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Abstract

The selection of algorithms is a crucial step
in designing AI services for real-world time series
classification use cases. Traditional methods
such as neural architecture search, automated
machine learning, combined algorithm selection, and
hyperparameter optimizations are effective but require
considerable computational resources and necessitate
access to all data points to run their optimizations.
In this work, we introduce a novel data fingerprint
that describes any time series classification dataset
in a privacy-preserving manner and provides insight
into the algorithm selection problem without requiring
training on the (unseen) dataset. By decomposing
the multi-target regression problem, only our data
fingerprints are used to estimate algorithm performance
and uncertainty in a scalable and adaptable manner.
Our approach is evaluated on the 112 University of
California riverside benchmark datasets, demonstrating
its effectiveness in predicting the performance of 35
state-of-the-art algorithms and providing valuable
insights for effective algorithm selection in time series
classification service systems, improving a naive
baseline by 7.32% on average in estimating the mean
performance and 15.81% in estimating the uncertainty.

Keywords: time series classification, performance
estimation, quantification of model risk

1. Introduction

Time series classification involves analyzing
sequences of data points, indexed in time order,
to categorize them into predefined classes. It is
crucial in various services such as health record
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Figure 1: Approach for performance estimation in time series
classification. Inspired by Amini et al., 2020.

analysis (W. K. Wang et al., 2022), predictive
maintenance (Rudolph et al., 2020), cyber-security
(MontazeriShatoori et al., 2020), and earthquake
prediction (Arul & Kareem, 2021), reflecting its
wide-ranging impact in both scientific and practical
applications.

The plethora of algorithms developed for time
series classification presents a significant challenge:
the selection of the most appropriate algorithm in a
service to achieve the best performance for a specific
dataset—and, therefore, the related domain problem—is
a complex task (Oreski & Redep, 2018). This task
is formalized by Rice and is known as the algorithm
selection (AS) problem (Rice, 1976). According to the
“no free lunch” theorem, under certain assumptions, no
algorithm uniformly dominates all others (Wolpert &
Macready, 1997). It is not known which algorithm will
perform best on the new dataset. Therefore, we present
an approach to estimate these performances based on a
data fingerprint, describing the dataset in an aggregated
manner Figure 1. As a result, our approach allows us to
differentiate variance in classification accuracies among
different algorithms on real-world datasets, such as the
UCR Yoga-dataset (Bagnall et al., 2017), an observation
highlighted in Figure 2b.

Organizations, researchers and service provider
alike are constrained by limited resources—time,



(a) Sampled time series instances.

(b) Histogram on the classification performance.

Figure 2: Problem statement: Mapping the time series
instances to the algorithm performance. Figure 2a: Ten
sampled time series instances of each target class and their
averages in the Yoga-dataset. Figure 2b: Histogram of
the classification performance of different algorithms on the
Yoga-dataset across 30 cross validation folds. Achieved
accuracy on the x-axis and density on the y-axis.

computation, data, and expertise. Other methods, such
as neural architecture search (NAS) (Elsken et al.,
2019), automated machine learning (AutoML) (Feurer
et al., 2022; Hutter et al., 2019), transfer learning
(TL) (Lu et al., 2015), hyperparameter optimization
(HPO) (Bischl et al., 2023) and algorithm configuration
(Lindauer et al., 2015) engage in broad algorithmic
experimentation or adaptation of pre-trained models
for similar tasks. These methods, despite their
effectiveness, face substantial resource demands and
complexity in selecting the most appropriate algorithm
for possible deployment within an AI service (Elsken
et al., 2018). In addition, they necessitate access to
data points to run their optimizations, compromising
data privacy. In scenarios where data privacy is a
concern, the AI service provider needs a solution that
allows for informed decision-making without requiring
full access to the dataset. For a new, unseen time
series classification dataset, the service provider wants
to assess which state-of-the-art algorithm is most

promising without training the algorithms themselves,
running HPO or NAS. Instead, this can be achieved
by analyzing the dataset’s characteristics, enabling the
service to act as an assistant in the AI development
process while maintaining data privacy.

To address these shortcomings, we want to answer
the following research questions (RQs): (RQ1) How
can diverse time series datasets be translated into a
standardized input format to facilitate comparison and
analysis? (RQ2) To what extent can this standardized
input format be used to estimate the expected
performance of various state-of-the-art classification
algorithms? (RQ3) How can the uncertainty associated
with the predicted algorithm performance on these
standardized inputs be estimated?

