness

1 Link to HERE instantiation source code: https://github.com/FlZtz/

Hybrid_Elusive_Case_Repair_Method.
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overall effectiveness and impact of the artifact after its

development is completed. The second dimension relates to

the evaluation paradigm, distinguishing between artificial

and naturalistic approaches. Artificial evaluations are

conducted in controlled, experimental settings where

variables can be systematically manipulated and measured,

while naturalistic evaluations occur in real-world environ-

ments, observing phenomena as they naturally unfold. One

strategy within FEDS is the Technical Risk & Efficacy

strategy, which assesses technical artifacts to mitigate

uncertainty and risk while ensuring rigor. This strategy

begins with an artificial formative evaluation, proceeds to

an artificial summative evaluation, and concludes with a

naturalistic summative evaluation.

For the artificial formative evaluation, we conducted 11

semi-structured expert interviews to validate our design

specification in an artificial setting. Interviews are widely

accepted evaluation methods in information systems

research (Myers and Newman 2007). The panel comprised

11 experts selected through purposive sampling (Robinson

2014), representing both research and industry sectors (cf.

Table 2). These interviewees were chosen for their exper-

tise in process mining and business process management.

Each interview averaged approximately 40 minutes.

In the artificial summative evaluation, we assess the

effectiveness of the artifact. To do so, the software proto-

type is used to repair three publicly accessible event logs,

comprising both synthetic and real-life data. For each log,

we introduced errors at varying rates, ranging from 10% to

90% in 10% increments to simulate elusive cases. Fur-

thermore, we conducted the repair routine with different

configurations. Each event log and repair configuration is

then evaluated using ten different metrics each addressing

different aspects of repair quality such as accuracy, com-

pleteness, and consistency, as specified in DO 3.

Finally, we conducted a naturalistic summative evalua-

tion through a second round of semi-structured interviews

with ten experts from the initial panel. This approach had

the advantage that the interviewees were already familiar

with the design specification, enabling them to provide

informed and detailed feedback on the prototype’s func-

tionality and its alignment with the objectives. Each

interview lasted around 35 minutes on average. Intervie-

wees were briefed on the results of our artificial summative

evaluation and engaged in a simulated prototype interac-

tion. Detailed information on the evaluation setup as well

as the results are presented in Sect. 5.

4 Hybrid Elusive Case Repair Method

Our proposed artifact, denoted as HERE, encompasses

three main activities: data preprocessing, Transformer

training, and event log repair. As illustrated in Fig. 2, each

activity involves a human-in-the-loop, which will be

elaborated on in the subsequent subsections. HERE

requires event logs in XES format as input, whereby it is

assumed that the training event data is error-free and

complete, consistent with typical supervised learning sce-

narios. Likewise, the event log designated for repair, which

includes the elusive case requiring correction, should only

exhibit this particular data quality issue, without any

additional complexities, as illustrated in Table 3. The

method is applicable to any XES event log that includes at

least one attribute beyond the case ID, with activity name

and timestamp being mandatory attributes and typically

found in most event logs (De Weerdt and Wynn 2022).

While the inclusion of additional attributes may enhance

performance, they are not strictly necessary. The outcome

of the method is an event log in XES format, representing

the repaired version of the original erroneous log.

4.1 Data Preprocessing

The original dataset needs several transformations to con-

form with the requirements of our approach, depending on

its initial structure. Thus, we have outlined the essential

data preprocessing steps of HERE in Fig. 3. The first step

involves adjusting the event log data to a uniform time

zone. This adjustment ensures that the temporal relation-

ships between individual events are accurately represented.

Next, the event log is sorted by timestamp. If multiple

events share the same timestamp, their original order is

preserved. To enable the Transformer to process the

timestamp, they are transformed into time progression in

seconds from the first event of the sorted event log. Next to

the timestamp, discrete input attributes (DAs) represent

attributes with a limited number of distinct values, such as

activity labels. Conversely, continuous input attributes

(CAs) theoretically assume an infinite range of values

within a specified interval, although practical representa-

tion is constrained by measurement precision and compu-

tational limitations, as seen with timestamps. For the repair

of elusive cases, the output attribute, specifically the case

ID, is crucial and is treated separately, as the Transformer

model distinguishes between input and output attributes.

Each CA is normalized individually using min-max scal-

ing. In this process, the maximum value is mapped to 1, the

minimum value to 0, and all other values are proportionally

scaled between these two bounds. The results are detailed

in Table 4. This ensures that all attributes have an equal

impact on the analysis. Subsequently, both DAs and CAs

are concatenated separately, aligning with the early fusion

approach for multiple attributes proposed by Rivera Lazo

and Ñanculef (2022). This means that all attributes within a

category are merged into a single composite attribute for
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each event. For instance, the DAs DA1 to DAd (where d

denotes the total number of DAs) are combined into a

single entity: DA1; . . .;DAd. In our example, as illustrated

in Table 4, this means that the value in the Activity column

is combined with the value in the Resource column. The

rationale behind this combination is that the Transformer

model processes only one attribute at a time. However,

according to the late fusion approach (Rivera Lazo and

Ñanculef 2022), DAs and CAs are not merged at this stage.

In addition to event log data, our approach allows to

integrate domain knowledge as per DO 1. This integration

aims to enhance the output quality by explicitly stating

domain knowledge that may not be fully captured in the

data. Thereby, we define the target group to be researchers,

process experts, and data engineers, while acknowledging

that other stakeholders might be relevant as well. To

facilitate interaction with the artifact, we employ a system

that supports modular expansion with additional types of

domain knowledge. For example, stakeholders may define

domain knowledge such as start activity, end activity, and

directly following relationships, based on predefined

declarative rules (Di Ciccio and Montali 2022). While we

have implemented expert knowledge concerning the con-

trol flow, the modular architecture also permits the inte-

gration of environmental, object, resource, and temporal

aspects as distinct expert attributes (EAs). This flexible

design does not require every EA to be specified, as

stakeholders can include any number of EAs based on

relevance. While performance may improve with the

addition of more attributes, the system is designed to

operate effectively even with minimal input. Each attribute

requires specific values that satisfy defined criteria, along

Table 2 Participants in the semi-structured interview rounds

ID Sector Role Process Mining Experience (Years) Country Round 1 Round 2

1 Research Professor 21 Germany U U

2 Industry Manager 4 Germany U U

3 Research Research Assistant 4 Liechtenstein U U

4 Research Research Assistant 3 Germany U U

5 Industry Consultant 6 Austria U U

6 Industry Process Expert 4 Germany U U

7 Research Professor 9 Switzerland U U

8 Industry Head of Center of Excellence 7 Germany U U

9 Industry Head of Process Mining 4 Germany U U

10 Industry Senior Consultant 6 Germany U U

11 Research Postdoctoral Researcher 11 Belgium U

Fig. 2 Overview of HERE

Table 3 Event log excerpt for

order-to-cash process showing

elusive case pattern

Case ID Activity Timestamp Resource

1 Order Received 2024-07-01T08:45:00?01:00 Staff A

Order Processed 2024-07-01T09:00:00?01:00 Staff B

1 Payment Confirmed 2024-07-01T10:30:00?02:00 Staff C

.. .. .. ..

Order Delivered 2024-07-03T16:30:00?01:00 Staff D
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with specifying the frequency of fulfillment (always or

sometimes) for each attribute value. For instance, an input

could specify that events describing the Order Received

activity must always be regarded as the start activity of a

case. Stakeholders are supported through suggestions

generated by querying the event log for these properties,

potentially enabling non-experts to participate effectively.

These suggestions streamline the input process for the

implemented EAs, while other EAs may require additional

coding, resulting in a more complex and time-consuming

input process. To address this, stakeholders can save their

inputs for automatic retrieval and pre-filling in future

instances. We distinguish between unary and binary attri-

butes: unary expert attributes (UAs) represent individual

values (e.g., start activity), while binary expert attributes

(BAs) denote relationships between two values (e.g.,

directly following). These attributes are incorporated as

additional columns containing discrete values. For

instance, the start activity attribute includes a value for

each event indicating whether it always, sometimes, or

never represents a start activity within the process. In our

example, the start activity column would have the value

always start activity for all events corresponding to the

Order Received activity, while according to the expert

input all other events would have the value non start

activity, as demonstrated in Table 5. On the other hand, the

directly following BA may necessitate the creation of

multiple columns to account for distinct relationships.

