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Abstract

Multi-Agent Artificial Intelligence (MAAI) represents a foundational shift in the
automation of knowledge work, moving beyond static workflows toward adap-
tive systems of interacting AI-based agents. These agents perceive, reason, and
coordinate in real time to address complex, context-rich tasks that traditionally
require human expertise. Drawing on the conceptual roots of process automa-
tion, agentic information systems, and AI, this paper introduces a structured,
five-component framework that conceptualizes MAAI as a layered architec-
ture based on: foundation model, data-centric perception and action, dynamic
orchestration, agent-integrated workflow, and interaction interface. This frame-
work disentangles the technical, organizational, and human-facing dimensions
of MAAI, offering researchers and practitioners a systematic lens to analyze
and design agent-based AI automation. The framework further structures three
research pathways focused on advancing technical capabilities, enabling organi-
zational integration, and addressing socio-technical implications such as fairness,
accountability, and labor transformation. Together, these contributions estab-
lish a foundation for interdisciplinary inquiry into how MAAI reshapes work,
coordination, and digital value creation.∗
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1 Introduction

Imagine a scenario in which a customer contacts their insurance provider to inquire
whether recent damage to their vehicle is covered under their current policy. The
inquiry—submitted via a customer portal or mobile app—includes a short textual
description and photographs of the damage. This seemingly simple request triggers
a series of internal processing steps within the insurance company. A customer ser-
vice representative must interpret the inquiry and extract relevant details. A policy
analyst then needs to assess whether the reported case aligns with the customer’s
contract terms, potentially consulting internal databases or regulatory frameworks.
Subsequently, a claims processor cross-checks the case with historical claims and pric-
ing information to evaluate plausibility and prepare a response. Each of these roles
contributes expert knowledge and judgment to tailor a case-specific answer. This
scenario clearly illustrates that knowledge work involves not merely processing infor-
mation but creating, distributing, and applying (expert) knowledge. Skilled individuals
autonomously manage information and data to navigate complex situations and pro-
duce tailored outcomes (Drucker, 1999; Pyöriä, 2005; Schultze, 2000). This type of
knowledge work requires a deep understanding of framed experience, values, contex-
tual information, and expert insight. Accordingly, the tasks involved are typically
unstructured, non-routine, and intricately tailored to specific situations (Davenport,
Jarvenpaa, & Beers, 1996; Davenport & Prusak, 1998; Heerwagen, Kampschroer,
Powell, & Loftness, 2004; Janz, Conquitt, & Noe, 1997).

With the advancement of artificial intelligence (AI), automation in information
systems (IS) is entering a new phase. While the integration of AI into business pro-
cesses has already streamlined routine tasks, we now see a shift toward systems that
not only execute, but also reason, interact, and adapt (Acharya, Kuppan, & Divya,
2025). The increasing availability of AI capabilities in the form of AI-as-a-Service
(AIaaS) drives this evolution (Lins et al., 2021). However, greater advancements result
from the emergence of a new phenomenon: Multi-Agent AI (MAAI). MAAI marks a
fundamental departure from traditional forms of automation. Rather than following
predefined workflows, MAAI is composed of multiple AI-based agents—each capable of
perception, reasoning, and decision-making (W. Zhou et al., 2023)—that dynamically
coordinate, delegate, and respond to evolving environments (Baird & Maruping, 2021).
They are designed to tackle unstructured, context-dependent tasks through collabo-
ration and self-organization, thereby introducing a new layer of cognitive capability
into IS. In contrast to the rigid logic of robotic process automation (RPA) (Hofmann,
Samp, & Urbach, 2020; Jimenez-Ramirez, Reijers, Barba, & Del Valle, 2019), MAAI
exhibits flexible, emergent behavior suited for complex knowledge work. The rise of
low-code tools (Bock & Frank, 2021) that lower the technical hurdles for developing
and deploying agent-based systems at scale further underscores the practical relevance
of MAAI. Tools and platforms such as AutoGen1, CrewAI2, Swarm3, and the Bee

1https://microsoft.github.io/autogen/0.2/
2https://www.crewai.com
3https://github.com/openai/swarm
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Agent Framework4 illustrate how MAAI is rapidly transitioning from experimental
technology to accessible infrastructure for real-world applications.