In our work, we propose a data fingerprint to
characterize datasets. We translate the algorithm
selection (AS) problem into a multi-target regression
problem that estimates algorithm performance and
uncertainty, as illustrated in Figure 1. We train
various regressors on data fingerprints from benchmark
datasets to predict the performance of time series
classification algorithms on these benchmarks. Once
trained, these regressors can be applied to new, unseen
data fingerprints to predict how each algorithm within
a service system will perform on the new datasets.
As a result, our approach effectively suggests the
most suitable algorithm for any new dataset in a
privacy-preserving manner, as only the data fingerprint
is shared, not the actual data points. Therefore, a
service provider does not need to access the dataset but
can assist in the AI development process by suggesting
the most promising classification algorithm—only by
processing the fingerprint, which does not expose any
data points. Our approach is highly customizable and
can provide tailored suggestions by predicting other
target variables in addition to accuracy and uncertainty
to provide a basis for informed decision-making for AS
in AI services.

Our contributions are threefold:

1. We introduce novel data fingerprints to form
feature maps for AS representing whole time
series datasets. They capture the essential
attributes of any time series dataset, making
it easier to compare datasets and providing a
standardized input for regression models.

2. We present a customizable approach that utilizes
the fingerprints and benchmark results to
decompose any multi-target regression problem
related to AS. This includes estimating algorithm
performance and its uncertainty in the work at
hand—but can easily be adapted to other target



objectives,to select the algorithm that will deliver
the highest performance on a given dataset. Our
approach enables efficient AS without the need
for extensive training and testing of multiple
algorithms, thus streamlining the process of
achieving optimal model performance.

3. We extensively experiment on 112 benchmark
datasets and the expected performance of 35
state-of-the-art classification algorithms on
unseen datasets. The results of our analysis
provide insights for researchers and practitioners
navigating AS in time series classification.
Surpassing a naive baseline by an average of
7.32% in estimating the mean performance and
15.81% in estimating the uncertainty, it shows the
approach’s potential for future AS problems. We
offer an out-of-the-box framework that predicts
algorithm performance on any (unseen) dataset
using the fingerprints.

2. Related Work

In this section, we review various methods for
algorithm selection, highlighting the computational
challenges and privacy concerns associated with these
methods to give an overview of the state-of-the-art in
the field.

Algorithm selection: AS generally describes the
selection of the most suitable algorithms for novel
tasks (Rice, 1976). Unlike the broader approach that
does not distinguish between general and machine
learning-specific algorithms, our focus is squarely on the
latter. We adopt a meta-learning perspective, utilizing
machine learning algorithms not for direct selection but
for estimating performance and uncertainty of potential
algorithm choices. Based on these results, we use the
predictions of the best algorithm selectors to make a
final prediction about the expected performance and
uncertainty. However, the predictions could also be used
for the selection itself. For example, the algorithm with
the highest performance could be selected. Other target
values, such as the expected running time, could also be
estimated and used as a basis for decision-making. A
distinction can be made between online and offline AS
(Degroote, 2017). Online AS describes the case where
no training data is available in advance, and the selection
is made iteratively. Our approach is to be considered
offline AS.

Distinction from other methods: The selection of
hyperparameters for an algorithm can also be optimized,
which is referred to as HPO (Bischl et al., 2023); if
they are generalized for a set of tasks, this is called
algorithm configuration (Schede et al., 2022). As

we use benchmarks as a data basis, we assume that
the benchmarks utilized already incorporate potential
performance improvements achievable through HPO or
algorithm configuration. This is also an advantage over
other methods such as NAS (Elsken et al., 2019) or
AutoML (Hutter et al., 2019), which have also been
applied to the algorithm selection problem in time-series
classification (Mu et al., 2023; Parmentier et al., 2021).
These methods are not only computationally intensive,
as they attempt to find an optimal architecture or
algorithm through targeted experimentation, but they
also require full access to data points, compromising
data privacy. There is ongoing research addressing
the limitation of data privacy in NAS and AutoML
(F. Wang et al., 2022; Yan et al., 2022; Zhang et al.,
2021). These works, although primarily focused on
domains other than time series classification, highlight
the importance of privacy-preserving techniques in
algorithm selection and model training. If both AS
and HPO are carried out, it is named the combined
algorithm selection and hyperparameter optimization
(CASH) problem (Thornton et al., 2013). A large
number of algorithms already exist for time series
classification. Our work is intended to help estimate
the performance and uncertainty for new datasets and
thus support the selection process instead of searching
for new architectures in a computationally intensive
manner. TL (Lu et al., 2015) is also based on existing
algorithms, which are adapted to the new task. However,
here too, the expected performance is unknown in
advance.