Initially, all predecessor activities are identified, with

duplicates being removed. Each unique predecessor is then

allocated a separate column (e.g., Directly Following

Order Received), and the values in these columns indicate

whether an activity directly follows its predecessor. These

values are categorized as non directly following, sometimes

directly following, or always directly following, depending

on the input data. In our example, an expert may specify a

directly following relationship between the activities Order

Received and Order Processed, where the latter always

follows the former, resulting in the outcome presented in

Table 5. This procedure is repeated for each predecessor

activity. Finally, the values from each column within the

EA categories are concatenated for each event, following

the procedure used for input attributes derived directly

from the event log. Specifically, the values in the start

activity column are combined with those in the end activity

column, while the values in the directly following columns

are concatenated together.

Fig. 3 Data preprocessing

Table 4 Preprocessed order-to-

cash event log with relative time

progression and concatenated

activity and resource

Case ID Activity Relative Time Progression Resource Discrete Attributes

1 Order Received 0 Staff A Order Received Staff A

Order Processed 0.0045 Staff B Order Processed Staff B

1 Payment Confirmed 0.0135 Staff C Payment Confirmed Staff C

.. .. .. .. ..

Order Delivered 1 Staff D Order Delivered Staff D
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To provide these EAs for the Transformer’s training,

they are concatenated with the discrete attributes extracted

from the event log data. This fusion consolidates all dis-

crete input data into a unified representation for each event.

Given d DAs, u UAs, and b BAs (where d, u and b repre-

sent the total counts of values in each category), the

combined representation is structured as:

DA1; . . .;DAd;UA1; . . .;UAu;BA1; . . .;BAb. In our exam-

ple, this includes values from columns such as activity,

resource, start activity, directly following order received

and potentially other attributes.

The discrete input data, continuous input data, and

output data are systematically organized in chronological

order to map the sequence of events within the ordered

event log, accommodating potential case overlaps. Each of

these sequences is uniform in length during training, cor-

responding to the number of events they include. By

organizing the data into longer sequences instead of indi-

vidual events, the Transformer model is better equipped to

capture complex, long-term patterns within the sequence of

events. This approach applies uniformly to all data,

ensuring consistency in representation. After this step, as

an example, the sequence of case IDs in the event log

appears as follows:

ID1þði�1Þk; . . .; IDlþði�1Þk; . . .; IDn�lnþ1; . . .; IDn, where i de-

notes the sequence number, starting from 1 and increasing

by 1 for each new sequence. The term k refers to the step

value, which represents the fixed interval between two

consecutive sequences. The variable l indicates the length

of each sequence, i.e., the number of elements within each

sequence. ln specifically refers to the length of the final

sequence in the set, while n represents the ID value of the

last sequence, indicating its position in the overall order of

the sequences. For instance, with a sequence length l ¼ 3,

the first sequence of input attributes would be: Order

Received Staff A always start activity non directly follow-

ing, . . ., Payment Confirmed Staff C non start activity non

directly following. During training, k is set to 1, ensuring

consistent sequence lengths. However, in repair scenarios,

k is adjusted to l, potentially resulting in the last sequence

being shorter than others. The reason for the difference in

k values between training and repair is that, during training,

the goal is to learn the connections between events,

whereas, during repair, the aim is to assign a single

resulting case ID to each individual event. For instance,

assuming a sequence length of 3, the first sequence consists

of the case IDs for the first three events. The second

training sequence would include the case IDs for the sec-

ond through fourth events, ensuring overlap. This overlap

helps the model capture relationships between consecutive

events. In contrast, the second repair sequence would

include the case IDs for the fourth through sixth events.

This process continues until the case ID for the final event

is mapped in a sequence.

In the final step, both the discrete input and output data

are converted into tokens. Tokenization is a critical pro-

cess, as it transforms the data into a format that is suit-

able for efficient processing by the Transformer model.

During tokenization, each discrete value in the data is

assigned a unique numeric ID based on a predefined dic-

tionary. While the specific values of these IDs do not carry

intrinsic meaning, ensuring that each token is uniquely

identifiable is crucial for maintaining the integrity and

accuracy of the data representation. In this study, we

employ word-level tokens, where multi-word expressions

are treated as single tokens by linking words with under-

scores. For instance, the activity Order Received is repre-

sented as Order_Received, which is then assigned a unique

numeric ID, such as 5, within the dataset. In addition to the

data-derived tokens, special tokens are employed for

specific functions. These tokens, which do not represent

actual data values, are essential for guiding the model’s

processing. The start-of-sequence (SOS) token indicates

the beginning of a sequence, while the end-of-sequence

(EOS) token marks its conclusion. These tokens help the

model identify where sequences start and end, ensuring

proper processing. Padding tokens are used to handle

sequences of varying lengths by adding extra tokens to

shorter sequences, making all sequences in a batch the

same length. Unknown tokens are used to represent any

values in the data that are not part of the predefined dic-

tionary, ensuring the model can still process such cases. In

practice, each input sequence is prefixed with an SOS token

and suffixed with an EOS token, resulting in the format:

SOS; input sequence;EOS. For example, the known

sequence of input attributes would be represented as:

SOS; 5 2 7 9; . . .; 8 4 6 9;EOS. For the output sequence, only
the SOS token is added at the beginning to signal the

Table 5 Order-to-cash event

log with start activity and

directly following order

received indicator

Case ID Activity .. Start Activity Directly Following Order Received

1 Order Received .. always start activity non directly following

Order Processed .. non start activity always directly following

1 Payment Confirmed .. non start activity non directly following

.. .. .. .. ..

Order Delivered .. non start activity non directly following
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commencement of the decoding process, with subsequent

tokens generated sequentially. The EOS token is placed at

the end of the training labels, which represent the ground

truth sequences, to indicate the termination of the output.

The EOS token plays a critical role during training, as it

explicitly signals when the model should stop generating

tokens. Without the EOS token, the model may produce

superfluous or incorrect outputs. Therefore, learning to

generate the EOS token at the appropriate time is essential

for ensuring proper sequence termination and maintaining

output accuracy. After tokenization, the data is represented

as a sequence of numeric IDs. This standardized repre-

sentation is essential for the Transformer’s functionality,

enabling consistent operations such as embedding (con-

verting tokens into vectors), attention mechanisms that

prioritize relevant input elements, and decoding to generate

the output.

4.2 Training

After preprocessing, the data is partitioned into two sub-

sets: a training set (90%) used to train the Transformer

model, and a test set (10%) used to evaluate the model’s

performance on unseen data. The architecture of the

Transformer is illustrated in Fig. 4. Initially, all three types

of data, discrete input, continuous input, and output are

embedded. Embedding is a technique that transforms the

data into compact vector representations, which are multi-

dimensional numerical arrays that capture the inherent

properties of the event data. This transformation is crucial

because the Transformer model requires these vector rep-

resentations to effectively process and understand the input

data. In this embedded space, semantically unrelated events

are represented by vectors that are distantly spaced, while

related or similar events are positioned closer together.

Following embedding, positional encoding is applied to the

inputs of both the encoder and decoder. This technique

adds a unique vector to each token’s embedding to indicate

its position within the sequence, as Transformers process

all tokens simultaneously and lack an inherent sense of

order. Positional encodings, created by applying sine and

cosine functions to token positions within the sequence,

enable the model to identify relationships and contextual

information among tokens based on their positions, thus

improving its ability to manage sequential data.

The encoder in the Transformer operates on discrete

input data through multiple layers sharing identical struc-

tures. Central to the encoder’s design, the multi-head

attention mechanism computes weighted dependencies

between input elements, allowing the model to capture the

relationships between them. By generating multiple paral-

lel representations of each input, it enables the simultane-

ous extraction of diverse patterns, enhancing the model’s

ability to encode complex relational structures within the

event data. Following the attention mechanism, the outputs

undergo normalization to ensure stable training. This pro-

cess adjusts the activations, or output values, produced by

each layer and addresses challenges such as exploding or

vanishing gradients. Exploding gradients cause instability

in training by producing excessively large updates, while

vanishing gradients hinder learning by making updates too

small. Gradients, which are the partial derivatives of the

loss function with respect to model parameters, guide the

updating of the model’s parameters during training. By

stabilizing the gradient flow, normalization ensures that

extreme values do not disrupt training, thus facilitating

effective parameter updates and accelerating convergence.

The data is then passed through a feed forward network,

which consists of multiple fully connected layers. Each

layer refines the input representation by applying a series of

transformations, progressively enhancing its ability to

capture and express relevant features. Finally, additional

normalization is applied to maintain consistency and sta-

bility in the output. Collectively, these operations allow the

model to generate more accurate and robust representations

of the input data. To integrate continuous input data into

the processing pipeline, the model employs a late fusion

approach, where continuous data is first encoded using a

feed forward network. This step is essential as it converts

the data into a fixed-size format compatible with the

Transformer’s architecture, enabling effective processing

by the attention mechanism. The encoded continuous data

is then concatenated with the output of the encoder. This

approach, as outlined by Rivera Lazo and Ñanculef (2022),

enables the model to seamlessly handle both discrete and

continuous data types within a unified modeling frame-

work, enhancing its capacity to process heterogeneous data

sources within the event log.