However, as MAAI expands the horizons of what AI-based IS can do, it also
introduces new layers of complexity and ambiguity—rooted not only in its techni-
cal conceptualization but also in the conceptual tensions inherited from its origins in
process automation, agentic IS, and AI. These challenges pertain not only to the under-
lying technological complexity of MAAI but also to its far-reaching implications for
work structures, occupational roles, and digital value creation, as it gradually enables
the substitution of human labor through more intelligent, adaptive, and context-
aware forms of automation (Svanberg, Li, Fleming, Goehring, & Thompson, 2024).
To bring conceptual clarity and theoretical grounding to this rapidly evolving debate,
we introduce a foundational framework that structures MAAI along five interdepen-
dent components: (1) foundation model (FM), (2) data-centric perception and action,
(3) dynamic orchestration, (4) agent-integrated workflow, and (5) interaction inter-
face. These components serve as layered debate spaces—Matrjoschka-like conceptual
containers—that help order the discourse on MAAI within the IS field. By disentan-
gling these layers, our MAAI framework not only explains what MAAI is and how
MAAI works, but also provides the fundamentals needed to systematically investigate
MAAI further. With our framework pinpointing central concepts per MAAI compo-
nent, we provide a structured basis for the Electronic Markets (EM) community and
other IS research communities to engage across emerging pathways, including technical
capabilities such as FMs (Schneider, Meske, & Kuss, 2024) and generative AI (Banh
& Strobel, 2023; Feuerriegel, Hartmann, Janiesch, & Zschech, 2024), organizational
and economic integration such as human-AI collaboration (Guo et al., 2024; Song,
Tan, Zhu, Feng, & Lee, 2024), and socio-technical implications such as appropriate
reliance (Schemmer, Kuehl, Benz, Bartos, & Satzger, 2023). By clearly delineating
these conceptual domains in an overarching framework, it establishes a foundation
for developing targeted research avenues within each component and supports a more
focused and coherent discourse on MAAI within the IS community. As novel MAAI
developments (Acharya et al., 2025) accelerate, MAAI holds the potential not only
to restructure knowledge work but also to redefine occupational roles and reconfig-
ure digital markets. Against this backdrop, grounding MAAI in its conceptual roots
becomes essential for making sense of its complexity and ensuring that the field of
IS can engage with it through shared language, structured analysis, and theoretically
informed debate.

In the following sections, we provide a structured exploration of the MAAI land-
scape. Section 2 examines the conceptual roots of MAAI, offering theoretical grounding
that situates the phenomenon within existing strands of IS research. Section 3
introduces our framework for MAAI, articulating five interrelated components that col-
lectively define the core layers of AI-based multi-agent systems. Section 4 then outlines
key implementation challenges and identifies emerging research pathways, demon-
strating how the proposed framework enables a systematic investigation of MAAI’s
technical capabilities, organizational and economic integration, and socio-technical
implication. Together, these sections establish a foundational understanding of MAAI

4https://github.com/i-am-bee/bee-agent-framework
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as both a conceptual innovation and a transformative force in the evolving field of
knowledge work automation.

2 Conceptual Roots

The classification of systems as MAAI is debated in IS research, due to ambiguities in
their conceptual boundaries and inconsistencies in theoretical grounding. In technical
terms, MAAI typically refers to systems comprising multiple interacting AI agents,
each with autonomy and decision-making capacity (Hughes et al., 2025), consistent
with the multi-agent systems (MAS) tradition in computer science, where agents coor-
dinate or compete to achieve goals (Ferber &Weiss, 1999; Wooldridge, 2009). However,
within the IS domain, the boundaries are less clear (Dorri, Kanhere, & Jurdak, 2018).
For instance, it remains debated whether complex software with multiple (genera-
tive) AI modules already qualifies as a MAS, or whether distinct agent identities and
goals are required. This ambiguity has prompted a re-evaluation of core IS assump-
tions. To address this, MAAI can be situated at the intersection of three foundational
IS research streams, which are widely applied in digital market ecosystems: process
automation (1), agentic IS (2), and AI (3).

Process automation traditionally involves transferring work that is organized
into processes consisting of events, tasks, and decision points from humans to technol-
ogy (Engel, Ebel, & Leimeister, 2022; Ye et al., 2023), often to enhance productivity
and reduce manual workload (Autor, Levy, & Murnane, 2003; Ye et al., 2023). Robotic
process automation (RPA) exemplifies this, using predefined business rules to auto-
mate routine tasks (Hofmann et al., 2020; “IEEE Guide for Terms and Concepts in
Intelligent Process Automation”, 2017; Jimenez-Ramirez et al., 2019). It is especially
effective in repetitive tasks (Haase et al., 2024; Willcocks, Lacity, & Craig, 2017). Yet,
traditional IS theory often framed such automation technologies as passive artifacts
under human control (Baird & Maruping, 2021). This framing holds for classical RPA
systems, which do not possess autonomy or adaptive behavior. However, as automation
increasingly incorporates AI capabilities, this paradigm is challenged.