3. Approach

Consider an AI service that supports the
development of time series classification solutions
by recommending the most suitable algorithms based
on data characteristics, enabling more informed AS
and solutions tailored to the specific data of new
clients. While the current state-of-the-art time series
classification algorithm can be employed, this approach
often overlooks the complexities and nuances inherent
in real-world data. These algorithms typically rely
on benchmark datasets that may not fully capture the
intricacies of diverse datasets. Instead, our approach
identifies the most promising algorithm based on
the unique characteristics of the new client’s dataset,
thereby delivering a truly smart service as defined by
Jussen et al., 2020.

To formalize our approach, we start by defining
the time series classification problem, its performance
assessment, and key concepts of our fingerprint
aggregation. For a given time series x, a time series



classification algorithm predicts its target class y. Each
task is represented by an individual dataset d with an
arbitrary number of instances xi to be classified. Let
xi,d denote a (1 × T ) vector of an univariate time
series. The classification task is to learn h(.): xi,d =(
xi,d
1 , . . . xi,d

T

)
h−→ yi,d with: d : datasets, 1 . . . D, i :

instance, 1 . . . I, t : time, 1 . . . T .
For an algorithm h(.), its classification performance

on a dataset d is defined as Ed
h

[
1{yi,d = h(xi,d)} | τ

]
,

where τ relates to all training instances and their
respective labels (Hastie et al., 2009). Predicting how
the algorithms will perform on this task can provide
insight into which algorithm should be chosen for the
task. To do this, we first translate the dataset into a
standardized data fingerprint fd

D(.) of fixed size, so that
it can be used as input to a regressor. Then we learn a
mapping fd

D(.) −→ Ed
h between the data fingerprint and

the expected performance Ed
h.

Figure 3: Approach step-wise aggregation function.

More precisely, we map the data fingerprint to the
mean µ(Ed

h) and the standard deviation σ(Ed
h) of the

performance, which occurs over multiple training runs,
using k-fold cross-validation. The standardized data
fingerprint fd

D(.) is derived by aggregating information
about the time series dataset on three levels, motivated
by balancing the discriminating power of characteristics
while consolidating information about individual time
series into a vector of fixed size. This step-wise
aggregation is shown in Figure 3 and determines
the structure of the remaining section: Instance-level
fingerprint (see Section 3.1), class-level fingerprint
(see Section 3.2), and the dataset-level fingerprint (see
Section 3.3).

3.1. Instance-level fingerprint

On the first level, we want to describe each instance
by representations of fixed size instead of the actual
values themselves. Thus, we introduce an instance-level
fingerprint. This instance-level fingerprint is described
by fI(.) and is calculated for each instance xi,d

of a dataset d separately: ∀i ∈ I : fI(x
i,d).

One exemplary representation could be to identify
the deviation of change in one time step to the

average deviation given by ∆xi,d, such as fI(x
i,d) =√

1
T−2

T−1∑
t=1

(
xi,d
t+1 − xi,d

t −∆xi,d
)2

.

Other statistical measures can also be used to capture
different aspects of the time series data. The descriptive
statistics are combined in a (1 × LI) vector, where
LI is the number of statistical measures used, to form
the instance-level fingerprint fI(xi,d). An overview of
the proposed statistical measures like Skewness γ1 and
Kurtosis Kurt[X] can be found in the code of this work.

3.2. Class-level fingerprint

On the next level, we want to aggregate the
instance-level fingerprints of each class into class-level
fingerprints of fixed size. So each class is assigned a
class-level fingerprint, which results from transforming
all instance-level fingerprints belonging to that class.

To aggregate the instance fingerprint for all instances
of a given class c in a dataset d, we first define the
set of indexes related to a specific class as Ic =
{i|yi,d = c}. We can then derive fC(.) as: ∀c ∈
C : f c

C

(
{fI(xi,d)}i∈Ic

)
. One option is to calculate

the average of a given fingerprint across all instances
of a class, so f c

C(.) = 1
|Ic|

∑
i∈Ic fI

(
xi,d

)
. Another

option is to take the median value as a representation for
the class instances. Again, fC(.) can be independently
selected from fI(.) or the later defined data fingerprint
fD(.). Our approach provides a generalizing concept
that can be easily extended and adapted by choosing
different aggregation functions.