The Transformer’s decoder is similarly structured with

multiple layers. Initially, it employs masked multi-head

self-attention, enabling the model to focus on relevant

segments of the input while preventing consideration of

future tokens, which correspond to case IDs of following

events. This ensures that each prediction in the output

sequence relies solely on previous predictions, which is

crucial for maintaining the autoregressive nature of

sequence generation, where each output is generated step

by step based on preceding outputs. Following this, layer

normalization is applied to stabilize learning. Importantly,

the decoder integrates information from the enhanced

encoder’s output through a second multi-head attention

mechanism known as encoder-decoder attention. This dual

mechanism establishes connections between input and

output sequences. After incorporating the encoder’s output,

the decoder undergoes another normalization layer to refine

its internal representations. It subsequently processes data
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through a feed forward network, followed by another

normalization step. This iterative cycle of attention, nor-

malization, and feed forward operations continuously

refines the decoder’s outputs by focusing on relevant input

parts, stabilizing representations, and capturing complex

patterns, all while leveraging the relationships between

input and output to generate contextually accurate and

coherent output sequences.

The decoder’s outputs are then transformed from multi-

dimensional embeddings into a sequence of probabilities

via a final linear layer followed by a softmax operation.

The linear layer maps embeddings to token logits, which

are raw, unnormalized scores representing the likelihood of

each token. The softmax function then converts these logits

into a probability distribution over output tokens, normal-

izing them so that they sum to 1. This distribution repre-

sents the likelihood that a given event corresponds to a

specific case ID. The token with the highest probability is

then selected and detokenized, returning it to its original

form as a case ID within the output sequence. During

training, the model utilizes the probability distribution to

compute loss. This loss measures the discrepancy between

the predicted probability distribution and the true label for

each token in the sequence, crucial for training and

improving sequence generation accuracy. The total loss,

summed across all tokens in the sequence, guides the

computation of gradients with respect to the model

weights. These gradients inform the optimization algorithm

in updating the model weights, aiming to minimize loss

and enhance the model’s ability to generate accurate

sequences. The model undergoes multiple training cycles,

each comprising a forward pass (sequence generation) and

a backward pass (optimization), during which it processes

the entire dataset once and updates its weights. These

cycles, referred to as epochs, enable the model to itera-

tively improve its performance over time.

Fig. 4 Transformer architecture
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4.3 Repair

Once the Transformer model is trained, it can be used to

repair elusive cases. Our hybrid solution, as illustrated in

Fig. 5, merges Transformer-based repairs with declarative

rules within the repair process. This approach is selected as

Transformer-generated outputs often lack interpretability

due to the model’s black-box nature. By incorporating

declarative rules, we aim to enhance transparency and

comprehensibility of the outputs, leveraging explicit

domain knowledge. The preprocessing of event logs con-

taining the elusive case imperfection pattern mirrors the

steps outlined in Sect. 4.1 before the repair process

commences.

Each repair iteration starts with an ex-ante rule check,

which assigns case IDs based on the specified EAs. This

step is followed by a Transformer-based repair and may

conclude with an ex-post rule check that resets incorrectly

assigned case IDs using the same set of EAs. If certain EAs

were not utilized during the training phase, they can be

integrated into the repair process. This integration is

facilitated through a questionnaire-style query, prompting

stakeholders to specify values and frequencies for the

selected EAs, analogous to the training phase. This newly

acquired knowledge enhances the existing domain knowl-

edge and is incorporated into the rule checks by integrating

it into the relevant variables. However, retraining the

Transformer proves advantageous for incorporating sig-

nificant new insights into the model, such as changes in

activity sequences. Stakeholders determine the necessity of

rule checks based on the available domain knowledge. At

the end of each repair iteration, the repaired event logs are

saved in both XES and comma-separated values formats.

Furthermore, during the initial repair iteration, the

proportion of events lacking case IDs is presented for both

the original log and its repaired counterpart. Following

each subsequent repair iteration, stakeholders are updated

on the percentage of these events within the repaired event

log at that stage. Should this percentage be greater than

zero, stakeholders have the option to either accept the

current outcomes and conclude the repair process,

acknowledging that some events are still missing case IDs,

or to continue with additional repair iterations. In each

subsequent iteration, the repaired event log from the pre-

ceding iteration serves as input. Once the percentage of

events without assigned case IDs reaches zero, the repair

automatically concludes.

4.3.1 Ex-ante Rule Check

If an ex-ante rule check is performed, the objective is to

determine case IDs according to predefined rules. These

rules, grounded in domain knowledge, are represented as

EAs. These attributes include the corresponding values and

occurrences derived from questionnaire-like queries. Each

attribute requires a unique implementation tailored to its

specific assumptions. For instance, consider the start

activity attribute. The event log is grouped into cases, with

non-compliant cases identified as those beginning with an

activity other than the prescribed start activities. Events

that lack a case ID and correspond to a prescribed start

activity are then detected. A search is conducted to identify

the nearest non-compliant case, based on temporal prox-

imity. This strategy ensures that the event is linked to the

most temporally appropriate case, minimizing assignment

errors. If the time difference between the event and the start

activity of the case falls within a predefined window, the

case ID of the closest match is assigned to the event. This

Fig. 5 Repair approach
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time window serves to prevent erroneous assignments,

such as linking an event to a case occurring much later. By

adopting this approach, compliance with prescribed rules is

ensured, as events are assigned to cases in a manner con-

sistent with the correct temporal context. UAs like start

activity, end activity, mandatory occurrence, or single

occurrence apply to individual events. BAs, however,

necessitate consideration of pairs of events. For instance, in

the case of a directly following relationship between two

activities, each relationship is analyzed individually. We

define a directly following relationship such that each

predecessor activity is followed by a single successor,

ensuring a clear and unambiguous sequence. When an

activity is involved in multiple relationships, the order in

which these relationships are processed determines the

evaluation sequence. For each case in the event data, we

examine whether discrepancies exist between the counts of

predecessors and successors, as such imbalances may

indicate missing events. Predecessors without a case ID are

assigned to the temporally closest case where the number

of successors exceeds that of predecessors up to that point,

provided that the time difference between the predecessor

and its successor is within an acceptable range for that

case. A similar procedure applies to successors without a

case ID. Other BAs may include mutual exclusion and non-

contiguity, which were not examined or implemented in

this study.

4.3.2 Transformer-Based Repair

The Transformer-based repair process follows a structure

similar to training, as illustrated in Fig. 4. First, the discrete

input data is encoded as described above, and its output is

integrated with the processed continuous input data.

However, the decoder employs a different approach.

Starting with only an SOS token, the decoder utilizes

multi-head attention, normalization, and feed forward

processing similar to the training phase. It then generates

the case ID tokens iteratively, where each token is pre-

dicted based on the sequence of previously generated

tokens. Specifically, the SOS token generates the first case

ID token, which is subsequently used in combination with

the SOS token to predict the second case ID token, and so

on. At each step, the model selects the most probable next

token from the softmax probability distribution, progres-

sively constructing the full sequence. To avoid selecting

tokens that represent unknown or uncertain predictions, the

weights of such tokens are automatically adjusted before

applying the softmax layer, reducing their probability and

minimizing their chance of selection. Furthermore, a con-

figurable confidence threshold enables stakeholders using

HERE to exclude tokens that are uncertain, balancing

output completeness with accuracy. Specifically, when

identifying a case ID token, its softmax probability is

compared against the threshold. Tokens exceeding this

threshold are included; otherwise, a special token indicates

an absence of value.

In typical language translation tasks, the input and out-

put sequences can differ in length. However, in our

approach, we require that the number of case IDs matches

the number of input events exactly, with each input event

being assigned a specific case ID. If a premature EOS

prediction occurs, meaning the model predicts the end of

the output sequence too early, we ignore that prediction

and instead select the second most probable token. This

strategy ensures that each event is generally assigned a

corresponding case ID, thereby preserving the integrity of

the output, as long as the Transformer is able to make a

prediction. The repair process concludes upon achieving

the desired sequence length, thereby preventing excessive

case ID generation. Tokens are then converted back to their

original values using the tokenizer employed during

training. The resulting sequence of case IDs is then split

into individual case IDs, which are reassigned to the event

log. Enhancements include providing stakeholders with

token probabilities and the likelihood of subsequent tokens,

thereby increasing their awareness of data quality (Evron

et al. 2022). In scenarios where not every event requires

repair and a new case ID does not need to be determined

for each event (i.e., when elusiveness is less than 100%),

the case IDs for events that do not require repair remain

unchanged and are reused. This is based on our assumption

that all provided data is correct, aiming to avoid replacing

existing correct case IDs with predictions by the Trans-

former. Additionally, previously determined case IDs, such

as those from ex-ante rule checks, are thereby retained.