3.3. Dataset-level fingerprint

On the last level, we aggregate the previously
calculated class-level fingerprint fC(.) and extend
them by meta characteristics to form a standardized
dataset-level fingerprint that describes any time series
classification dataset as a function of fD(.), as:

∀d ∈ D : fd
D

(
f1
C (.) , . . . , f

|C|
C (.)

)
. One example

aggregation function is the standard deviation of each
class-level fingerprint across the available classes:√∑

c∈C(fc
C(.))−fc

C)
2

|C| .

Besides the aggregated fC(.), we also add meta
characteristics of our dataset, such as the total number
of training and test instances, the length of each
instance expressed as ||xi,d||, number of target classes.
Moreover, the distribution of instances across classes is
characterized by the minimum and maximum number



of instances in any class, represented by min(||Ic||)
and max(||Ic||), respectively as well as the average
number of instances per class and the standard deviation
of the number of instances per class. This fixed
size (1 × LD) vector, where LD is determined by
the dataset-level aggregation type and the number of
meta characteristics, provides a comprehensive dataset
description and serves as the input for our multi-target
regression problem. Details on the decomposition of this
multi-target regression are discussed in the following
subsection.

3.4. Performance estimation

There is no single algorithm that performs best
on all available tasks—the “no free lunch” theorem
(Wolpert & Macready, 1997). Our approach addresses
this by mapping our proposed fingerprint fd

D(.) to
any multi-objective performance measures defined by
the multi-target regression problem. It does so by
decomposing the performance and its uncertainty, as
well as the algorithm h(.), learning a regressor r(.)
separately as shown in Figure 1 on page 1.

Motivated by the central limit theorem (Rosenblatt,
1956) and the asymptotic characteristics of k-folds (Li,
2023), we derive the estimation of the performance and
its uncertainty for our approach. We learn a regressor

r(.) such that fd
D(.)

r(.)−−→ µ̂(Ed
h), estimating the

mean classification performance of algorithm h(.) on a
dataset d as well as the observed standard deviation in

performance fd
D(.)

r(.)−−→ σ̂(Ed
h). Note that our approach

and code allow us to estimate various characteristics of
an algorithm’s performance, e.g., lower percentiles of
the k-folds for estimating lower bounds in a risk-averse
setting like earthquake prediction (Arul & Kareem,
2021). Details on the regressors r(.) applied to the
multi-target regression AS problem can be found in
Section 4.4.

4. Experiment & results

Our approach estimates the performance of an
algorithm h(.) on a dataset d, described by Ed

h,
solely through the computation of select characteristics
that describe the dataset. To train and test this
mapping, we need various datasets and the related
performance of multiple classification algorithms. We
evaluate our approach on the 112 univariate time
series datasets established in the UCR classification
benchmark (Bagnall et al., 2017; Dau et al., 2019).
The performances are established by Middlehurst et al.,
2023 in their back-off paper and available as part of

the time series machine learning package (Middlehurst
et al., 2023). We run our evaluation on all 35 algorithms
h(.) referenced in this most recent benchmark, such
as BOSS (Schäfer, 2015), HC2 (Middlehurst et al.,
2021), InceptionT (Ismail Fawaz et al., 2020),
ROCKET (Dempster et al., 2020), among others 1. For
each dataset d ∈ D we calculate the instance fingerprint
fI(.), the class fingerprint fC(.), and finally accumulate
the data fingerprint fd

D(.). Our approach estimates the

classification performance µ̂(Ed
h) and uncertainty σ̂(Ed

h)
of algorithms h(.) based on this final fingerprint.

We split the 112 datasets of the UCR benchmark d ∈
[1, ..., D] by a .2/.2/.6 train-validation-test split. For
each of the individual datasets in Dtrain, Dvalidation

and Dtest, we calculate their fingerprint fd
D(.) and

pair them with the achieved performance of each
classification algorithm h.

The performance regressors r(.) are trained on the
fingerprint and classification performances of h(.) on
all datasets in Dtrain. The regressors r(.) are selected
based on their accuracy in performance estimation
of classification algorithms h(.) on Dvalidation. We
evaluate our approach by running the regressor r(.) on
the fingerprints of Dtest and compare the estimated
performances and uncertainty to the benchmark results.
The code of this work is publicly available2.

4.1. Naive baseline

We derive a naive baseline µ̈d
h for the mean

performance Ed
h of an algorithm h on a dataset

d building upon the common concept of a single
best solver (Bischl et al., 2016). We define
µ̈d
h = 1

|Dtrain|
∑

d∈Dtrain
µ(Ed

h). It reflects the

average performance of algorithm h on Dtrain, the
datasets used for training our performance estimator.
Correspondingly a naive baseline σ̈d

h for the expected
uncertainty in performance can be calculated by σ̈d

h =
1

|Dtrain|
∑

d∈Dtrain
σ(Ed

h). Our approach estimates

11NN-DTW, BOSS (Schäfer, 2015), Catch22 (Lubba et al.,
2019), cBOSS (Middlehurst et al., 2019), CIF (Middlehurst, Large,
& Bagnall, 2020), CNN (Ismail Fawaz et al., 2019), EE (Lines
& Bagnall, 2015), FreshPRINCE (Middlehurst & Bagnall, 2022),
HC1 (Bagnall et al., 2020), Arsenal, DrCIF and HC2 (Middlehurst
et al., 2021), Hydra and Hydra-MR (Dempster et al., 2023),
InceptionT (Ismail Fawaz et al., 2020), Mini-R (Dempster et al.,
2021), MrSQM (Nguyen & Ifrim, 2022), Multi-R (Tan et al.,
2022), PF (Lucas et al., 2019), RDST (Guillaume et al., 2022),
ResNet (Z. Wang et al., 2017), RISE (Flynn et al., 2019), RIST,
ROCKET (Dempster et al., 2020), RSF (Karlsson et al., 2016),
RSTSF (Cabello et al., 2021), ShapeDTW (Zhao & Itti, 2018),
Signatures, STC (Hills et al., 2014), STSF (Cabello et al., 2020), The
Temporal Dictionary Ensemble (TDE) (Middlehurst, Large, Cawley,
& Bagnall, 2020), TS-CHIEF (Shifaz et al., 2020), TSF (Deng et al.,
2013), TSFresh (Christ et al., 2018), WEASEL (Schäfer & Leser,
2017), WEASEL-D.

2https://github.com/LarsBoecking/time series fingerprint

https://github.com/LarsBoecking/time_series_fingerprint


µ̂(Ed
h) and σ̂(Ed

h) for any d ∈ Dtest is benchmarked
against this baseline.

4.2. Fingerprints

Instance-level fingerprints: The instance-level
fingerprint fI(.) describes instances of any length
by a fixed-size vector. Accurately differentiating
each individual instance just by its fingerprint seems
challenging, as shown in Figure 2a. Still underlying
patterns can be identified, e.g. instances of target class
1 in the Yoga-dataset have higher Skewness γ1 while
instances of target class 2 have higher mean change
∆xi,d, as shown in Figure 4.

Figure 4: Instance fingerprint fI(x
i,d) for ten sampled

instances of each class in the Yoga-dataset and the class
aggregation fC(.) via µ aggregation. As indicated by their
different values, Skewness γ1 and Kurtosis Kurt[X] are
promising characteristics to differentiate individual instances
as well as aggregated class fingerprints.

Class-level fingerprint: Our approach aggregates
instance-level fingerprint fI(.) across all instances Ic for
each target class c. Figure 4 provides a fingerprint for
the first ten individual instances of each target class in
the Yoga-dataset, as well as their class-level aggregation
fC(.). Note that this visualization highlights the concept
for a reduced number of instances (ten in this case). The
actual class-level fingerprint fC(.) is aggregated on all
instances Ic in the training subset of the given dataset d.
Still, only these ten instances result in a class fingerprint
with certain distinguishing characteristics, e.g., Kurtosis
and Skewness.

Dataset-level fingerprint: Finally, to build a
fixed-size fingerprint that can be utilized to describe
any time series classification task, the class-level
fingerprints fC(.) are aggregated on dataset granularity.
For the dataset-level aggregation, standard deviation,
interquartile range, and the range between the minimum
and maximum value are calculated. Each of
those fixed-sized fingerprints representing an individual
dataset is then mapped to an algorithm performance

fd
D(.) −→ Ed

h.