4.3.3 Ex-post Rule Check

At the end of each repair iteration, an ex-post rule check

can be conducted. This procedure is similar to the ex-ante

rule check, whereby various EAs and their implementa-

tions are used. Unlike its ex-ante counterpart, the primary

objective in the ex-post rule check is to rectify inaccurately

assigned case IDs by the Transformer. For example, when

considering start activities, each case in the event log is

assessed to determine if the designated start activity is

present and correctly located. If found included but not as

the first event, the case ID from preceding events is reset.

This reset is applied only to those events that did not have a

case ID recorded in the event log prior to the first repair

cycle. Again, appropriate procedures for each EA are

crucial to ensure the correct application of the rules. Upon

completion of the ex-post rule check, the repaired event log

is finalized, as exemplified in Table 6, and shared with

stakeholders.
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5 Evaluation

5.1 Artificial Formative Evaluation

In the initial stage of the evaluation, we conducted an

artificial formative assessment to deeply understand the

research problem, explore potential solutions, and gather

feedback on the design to refine and improve it during

development. This phase began with a literature review to

identify existing approaches for addressing event log

imperfections in general and the elusive case pattern in

particular. We built on related work in the field and for-

mulated DOs and a design specification (cf. Table 7).

These were then assessed through 11 semi-structured

interviews with experts from both research and industry. A

condensed version of the interview structure is available in

the online appendix (Appendix A; available online via

http://link.springer.com). Each interview started with a

detailed motivation and introduction to the research prob-

lem, focusing significantly on elusive cases and how they

manifest. Afterwards, we presented our preliminary DOs

and explained how the design specification was derived.

The design specification was then introduced and demon-

strated with examples.

Finally, interviewees were asked to provide general

feedback on the design specification and to rate it using an

end-labeled unipolar seven-point Likert scale (Höhne et al.

2021) across four criteria suitable for an ex-ante evaluation

(Sonnenberg and vom Brocke 2012). Thereby, we chose

novelty for justifying the problem statement, research gap

and DOs as it ensures the contribution is unique and

advances current knowledge; understandability was selec-

ted as the design must be clear and accessible to our target

group encompassing both practitioners and researchers

with diverse backgrounds and levels of expertise; com-

pleteness was important for validating that the design

specification covers all necessary aspects of the research

problem; and applicability was included to ensure the

design can be effectively implemented in real-world set-

tings (Sonnenberg and vom Brocke 2012). Each criterion

was introduced to the interviewees using a definition and

one or more guiding questions, as can be seen in Table 8.

For each criterion, the interviewees provided qualitative

feedback to justify their decision. In the end, additional

time was given to discuss any additional feedback points

not addressed by the criteria. The results of the quantitative

evaluation are shown in Fig. 6.

Interviewees, denoted as ‘‘I’’ followed by the ID as per

Table 2 for identification purposes, generally found the

Table 6 Repaired order-to-cash

event log
Case ID Probability Activity Timestamp Resource

1 – Order Received 2024-07-01T08:45:00?01:00 Staff A

1 65.07% Order Processed 2024-07-01T09:00:00?01:00 Staff B

1 – Payment Confirmed 2024-07-01T10:30:00?02:00 Staff C

.. .. .. .. ..

2 89.58% Order Delivered 2024-07-03T16:30:00?01:00 Staff D

Table 7 Design specification with references

Design Specification References

Generative AI has demonstrated potential in data reconstruction, motivating us to apply this technology for

reconstructing case IDs

Hofmann et al. (2021)

As we want to convert multiple input parameters (event log attributes) into a single output (case IDs), we define our

machine learning problem as a translation task

Sutskever et al. (2014)

Proven state-of-the-art performance in sequence-to-sequence translation tasks motivates us to build on the

Transformer architecture

Vaswani et al. (2017)

Event logs encompass various types of attributes, requiring us to integrate these attributes by concatenating DAs

for the encoder’s input and appending CAs to the encoder’s output

Rivera Lazo and Ñanculef

(2022)

Establishing declarative rules based on domain knowledge, through an interactive human-in-the-loop approach,

allow us to improve robustness

Chen et al. (2020)

By integrating generative AI with human intelligence via traditional rule checks, problem-solving capabilities are

enhanced

Raisch and Fomina (2024)

By presenting associated probabilities used to determine case IDs, stakeholder awareness regarding output quality

is improved. Thereby, correctness and completeness of the output can effectively be balanced by stakeholders

Evron et al. (2022)
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design specification easy to follow, facilitating a clear

understanding of each component. However, they noted

that this level of understandability is primarily for the

desired target group. For instance, I8 mentioned, ‘‘If you

know how process mining works, then it’s easy to under-

stand’’, while I2 highlighted the limitation that ‘‘For people

who are not tech-savvy, it is more difficult to understand.’’

In addition to these limitations, specific components were

criticized regarding understandability. I11 pointed out that

it was unclear whether the method requires sequences of

events or individual events one by one, suggesting that ‘‘for

non-technicians you should be more precise about the

decoder and encoder working iteratively and you should

also describe specifically how that works with an event

log.’’ Additionally, I11 identified issues with understanding

how rules defined by domain experts are incorporated, and

I6 questioned the autonomy of the method without domain

knowledge. Similarly, I5 also required clarification on the

goals of involving a human-in-the-loop. While the feed-

back given for the criterion understandability did not

directly affect the design specification of the artifact itself,

it prompted us to address all these points more clearly

when formulating Sect. 4.

Regarding novelty, the interviewees appreciated the use

of a modern machine learning architecture and, more

importantly, the integration of a human-in-the-loop

approach. Thereby, all interviewees agreed that the

approach is novel. However, some pointed out that using

machine learning to estimate case IDs is not new. I6

directed attention to trace clustering, acknowledging its

relevance but noting such algorithms are not case-specific,

meaning they override the existing case ID logic and

labels. This results in a complete regrouping of events

while disregarding potentially correct events. Similarly, I1

remarked that while the individual technologies and com-

ponents are new and their combination is novel, the

problem of event correlation itself is not new. I1

nonetheless commended the approach, stating it has the

potential to scale better and achieve higher accuracy than

existing methods.

Interviewees agreed that the design is complete in

addressing elusive cases but offered suggestions for

enhancing the method. For example, I3 stated that

‘‘Probabilities are assessed subjectively, which is why it is

good to have comparative values.’’ Therefore, we have

chosen to not only output the probability associated with

the determined case ID, but also indicate the probability of

the second most likely value. This change allows our target

group to better assess the probability values, thus enhanc-

ing quality awareness for each prediction. I6 emphasized

the importance of enriching an event log with domain

knowledge and integrating additional data to improve

predictions, recommending the integration of a realistic

process model to assist the algorithm in understanding the

underlying order of events. I5 suggested leveraging the

natural language processing capabilities of Transformers to

convert standardized process documents into a format

suitable for an additional input layer, enhancing the

Table 8 Artificial formative criteria definitions and guiding questions

Criterion Definition Guiding Questions

Understandability The comprehensibility of the elements incorporated in

the design specification.

How accessible is the design specification? Is the objective

apparent to you?

Novelty The uniqueness and originality of the approach

employed.

Are you aware of any comparable methods or strategies to address

this issue?

Completeness The extent to which our design specification reflects

the objective of our research.

Are there any elements within the design specification that are

missing or incomplete?

Applicability The suitability of the design specification in solving

the problem at hand.

What potential challenges do you foresee in applying the design

specification in real-world scenarios?

Fig. 6 Average Likert scale

ratings for artificial formative

evaluation criteria
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model’s ability to interpret and utilize process information

effectively. I6 also pointed out that the approach might

suffer from other event log quality issues such as erroneous

timestamps, suggesting a combination with other event log

repair methods. Additionally, interviewees raised concerns

about formulating the problem as a supervised machine

learning task, with I1 recommending an ‘‘architectural

design to correlate event pairs’’ instead of predicting a

specific case ID for each event. We consider all these

feedback points to be highly relevant and believe that each

individual direction would make a contribution to the field.

Due to the scope of this study, we decided to continue with

the initial architectural design and provide a proof of

concept for this architecture first. While we made a few

adjustments, the foundational elements of the architecture

were not altered. Nonetheless, we acknowledge these

suggestions as promising opportunities for future research.

Interviewees agreed on the general applicability of the

method but highlighted the importance of considering the

cost and resources associated with its implementation. I2

furthermore stressed that for the method to be relevant in

practice, it must be integrated into software natively and

meet the necessary performance requirements of the use

case: ‘‘In research, there is a lot of fuzz about improving

algorithms. In practice, no one uses such research proto-

types. So next to cost, resources, etc. it is important that it

is integrated in some software natively. Also, it must fulfill

the requirements regarding the necessary accuracy of the

use case.’’ I2 also questioned whether generative AI is the

best solution compared to changing underlying systems to

prevent errors: ‘‘You should ask yourselves the question: do

I have to use generative AI to solve that problem?

Shouldn’t I instead change the underlying system so the

error does not even occur? In which scenarios are the

resources needed for such a software smaller than to fight

IT so they implement changes in the underlying systems?’’

As these are all valid points of feedback, we position our

research as a solution for addressing scenarios where the

elusive case has already occurred and how it can be

remedied. However, it is important to note that process

mining analyses rely significantly on historical data.

Hence, the overarching objective should focus on avoiding

such errors proactively in the future. Concerns were also

raised about the input data quality, with I11 doubting the

output quality due to the assumption of perfect data and I10

noting the method’s inapplicability to other event log for-

mats required for object-centric process mining. Both

points offer interesting directions for future research.

5.2 Artificial Summative Evaluation

Building on the insights gained from the formative stage,

we continued with the artificial summative evaluation. In

this phase, we refined our design specification and instan-

tiated the method as a software prototype, serving as an

initial proof of concept. To simulate a realistic context, we

introduced elusive cases into event logs that were initially

free from this pattern by randomly deleting case IDs from

existing events. Our method was then applied to repair

these logs, allowing us to compare the results against the

known ground truth. This comparison enabled us to cal-

culate various metrics, demonstrating the technical feasi-

bility and effectiveness of our solution. To enable a fair

comparison with other approaches, we repeated this whole

evaluation procedure with various benchmarks. Hence, this

stage serves as a proof of concept, providing preliminary

evidence of the artifact’s effectiveness and potential utility.

5.2.1 Evaluation Data

For our baseline evaluation data, we selected three publicly

available event logs, chosen for their diverse characteris-

tics, including both synthetic and real-world data. These

logs differ in size and complexity, enabling us to assess the

robustness and effectiveness of our approach. Table 9

provides a summary of the key characteristics of the event

logs used in this evaluation phase.

For each log, elusive cases were introduced in incre-

ments of 10%, ranging from 10% to 90%. This means that

each log was modified with nine different degrees of elu-

siveness: at the least severe stage, only 10% of events

lacked a case ID, while at the most severe stage, 90% of

events were missing a case ID. For each of the three

baseline logs, we determined three EAs by analyzing the

data, defining them as follows:

• Review: The start activity is always invite reviewers,

while accept and reject can sometimes serve as end

activities. In the baseline log, the consistency of these

rules is 100%. Directly following relationships are

sometimes observed between invite additional reviewer

and itself, as well as between invite additional reviewer

and get review X, and invite additional reviewer and

time-out X.

• Renting: The start activity is always Apply for Viewing

Appointment, while Reject Prospective Tenant, Tenant

Cancels Apartment, and Evict Tenant can sometimes

function as end activities. The baseline log exhibits

100% consistency for these rules. Directly following

relationships are sometimes present between Pay Rent

and itself, Apply for Viewing Appointment and Set

Appointment, and Set Appointment and View The

Property.

• Hospital Billing: The start activity is always NEW,

while BILLED, NEW, and DELETE can sometimes

serve as end activities. The original log shows 100%
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consistency for the start activity and 94.12% for the end

activity. Directly following relationships are sometimes

observed between FIN and RELEASE, RELEASE and

CODE OK, and CODE OK and BILLED.

Finally, all these EAs were added to each event log and

elusiveness. Hence, this approach provides 27 event logs in

total for repair, covering various characteristics and

degrees of elusiveness.

5.2.2 Evaluation Metrics

Each repaired event log was evaluated based on ten metrics

aligned with DO 3, which emphasizes multiple dimensions

of data quality such as accuracy, consistency, and com-

pleteness. Among these, the first two metrics, which

address completeness and consistency, were defined by the

authors while the remaining eight metrics, which evaluate

different aspects of accuracy, are adopted from the work by

Bayomie et al. (2023).

Metric 1 (Completeness) quantifies the extent to which

missing case IDs in the log are resolved after repair. Let

Lerr represent the erroneous event log and L0 the repaired

event log. The set of events in Lerr with missing case IDs is

denoted as Eerr � E, where E is the set of all events in

L. After repair, let Erep � Eerr represent the subset of events

with resolved case IDs in L0. Completeness is then defined

as:

CPL ¼
1; if jEerrj ¼ 0

jErepj
jEerrj

; otherwise;

8
<

:

where j � j denotes the cardinality of the set. In cases where

there are no events with missing case IDs (jEerrj ¼ 0), CPL

is defined as 1, indicating that the log is already complete.

Metric 2 (Consistency) measures the extent to which

repaired logs conform to predefined domain-specific rules.

Let R ¼ fr1; r2; . . .; rkg denote the set of rules applicable to

cases in the log, where each rule ri specifies a consistency

condition based on domain knowledge. For a given rule r,

let Cr � I represent the set of cases in L0 that satisfy r,

where I is the set of all cases in L0. The consistency for rule

r, CONr, is defined as:

CONr ¼
jCrj
jIj :

To compute the overall consistency CON across all rules,

we aggregate the individual consistency values. This can be

done either as an arithmetic mean or a weighted mean,

depending on the relative importance of each rule r:

CON ¼
P

r2R wr � CONr
P

r2R wr
;

where wr is the weight assigned to rule r. If all rules are

equally important, wr ¼ 1 for all r, whereby CON becomes

the arithmetic mean, which we apply in Sect. 5.2.4.

For accuracy, we propose a more nuanced approach due

to its inherently strict nature: while a repaired case ID may

not exactly match the ground truth case ID, it can still be

highly plausible while having no adverse effects on

downstream analysis tasks. For instance, if two events

are very similar – sharing the same activity, resource, and

occurring close in time – switching their case IDs during

repair will not impact the overall utility of analyses such as

process discovery. To reflect this complexity, we adopt six

case similarity and two time proximity metrics reflecting

different aspects of elusive case repair as proposed by

Bayomie et al. (2023).

Metric 3 (Trace-to-Trace Similarity) assesses how clo-

sely two event logs capture the same control-flow by using

a string-edit distance Dins del based on insertions and

deletions of activities to compare unique traces between the

ground truth and repaired logs. Thereby, let T ¼
ft1; t2; . . .; tjT jg and T 0 ¼ ft01; t02; . . .; t0jT 0 jg represent the set

of distinct traces in the ground truth log L and the repaired

log L0, respectively. For each trace t 2 T , the trace-closest

trace t� 2 T 0 is defined as the trace in L0 which minimizes

Dins delðt; t�Þ. Hence, the trace-to-trace similarity Strace is

defined as:

Strace ¼ 1�
P

t2T Dins delðt; t�Þ
P

t2Tðjtj þ jt�jÞ ;

with jtj and jt�j being the lengths of the respective traces.

Metric 4 (Trace-to-Trace Frequency Similarity) evalu-

ates how closely two event logs align by considering both

Table 9 Event log statistics

Log Name Events Variants Average Trace Length Standard Deviation of Trace Length Cases

Review (synthetic) 236,360 4,118 23 8 10,000

Renting (synthetic) 96,440 508 9 6 10,000

Hospital Billing (real-life) 451,359 1,020 4 2 100,000
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the structure of their traces and their frequencies. The

metric finds the optimal one-to-one mapping between cases

in the ground truth log L and the repaired log L0 that

minimizes the total string-edit distance Dtotal across all

traces in L. The trace-to-trace frequency similarity Sfreq is

then defined as:

Sfreq ¼ 1� Dtotal

2� jEj ;

where jEj is the total number of events in the logs.

Metric 5 (Partial Case Similarity) evaluates how similar

two event logs are by counting the overlap of events in

cases that share the same starting event. For each pair of

cases r 2 SðLÞ in the ground truth log and r0 2 SðL0Þ in the

repaired log, the function intersectðr; r0Þ counts the num-

ber of common events (excluding the first event) which is

then averaged across all cases to compute the partial case

similarity Spartial:

Spartial ¼
P

r2SðLÞ; r02SðL0Þ:r½1�¼r0 ½1� intersectðr; r0Þ
jEj � jIj ;

where |E| is the total number of events in the logs, |I| is the

total number of cases, and r½1� represents the first event in
case r.