4.3. Performance estimation for a given
algorithm

We evaluate various regression models on the
decomposed multi-target of estimating an algorithm’s
(h) mean performance on a dataset d, described
by µ(Ed

h) and the uncertainty across the k-folds,
described by the standard deviation σ(Ed

h). The mean

performance µ̂(Ed
h) is shown in Figure 5 and the

estimated uncertainty σ̂(Ed
h) is shown in Figure 6 for

h 1NN-DTW (exemplarily). Algorithms ridge and
random forest are selected based on their performance
on Dval shown in the upper half and evaluated on Dtest

shown in the lower half. Reporting average relative
improvement to account for the different baseline levels.

Figure 5: Ridge regression estimations µ̂(Ed
h) for h

1NN-DTW, achieving an average improvement in MAE of
18.13% on Dval and 18.61% on Dtest compared to µ̈d

h.

The hatched area indicates predictions with a
relative improvement, while un-hatched areas cover
points where the performance estimation is further off
than the naive baseline. Our performance estimation

achieves a relative improvement, if |µ̂(Ed
h)− µ(Ed

h)| <
|µ̈d

h − µ(Ed
h)|. This dynamic applies both to comparing

the ground truth mean performance to the estimated

mean performance µ̂(Ed
h) as well as the ground truth

standard deviation across the k-folds compared to the

estimated uncertainty σ̂(Ed
h). Algorithms ridge and

random forest are selected based on their performance
on Dval shown in the upper half and evaluated on Dtest

shown in the lower half.



Figure 6: Random forest regression estimations σ̂(Ed
h) for

h 1NN-DTW, achieving an average improvement in MAE of
37.44% on Dval and 37.31% on Dtest compared to σ̈d

h.

4.4. Estimation improvements benchmark

In Table 1, we report the absolute error level
on the test set as the mean absolute error (MAE)
and the relative improvement compared to the naive
baseline. For each algorithm (row) we report: (1) Which
model is selected based on its MAE performance
on the validation set. (2) The performance of naive
baselines µ̈d

h and σ̈d
h. (3) MAE in predicting the mean

performance µ̂(Ed
h) and the std. across the k-folds

σ̂(Ed
h). (4) The relative change of MAE in %.
For example, when a ridge regressor estimates the

performance of the 1NN-DTW algorithm, as shown
in Table 1, we observe a significant improvement:
Just by analyzing the fingerprint fd

D(.) of the unseen
test datasets, our approach is 18.61% more accurate
in estimating the mean ground truth performance on
these datasets Ed

h, compared to the naive baseline
measured by the MAE. Estimating the uncertainty of

the 1NN-DTW-algorithm σ̂(Ed
h) our approach improves

the naive baseline by 37.31% in MAE. A visual
interpretation of these results as well as a comparison
of the performance on the validation datasets Dval

and the test datasets Dtest is given in fig. 7. In
summary, based on the validation set performance for
each algorithm h(.), our approach outperforms the naive
baseline by an average of −7.32% for the MAE when
predicting the mean performance and by −15.81% in
the MAE of the std. deviation. Our approach is
capable of differentiating performances on individual
datasets. Instead of selecting an algorithm based on