Metric 6 (Bigram Similarity) evaluates how similar two

event logs are based on the overlap of bigrams (sequences

of two consecutive events) between the logs. For each case

r 2 SðLÞ, the function occurs1ðhe; e0i; L0Þ checks if a

bigram he; e0i from the ground truth log L also appears in

the repaired log L0. It is defined as:

occurs1ðhe; e0i; L0Þ ¼
1; if the bigram he; e0i exists in L0

0; otherwise:

�

The bigram similarity Sbigram is then computed as the

average proportion of bigrams in the ground truth log L that

also occur in L0, normalized by the number of events in

each case:

Sbigram ¼ 1

jIj
X

r2SðLÞ

1

jrj � 1

Xjrj�1

i¼1

occurs1ðhrðiÞ; rðiþ 1Þi; L0Þ;

with |I| as the total number of cases in the logs, and jrj as
the number of events in a case r.

Metric 7 (Trigram Similarity) evaluates how similar two

event logs are based on the overlap of trigrams (sequences

of three consecutive events) between the logs. For each

case r 2 SðLÞ, the function occurs2ðhe; e0; e00i; L0Þ checks if
a trigram he; e0; e00i from the ground truth log L also appears

in the repaired log L0. It is defined as:

occurs2ðhe; e0; e00i; L0ÞÞ

¼
1; if the trigram he; e0; e00i exists in L0

0; otherwise:

�

The trigram similarity Strigram is then computed as the

average proportion of trigrams in the ground truth log

L that also occur in L0, normalized by the number of tri-

grams in each case:

Strigram ¼ 1

jIj
X

r2SðLÞ

1

jrj � 2

Xjrj�2

i¼1

occurs2ðhrðiÞ; rðiþ 1Þ; rðiþ 2Þi; L0Þ;

with |I| as the total number of cases in the logs, and jrj as
the number of events in a case r.

Metric 8 (Case Similarity) measures the extent to which

two event logs match in terms of their cases. It compares

the sets of cases from the ground truth log L and the

repaired log L0 and determines the proportion of identical

cases. Formally, it is defined as:

Scase ¼
jSðLÞ \ SðL0Þj

jIj ;

where SðLÞ \ SðL0Þ represents the set of cases that are

identical in both logs, and jIj is the total number of cases.

Metric 9 (Event-Time Deviation) evaluates the difference

in elapsed times of events between the ground truth log

L and the repaired log L0. It uses the symmetric mean

absolute percentage error (SMAPE) to quantify deviations,

hence constituting a measure based on relative errors.

Formally, it is defined as:

Stime ¼
P

e2E
jETðL;eÞ�ETðL0;eÞj
jETðL;eÞjþjETðL0;eÞj
jEj � jIj ;

where ETðL; eÞ is the elapsed time of event e in the ground

truth log L, ETðL0; eÞ is the elapsed time of event e in the

repaired log L, jEj is the total number of events, and jIj is
the number of cases.

Metric 10 (Case Cycle Time Deviation) assesses the rel-

ative deviation in cycle times between the ground truth log

L and the repaired log L0. This metric compares pairs of

cases starting with the same event and uses the SMAPE for

its calculation:

Scycle ¼
1

jIj
X

r 2 SðLÞ; r0 2 SðL0Þ
rð1Þ ¼ r0ð1Þ

jCTðrÞ � CTðr0Þj
jCTðrÞj þ jCTðr0Þj ;

with CTðrÞ as the cycle time of case r, computed as the

elapsed time between its first and last events, r 2 SðLÞ and
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r0 2 SðL0Þ as the cases in the ground truth and repaired

logs, and jIj as the total number of cases.

5.2.3 Evaluation Benchmarks

To conduct a comprehensive evaluation of our method, we

benchmarked it against three alternative approaches: Long

Short-Term Memory Network (LSTM), Random Frequen-

cies, and Random. Unfortunately, we were unable to

benchmark against competing state-of-the-art methods

from the literature either due to the unavailability of their

prototypes or differing assumptions regarding additional

data that we lack. For the LSTM benchmark, we employed

an LSTM network as they are well-suited for sequential

data (Hochreiter and Schmidhuber 1997) and are applied in

various process mining activities (van Dun et al. 2023;

Schmid et al. 2023). For this benchmark, we implemented

a simple three-layer LSTM architecture, combined with

dropout layers to prevent overfitting. The model predicts

the most likely case ID for each event based on the

sequence of preceding events. For more details on the

LSTM benchmark implementation, we refer to our code

repository. The Random Frequencies benchmark utilizes

the frequency with which each case ID appears in the

correct events of a log. Case IDs are assigned to events

randomly, but their probabilities are weighted based on the

observed frequency distribution in the correct data. The

Random benchmark assigns case IDs completely at ran-

dom, with each case ID being equally likely. Unlike the

Random Frequencies benchmark, this approach does not

consider the actual distribution of case IDs in the original

data, providing a purely stochastic baseline.

5.2.4 Evaluation Results

Our evaluation revealed critical insights into the strengths

and application areas of our method, along with its limi-

tations. Most notably, our approach demonstrates strong

performance in scenarios where sufficient training data is

available, particularly at low levels of elusiveness (below

Fig. 7 Sensitivity analysis for the Hospital Billing log

123

F. Zetzsche et al.: Case ID Revealed HERE..., Bus Inf Syst Eng



30%). For the Hospital Billing dataset, which is the largest

and only real-life log in our evaluation, our method out-

performs all other benchmarks by a significant margin,

showcasing its potential for practical, real-world applica-

tions. However, the results also indicate a dependency on

data volume, particularly at higher levels of elusiveness

(above 80%). For instance, in the Renting event log, the

smallest log in our data collection, a 90% elusiveness level

leaves us with only approximately nine thousand events for

training – a volume insufficient to learn meaningful pat-

terns. This dependency aligns with the general under-

standing that machine learning methods, including our

Transformer-based approach, require substantial amounts

of data to train effectively. In Fig. 7 we illustrate this

observation by means of a sensitivity analysis, showing a

clear advantage in performance under favorable conditions.

Consequently, the results highlight that when enough data

is available, our method is highly effective and scalable to

complex real-world settings.

Furthermore, the inclusion of rule checking as a fallback

mechanism (Configuration 2) further enhances the robust-

ness of our approach. Configuration 1 employs the stan-

dalone Transformer, with a maximum of 5 repair iterations,

input variables such as DAs activity and resource, CA

timestamp, three EAs (specifically UAs start activity, end

activity, and BA directly following), and a 0% threshold. In

contrast, Configuration 2 integrates the Transformer with

the same input variables, but augments it with both ex-ante

and ex-post rule checking. For the Hospital Billing dataset,

the inclusion of rule checking as a fallback mechanism at

higher levels of elusiveness significantly enhances perfor-

mance. Conversely, at lower levels of elusiveness, rule

checking tends to degrade performance slightly. The gap in

performance is particularly pronounced at the beginning

but narrows as elusiveness increases. In contrast, for the

Renting and Review logs, where data volume remains

consistently low, the difference between configurations is

already negligible at lower levels of elusiveness. However,

as elusiveness increases, Configuration 2 starts to outper-

form the standalone Transformer configuration, with this

transition occurring at a much earlier stage than observed

in the Hospital Billing log. This finding highlights that rule

checking acts as a fallback mechanism, that helps espe-

cially under challenging conditions of high elusiveness in

low-data scenarios.

In cases where enough training data is available,

meaning low elusiveness or higher volume baseline logs,

we demonstrated that our method is regularly more effec-

tive than the benchmarks. In smaller synthetic logs like

Renting and Review, however, HERE’s performance aligns

more closely with the LSTM benchmark at lower elu-

siveness levels. In these two logs, we mostly observe either

no substantial variation between both approaches or the

LSTM performing better under certain conditions. This

parity suggests that while our method holds promise, a

consistent outperformance of established techniques like

LSTM is not yet definitive. This further underscores the

importance of data volume for the Transformer approach to

deliver optimal results.

Apart from data volume, no other significant factors

appeared to influence the effectiveness of our method.

Metrics across the Renting and Review logs were generally

consistent and lower than those observed for the Hospital

Billing log. However, we acknowledge that log-specific

characteristics may unfold an impact on the method’s

performance as soon as the bottleneck of data volume is

resolved. We believe that data volume currently serves as

the biggest constraint, and addressing this limitation could

reveal nuanced effects of log-specific characteristics on the

overall effectiveness of our approach. The detailed results

for all benchmarks, logs and levels of elusiveness can be

found in the online Appendix B. Online Appendices C and

D provide the sensitivity analysis for the Renting and

Review log.

Finally, while we were unable to benchmark our method

directly against approaches from the literature, such as

Bayomie et al. (2023), their reported performance provides

a useful reference point. For instance, their method –

designed specifically for scenarios with 100% elusiveness –

consistently achieves similarity scores above 80% and time

deviation scores below 40%. Based on this, we would

generally recommend their approach for such logs, where

no case IDs are present. However, their approach may be

less suitable for cases involving partial elusiveness, where

preserving existing case ID logic is critical. Such scenarios

can, for instance, arise from temporary system outages. In

these situations, preserving existing case ID logic and

specific labels is crucial, making our method more appro-

priate. This is especially true when high volumes of

training data are available, which allows our Transformer-

based approach to realize its full potential. This under-

standing further emphasizes the need to match repair

techniques with the specific characteristics and constraints

of the data at hand.

5.3 Naturalistic Summative Evaluation

The final evaluation phase comprised a naturalistic sum-

mative evaluation to establish a proof of value. To achieve

that, we conducted another round of semi-structured

interviews with ten of the experts from the initial inter-

views, while preserving their IDs as specified in Table 2,

and let them interact with the fully developed prototype to

repair a rental process event log (Pohl and Berti 2023). A

condensed description of the interview structure is pro-

vided in the online appendix (Appendix E). While the ideal
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evaluation would have involved observing the approach

repairing an event log with the elusive case pattern in real-

time, the training time associated with our Transformer

architecture made a fully naturalistic application of the

method infeasible within the limited time frame of ten

interviews. Instead, we decided to repair the event log with

10% elusiveness multiple times in advance, considering all

possible choices of our method that could affect the final

outcome. Since our method takes an iterative approach in

which the stakeholder can gradually add domain knowl-

edge, this would result in an exponentially growing space

of possible outcomes. We therefore decided to sensibly

limit the selection options to encourage stakeholders to

interact freely while seeing immediate results. However,

this decision may influence interviewees’ evaluations, as

the restricted options might result in biased responses that

do not fully reflect the range of stakeholders’ experiences

and perceptions. Nonetheless, this approach encompasses

44 distinct repair outcomes. This setup creates a semi-re-

alistic environment for assessing the method, where real

users engage in real tasks within a simulated system that

approximates practical constraints. The prototype used for

the interaction can be found in the code repository.

After interacting with the prototype and repairing the

event log, we asked the interviewees to rate the artifact

using an end-labeled unipolar seven-point Likert scale

(Höhne et al. 2021) across four criteria suitable for an ex-

post evaluation (Sonnenberg and vom Brocke 2012). We

chose usefulness and ease of use to predict the user

acceptance of the artifact (Davis 1989), as these criteria are

critical for ensuring that the artifact meets user needs and

can be adopted with minimal resistance. Generality was

included to assess whether the artifact’s scope is broad

enough or if there are specific scenarios where it may not

be suitable, ensuring the artifact’s adaptability across var-

ious contexts. Applicability was chosen to confirm the

artifact’s practicality in real-world settings, highlighting its

relevance and potential impact (Sonnenberg and vom

Brocke 2012). Each criterion was presented to the

interviewees using a definition and a set of guiding ques-

tions, as detailed in Table 10. For each criterion, we asked

the interviewees to justify their assessment. Afterwards, we

gave the interviewees the opportunity to add more feed-

back in case the criteria did not meet all aspects of a

comprehensive assessment. The results of this evaluation

stage are depicted in Fig. 8.

The results indicate overall positive feedback regarding

the usefulness of the artifact. Almost all interviewees

acknowledged that the artifact effectively addresses the

problem of elusive cases, making it beneficial for stake-

holders working with affected event log data. However,

there were concerns about the quality of the results. For

instance, I4 stated, ‘‘It definitely helps because otherwise I

could not work with the event logs and cleaning the data by

hand is not feasible [...] However, what makes me a bit

puzzled is the accuracy of the model.’’ Similarly, I5

emphasized the need for accuracy, stating, ‘‘Accuracy

should be at least above 60 percent.’’ Furthermore, I1

pointed out that the main issue is not accuracy itself but the

validation of accuracy in real-life settings, as there is no

ground truth data available to verify the repaired event log.

I1 hence suggests to ‘‘understand it as a problem from

visual analytics. So, generate data and see what the results

look like.’’ Implementing visual data validation techniques

from classic data science and allowing domain experts to

interact with the tool and evaluate the repaired process

model could enhance the artifact’s effectiveness.

Regarding ease of use, the feedback was mostly posi-

tive. Interviewees highlighted the advantages of a graphical

user interface and a simplified code display that abstracts

complexity. Many appreciated the extensive opportunities

for stakeholder interaction and the incorporation of domain

knowledge. However, concerns were raised about the

artifact’s ease of use depending on the specific target

group. For instance, a data engineer might prefer more

control over technical details, whereas a process owner

might need an even simpler frontend. I8 commented,

‘‘There are two target groups. One is the data engineering

Table 10 Naturalistic summative criteria definitions and guiding questions

Criterion Definition Guiding Questions

Usefulness The extent to which you perceive that the artifact is useful

in addressing the problem.

How well do you think the artifact will improve working with

elusive cases, and what benefits do you expect it to provide?

Ease of Use The extent to which you perceive that using the artifact

will be free of effort.

How user-friendly is the artifact? What features contribute to its ease

of use? Are there any entry barriers?

Applicability The extent to which you perceive the artifact instance as

suitable for solving the intended problem.

How suitable is the artifact for solving the problem, and what

challenges might arise in its application?

Generality The extent to which you perceive the artifact instance as

applicable across different contexts or domains.

How versatile is the artifact across various contexts, and what limits

its applicability in different settings?
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team, for whom it will be easy to use. But the specialist

department should not be fiddling around with data mod-

els. The frontend with the buttons is the maximum for this,

but nothing in the backend.’’ Similarly, I9 noted, ‘‘This task

is more likely to be undertaken by the person responsible

for creating event logs. The data engineer therefore needs

to interact with the prototype and the prototype might be

too easy for him as he likes to touch the data.’’ Addition-

ally, some interviewees mentioned that the method’s

complexity might require more user guidance. For non-

technical stakeholders, I7 suggested explaining each deci-

sion point in simple terms and adding tooltips to make the

method more self-explanatory.

Applicability received the lowest scores, though still

highly positive overall. Interviewees raised concerns about

computing times and resource utilization. While some

emphasized the need for near-real-time interaction, others,

like I6, found it acceptable if training could be completed

overnight or within a working day: ‘‘[...] uploading my

data alone takes more than 1.5 hours. So you can simply

let the model run overnight, provided you have a certain

amount of confidence in the output.’’ I10 mentioned con-

cerns about the trade-off between accuracy and complete-

ness and suggested using heuristics to address low

completeness: ‘‘It’s not important to somehow find a pro-

cess model or something that really solves everything

perfectly, but instead in finding a solution, simply making

some kind of suggestion or using a heuristic for the

remaining missing cases.’’ Additionally, there were doubts

about the artifact’s performance in scenarios with other

types of errors, such as incorrect activity labels or times-

tamps. Applicability was also found to depend on the

specific process and use case. I2 highlighted the potential

value in high-stakes environments like hospitals: ‘‘This can

be worth a lot for hospitals. If you enable having a billing

event log for a single hospital, you can enrich the whole

chain of hospitals.’’ I2 also noted that using the artifact in

such an environment could be more practical than manu-

ally fixing underlying legacy systems. Nonetheless, I2

emphasized that our method is a workaround and that

ideally, the way of logging the events should be enhanced.

Regarding generality, all interviewees agreed that the

method could be applied as long as an XES style event log

is available. I8 commented that a ‘‘reasonably relational

data basis’’ is typically sufficient and commonly available.

However, some concerns were raised about varying per-

formance across different event logs. I3 noted that ‘‘Gen-

erality is questionable not because of industry or domain,

but rather because of the characteristics of the process

such as the number of variants.’’ Similarly, I1 acknowl-

edged that more complex processes are harder to repair but

suggested that ‘‘room for specific data preprocessing

paths’’ could mitigate these issues. Allowing stakeholders

to aggregate activity labels and incorporating data science

techniques like undersampling or synthetic oversampling

for rarer traces could improve the model’s performance and

better handle complex processes.