Mean µ Std. σ
MAE MAE

h(.) r(.) µ̈d
h µ̂(Ed

h) ∆% r(.) σ̈d
h σ̂(Ed

h) ∆%

1NN-DTW Ri 0.1277 0.1039 -18.61 RF 0.011 0.0069 -37.31
Arsenal RF 0.1046 0.1039 -0.72 GB 0.0094 0.0105 12.23
BOSS Ri 0.1242 0.1099 -11.55 GB 0.0134 0.0104 -22.68
CIF RF 0.1072 0.1152 7.44 GB 0.0125 0.0085 -32.07
CNN Ri 0.1786 0.144 -19.37 AB 0.0184 0.0149 -19.02
Catch22 Ri 0.1205 0.098 -18.67 GB 0.0122 0.0083 -31.82
DrCIF GB 0.1054 0.1 -5.09 RF 0.011 0.0086 -21.69
EE Ri 0.1159 0.1013 -12.64 RF 0.0127 0.0103 -18.57
FreshPRINCE Ri 0.1157 0.095 -17.92 GB 0.0122 0.0089 -27.19
HC1 AB 0.1055 0.1017 -3.60 RF 0.0109 0.0103 -5.58
HC2 RF 0.0957 0.0905 -5.45 RF 0.0104 0.0102 -1.82
Hydra-MR RF 0.0954 0.0925 -2.95 RF 0.0101 0.0106 4.70
Hydra KN 0.1058 0.0966 -8.70 RF 0.0104 0.01 -4.08
InceptionT RF 0.0943 0.0901 -4.52 RF 0.0108 0.0084 -22.77
Mini-R RF 0.1021 0.1029 0.77 RF 0.0098 0.0091 -7.51
MrSQM RF 0.1116 0.1112 -0.37 RF 0.0139 0.0132 -4.80
Multi-R Ri 0.0973 0.0878 -9.76 GB 0.0104 0.0104 0.12
PF Ri 0.1134 0.0911 -19.64 RF 0.0123 0.0104 -16.00
RDST RF 0.1001 0.1037 3.63 AB 0.0099 0.0105 6.65
RISE Ri 0.1429 0.1241 -13.14 GB 0.011 0.0078 -28.85
ROCKET KN 0.1019 0.094 -7.80 RF 0.0093 0.0093 -0.38
RSF KN 0.1327 0.1227 -7.56 RF 0.0127 0.0067 -46.95
RSTSF AB 0.1008 0.0943 -6.47 GB 0.0113 0.011 -2.71
ResNet AB 0.1214 0.1096 -9.71 KN 0.0167 0.0111 -33.25
STC Ri 0.1136 0.1051 -7.42 AB 0.0132 0.0143 8.47
STSF RF 0.1143 0.1132 -0.89 GB 0.0118 0.0088 -25.07
ShapeDTW Ri 0.1562 0.1252 -19.86 GB 0.0106 0.0066 -37.79
Signatures GB 0.1342 0.107 -20.28 RF 0.0121 0.0084 -30.12
TDE KN 0.1086 0.1095 0.88 Ri 0.0139 0.0111 -19.73
TS-CHIEF AB 0.1009 0.1113 10.20 GB 0.0111 0.0125 12.84
TSF Ri 0.1324 0.113 -14.59 RF 0.0137 0.0078 -43.37
TSFresh KN 0.1501 0.1349 -10.12 GB 0.0405 0.0338 -16.49
WEASEL-D RF 0.109 0.1052 -3.44 RF 0.0091 0.009 -1.73
WEASEL RF 0.1199 0.1141 -4.86 RF 0.0126 0.0101 -19.91
cBOSS AB 0.1248 0.1328 6.42 Ri 0.0134 0.0108 -18.99
Mean - 0.1167 0.1073 -7.32 - 0.0127 0.0106 -15.81

Table 1: Applying AdaBoost (AB), GradientBoosting
(GB), KNeighbors (KN), RandomForest (RF), Ridge (RID)
as regressors r(.) in our multi-target regression AS
problem for all 35 algorithms h(.) referenced in the
benchmark (Middlehurst et al., 2023). Error measured by
MAE and relative performance improvements (lower better
⇓) for both mean performance and uncertainty estimation.
Improvements highlighted bold.

its average performance on some publicly available
benchmark, our approach allows for precise estimation
of the exact performance each algorithm will achieve
on a specific dataset. This enables a more informed
and tailored algorithm selection process, ensuring that
the chosen algorithm is the most suitable for the unique
characteristics of the new dataset.

5. Limitations & Future Work

While our current approach demonstrates significant
advancements, it also has certain limitations that opens
various directions for future work. The decomposition
of the multi-target regression overlooks the intricate
dependencies between algorithms and the collective
objectives (Lorena et al., 2008). In future work,
this can be investigated by a regressor that predicts
the performance of multiple algorithms at once. The
selection requires domain experts to balance different
objectives, such as mean performance and uncertainty,
which can complicate the AS process. Further
development into an AI service could incorporate



Figure 7: Performance improvement for all 35 algorithm h(.)

in predicting the mean performance µ̂(Ed
h) and uncertainty

σ̂(Ed
h) on validation and test set. Reporting the relative change

compared to the naive baseline µ̈d
h and σ̈d

h (lower better).
Algorithms on the x-axis are sorted by name.