6 Discussion

Our objective was to design and develop a method to repair

the elusive case imperfection pattern. To this end, we uti-

lized generative AI, specifically the Transformer architec-

ture, and incorporated a rule-based approach within a

human-in-the-loop framework. This method was instanti-

ated as a software prototype and evaluated by 21 expert

interviews as well as by repairing three distinct event logs

with elusiveness levels ranging from 10% to 90%. Our

findings indicate that the method is able to reconstruct case

IDs across different process contexts and complexities with

the inclusion of domain knowledge (DO 1), acting as a

fallback mechanism, typically enhancing its performance

when low volumes of data are available. Thereby, human

expertise can help in explicitly integrating contextual

information, while rule checks facilitate the assignment of

events to cases. This process allows for automated vali-

dation, lessening the effort for stakeholders to verify the

output. Nonetheless, stakeholders are advised to conduct a

final verification of the output before initiating process

mining analyses. Utilizing output confidence values can

assist in this validation process, allowing filtering for val-

ues falling below a specified threshold, thereby reducing

subsequent manual efforts.

Our method entails some practical considerations. First,

stakeholders face a trade-off between the two data quality

Fig. 8 Average Likert scale

ratings for naturalistic

summative evaluation criteria
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dimensions accuracy and completeness. Higher threshold

confidence levels in the Transformer typically improve

accuracy but reduce the number of identified case IDs.

Conversely, prioritizing completeness allows for basic

process discovery, even if some data points are less precise.

This characteristic of our approach allows to prioritize

certain data quality dimensions over others and, hence,

enables an individual adjustment for the contextual factors

of organizational application. Second, the output’s quality

relies on several factors. Our approach was designed under

the assumption that the data is of high quality, with the

exception of elusive cases. We acknowledge that this

assumption does not always hold true in practice and

necessitates specific data preprocessing to address various

data quality issues beforehand. Nevertheless, our approach

is intended to be one link in a chain of methods aimed at

data quality improvement. The combined effect of these

methods is expected to enable effective data quality man-

agement. Additionally, directly measuring the accuracy of

the output is impractical in real-life applications where

ground truth is unavailable. Thus, the results should be

considered in combination with the results of process dis-

covery, enabling a practical evaluation of their validity.

Third, our findings indicate that our artifact produces best

results when applied to large data volumes with low levels

of elusiveness. As such, real-life application should take

into account the limitations of the Transformer model when

working with smaller datasets. For cases with limited data,

alternative methods may offer superior performance, as the

Transformer’s efficacy increases with larger datasets.

From a theoretical standpoint, our method addresses a

limitation of traditional repair approaches: the underuti-

lization of event log data and complete regrouping of

events. Thereby, our method can operate effectively on

correct samples of data while keeping the existing case ID

logic. The flexibility of our method ensures its applicability

to a wide range of event log attributes and expert knowl-

edge, enhancing its overall utility. This adaptability is

particularly important in the increasingly prevalent object-

centric paradigm, where processes involve multiple inter-

acting entities rather than a single-case assumption. While

transitioning to an object-centric paradigm necessitates

method modifications, it is common for object IDs to be

missing or incomplete. Furthermore, our approach

demonstrates that generative AI can be extended beyond

natural language processing to address event log data

quality issues. Lastly, our results indicate that integrating a

human-in-the-loop with generative AI leads to more

promising outcomes. To the best of our knowledge, this is

the first study to employ the Transformer architecture for

linking events to process instances, highlighting the effi-

cacy of generative AI in this domain.

Our work also entails some limitations. First, the uti-

lization of a supervised learning framework leads to a sit-

uation where our model can only predict outcomes for case

IDs included in the training dataset. Consequently, if the

erroneous log includes IDs absent from the training data,

new events cannot be associated with these cases. Simi-

larly, the events occurring during repair cannot be attrib-

uted to more cases than those included in the training set.

Nonetheless, as long as the sequence of events is accurately

anticipated, our artifact remains effective. Second, a case is

defined both by the training dataset and by expert knowl-

edge specifications. In practice, however, case boundaries

may be more fluid. For instance, actions within a buffer

zone may still be considered part of the corresponding case

after the actual end activity, whereas actions beyond this

buffer may initiate a new case. Nevertheless, as such sce-

narios could also be accommodated using corresponding

rules, we treated the boundaries of a case as fixed in our

approach. Lastly, we have not considered the computing

costs involved. In practical applications, these costs are

significant factors influencing the feasibility of imple-

menting the approach. Therefore, while our approach may

show promise in theoretical contexts, its real-world appli-

cability also relies on its computational efficiency. Never-

theless, we assert that the potential advantages of enabling

process mining analyses outweigh the associated expenses.

Based on our findings, several promising avenues for

future research can enhance and extend our approach.

Specifically, focusing on unsupervised learning and inte-

grating diverse data sources presents significant opportu-

nities. First, unsupervised learning can uncover patterns

without labeled data, which is advantageous when no

correct data is available. Reformulating our machine

learning problem as a clustering task and exploring modi-

fied Transformer architectures could therefore enhance

applicability. This holds especially true in real-life appli-

cations where no correct data is available for training.

Second, expanding the Transformer’s input to include

various data sources, such as process documentation or

models can provide a more comprehensive view of events.

This approach can uncover contextual information not

present in event logs and domain knowledge alone. Eval-

uating the impact of each data type and identifying bene-

ficial as well as adversarial effects will be crucial.

7 Conclusion

Process mining relies on high-quality event logs to provide

accurate and reliable insights into business processes. A

significant issue affecting event log quality is the elusive

case imperfection pattern, where events lack case IDs,

making it difficult to link them to specific process
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instances. Since many process mining techniques rely on

this linking, elusive cases undermine the effectiveness of

process mining techniques, leading to inaccurate or

incomplete analyses. To tackle this issue, we explored how

generative AI can repair the elusive case imperfection

pattern. We developed HERE, a method that combines a

traditional rule-based approach with the Transformer

architecture, enriched by domain expertise within a human-

in-the-loop framework. Employing the DSR paradigm, we

iteratively designed HERE, evaluated it through 21 expert

interviews, and demonstrated its effectiveness by repairing

a total of three event logs with elusiveness levels ranging

from 10% to 90%. Our results demonstrate that HERE can

effectively determine case IDs and outperform benchmark

approaches, especially at lower levels of elusiveness, pro-

vided that a large data volume is available. To the best of

our knowledge, we are the first to leverage generative AI

for this specific data quality issue, a claim supported by

expert assessments during our evaluation. Our contribution

lies in providing an alternative solution to current methods

for addressing the elusive case imperfection pattern by

leveraging the extensive data available in the event log

while keeping the existing case ID logic. Depending on

context and requirements, our hybrid approach offers a

balance between accuracy and completeness of event data,

thus enabling process mining analyses. Additionally, we

provide the instantiated method as a software prototype

that can be utilized and further developed to address similar

data quality challenges.

While our method successfully addresses the elusive

case, it has certain limitations. These include its design as a

supervised learning approach, the associated costs, and the

definition of cases with fixed boundaries. Hence, there are

several avenues for future research. For instance, exploring

the suitability and effectiveness of alternative structures,

such as unsupervised learning, for solving this type of data

quality issue could be beneficial. Beyond event logs in XES

format, it would be worthwhile to investigate how our

approach can handle other data sources.
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machine learning: a state of the art. Artif Intell Rev

56:3005–3054

Myers MD, Newman M (2007) The qualitative interview in is

research: examining the craft. Inf Organ 17(1):2–26

Nguyen HTC, Lee S, Kim J, Ko J, Comuzzi M (2019) Autoencoders

for improving quality of process event logs. Expert Syst Appl

131:132–147

Padmanabhan B, Fang X, Sahoo N, Burton-Jones A (2022) Machine

learning in information systems research. MIS Q 46(1):iii–xviii

Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2007) A

design science research methodology for information systems

research. J Manag Inf Syst 24(3):45–77

Peffers K, Rothenberger M, Tuunanen T, Vaezi R (2012) Design

science research evaluation. In: 7th International Conference,

DESRIST 2012, Springer, Heidelberg

Pegoraro M, Uysal MS, Hülsmann TH, van der Aalst WMP (2022)

Uncertain case identifiers in process mining: a user study of the

event-case correlation problem on click data. In: 23rd Interna-

tional Conference, BPMDS 2022 and 27th International Con-

ference, EMMSAD 2022, Springer, Cham

Pesic M, Schonenberg H, van der Aalst WM (2007) DECLARE: full

support for loosely-structured processes. In: 11th IEEE Interna-

tional Enterprise Distributed Object Computing Conference

(EDOC 2007), Annapolis

Pohl T, Berti A (2023) (Un)Fair Process Mining Event Logs. https://

zenodo.org/records/8059489, accessed 4 June 2024

Pourmirza S, Dijkman R, Grefen P (2017) Correlation miner: mining

business process models and event correlations without case

identifiers. Int J Coop Inf Syst 26(2):1742,002

Raisch S, Fomina K (2024) Combining human and artificial

intelligence: hybrid problem-solving in organizations. Acad

Manag Rev. https://doi.org/10.5465/amr.2021.0421
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