relaxations of multiple objectives and include domain
experts in a human-in-the-loop manner. Our approach
tests a range of regressors, including those with
transparent internal mechanics, but does not inherently
prioritize regressors based on their interpretability.
This may restrict its usefulness when understanding
a model’s internal decision-making process, which is
often crucial in real-world applications. The predictions
and properties, such as the interpretability, could be
combined in a decision rule for the final AS that
meets the user’s preferences. The effectiveness of
our estimation strategy depends on the chosen metric,
with MAE showing different levels of robustness
and volatility in performance improvements across
validation and test sets (as documented in Table 1). To
improve the robustness of our approach, we encourage
researchers to share their data fingerprint and the
corresponding performances (Koester et al., 2020).
For the next steps, our performance estimations can
guide service providers in the domain, so instead
of auto-correcting human decisions, we can provide
feedback on which algorithm would be more suited
(Balla et al., 2023). Such an extension follows
the trajectory of leveraging technology to advance
service, as suggested by Ostrom et al., 2010. Further
developments of our approach can follow up on the
ongoing discussion about which additional objectives
to assess (e.g., expected running time (Bossek &
Trautmann, 2019)). Our adaptable and extensible
approach allows us to estimate such objectives instead
or aside from the performance and uncertainty.

6. Conclusion

This paper introduces a novel data fingerprint
for time-series classification, offering an approach
to support more effective and privacy-preserving

AI development without having access to all data
points. We predict algorithmic performance and
associated uncertainties by strategically decomposing
the multi-target regression problem.

Our assessment across 112 datasets of the University
of California riverside benchmark showcases its
capability in accurately forecasting the outcomes of 35
state-of-the-art algorithms, surpassing a naive baseline
by an average of 7.32% in estimating mean performance
and 15.81% in quantifying uncertainty. Our approach
will assist researchers and professionals in the field of
algorithm selection in time series classification to set up
successful AI services. We encourage other researchers
and practitioners to use and extend the approach with
the proposed fingerprints for further objectives. A
promising field of research lies ahead.
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Jussen, P., KuÌĶhl, N., & Maleshkova, M. (2020). Smart
service management: Design guidelines and
best practices.

Karlsson, I., Papapetrou, P., & Boström, H. (2016).
Generalized random shapelet forests. DMKD.

Koester, A., Baumann, A., Krasnova, H., Avital, M.,
Lyytinen, K., & Rossi, M. (2020). Panel 1: To
share or not to share: Should is researchers
share or hoard their precious data?

Li, J. (2023). Asymptotics of k-fold cross validation.
Journal of Artificial Intelligence Research.

Lindauer, M., Hoos, H. H., Hutter, F., & Schaub, T.
(2015). Autofolio: Algorithm configuration for
algorithm selection. AAAI.

Lines, J., & Bagnall, A. (2015). Time series
classification with ensembles of elastic
distance measures. DMKD.

Lorena, A. C., De Carvalho, A. C., & Gama, J. M.
(2008). A review on the combination of binary
classifiers in multiclass problems. Artificial
Intelligence Review.

Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S.,
& Zhang, G. (2015). Transfer learning
using computational intelligence: A survey.
Knowledge-Based Systems.

Lubba, C. H., Sethi, S. S., Knaute, P., Schultz, S. R.,
Fulcher, B. D., & Jones, N. S. (2019). Catch22:
Canonical time-series characteristics: Selected
through highly comparative time-series
analysis. DMKD.

Lucas, B., Shifaz, A., Pelletier, C., O’Neill, L., Zaidi, N.,
Goethals, B., Petitjean, F., & Webb, G. I.
(2019). Proximity forest: An effective and
scalable distance-based classifier for time
series. DMKD.

Middlehurst, M., Large, J., Cawley, G., & Bagnall, A.
(2020). The temporal dictionary ensemble



(TDE) classifier for time series classification.
ECML PKDD.

Middlehurst, M., & Bagnall, A. (2022). The freshprince:
A simple transformation based pipeline time
series classifier. ICPRAI.

Middlehurst, M., Large, J., & Bagnall, A. (2020). The
canonical interval forest (cif) classifier for time
series classification. international conference
on big data.

Middlehurst, M., Large, J., Flynn, M., Lines, J.,
Bostrom, A., & Bagnall, A. (2021). Hive-cote
2.0: A new meta ensemble for time series
classification. Machine Learning.
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Schäfer, P., & Leser, U. (2017). Fast and accurate
time series classification with WEASEL.
Information and Knowledge Management.
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