The second foundational stream informing MAAI is agentic IS (Anonymous,
2025). Reflecting on agentic IS, Baird and Maruping (2021) developed the IS Del-
egation Framework. This framework defines agentic IS through three constructs:
autonomous agents, their relational mechanisms (e.g., delegation), and the tasks they
collaboratively pursue. At the core of agentic IS are agents, human or computational,
which are autonomous entities capable of perceiving and acting within an environment,
making independent decisions, and interacting with each other (Russell & Norvig,
2016). In doing so, they cooperate and occasionally conflict to achieve individual or
collective goals (Baird & Maruping, 2021). Agentic IS artifacts challenge traditional IS
views of passive technologies by autonomously initiating actions, managing tasks, and
assuming roles and responsibilities (Baird & Maruping, 2021; Feuerriegel et al., 2024).
In this context, Baird and Maruping (2021) propose rethinking IS theory to incorpo-
rate AI artifacts as agentic actors. Similarly, Schuetz and Venkatesh (2020) argue that
cognitive, agentic systems exceed the explanatory scope of existing models of user-IT
interaction, as they can adapt, perceive their environment, and interact with humans
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and technologies. While Baird and Maruping (2021) primarily focus on dyads of human
and agentic IS artifacts, configurations involving multiple interacting artifacts align
with MAS (Dorri et al., 2018). However, definitional ambiguity persists. Some schol-
ars treat agentic systems broadly, encompassing single- and multi-agent setups (Baird
& Maruping, 2021), while others reserve “multi-agent” for systems with multiple AI
agents operating in collaboration (Hughes et al., 2025). This has led to inconsistent
terminology across the literature. Baird and Maruping (2021) use the term “agentic
IS artifacts”, while Schuetz and Venkatesh (2020) prefer “cognitive computing sys-
tems”. Other works refer to “AI agents” or “MAS”(Göldi & Rietsche, 2024; Hughes et
al., 2025), or to more specific labels such as “large language model-based agents”(Xi
et al., 2025), contributing to conceptual ambiguity, communication challenges, and
fragmentation across IS discourse.

The third foundational stream underpinning MAAI is AI, which has signifi-
cantly advanced both process automation and agentic IS. While RPA has already
introduced considerable value in digital markets through its application in automat-
ing rule-based, repetitive tasks, its scope remains limited to non-cognitive activities.
To overcome these limitations, several attempts have been made to incorporate AI
into process automation (Engel et al., 2022). AI represents “techniques facilitating
machines to mimic human behavior, i.e., reproducing or excelling over human decision-
making with the goal of solving complex tasks” (Engel et al., 2022, p. 342). The
integration of AI into process automation approaches extends the automatable busi-
ness processes beyond deterministic routines (Janiesch, Zschech, & Heinrich, 2021).
Traditional machine learning methods introduce probabilistic decision-making into
automation, giving rise to “cognitive automation”(Engel et al., 2022; Hofmann et al.,
2020). For instance, AI can be used to route emails based on content classification,
with subsequent execution handled via RPA (Engel et al., 2022). Similarly, agentic
IS also benefits from advancements in AI, which augment the autonomy and intel-
ligence of agentic IS artifacts (Feuerriegel et al., 2024; Kuehl, Schemmer, Goutier,
& Satzger, 2022). AI technologies equip software entities with cognitive functions,
enabling them to perform complex knowledge work traditionally requiring human
judgment (Berente, Gu, Recker, & Santhanam, 2021). Recent developments in gener-
ative AI further extend these capabilities. Generative models demonstrate human-like
reasoning, decision-making, and adaptive task execution—qualities essential for com-
plex knowledge work (Banh & Strobel, 2023; Feuerriegel et al., 2024). When embedded
in agentic IS artifacts, these models allow for the automation of entire roles, not
merely isolated tasks. Building on this convergence, Ye et al. (2023) introduced the
concept of agentic process automation (APA), which integrates generative AI agents
into automated processes at points where dynamic decision-making is required. How-
ever, APA remains confined to predefined process points and lacks the interactive,
decentralized coordination needed for more complex collaborative work. This limita-
tion points to the need for MAS—a concept central to the agentic IS stream—where
multiple AI-based agents collaborate within a shared environment. MAS, when pop-
ulated by autonomous and intelligent agents, constitutes what is now termed MAAI,
widely regarded as the next frontier in the automation of knowledge work (Guo et al.,
2024; Yee, Chui, & Roberts, 2024).
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MAAI integrates foundational elements from the three major research streams
mentioned beforehand—process automation, agentic IS, and AI—resulting in MAAI
systems capable of automating complex knowledge work processes previously consid-
ered inautomatable. Process automation contributes a focus on structured, process-
oriented logic essential for and firmly anchored in digital economies. Agentic IS
introduces the concept of autonomy of multiple independent entities, emphasizing
agents capable of perceiving their environment and cooperating toward shared goals.
AI, in turn, equips these agents with cognitive capabilities, enabling them to inter-
pret context, make decisions, and adaptively act. Together, these streams form the
conceptual foundation of MAAI. However, despite its transformative potential, the IS
field still lacks a clear and comprehensive conceptualization of MAAI—one that dis-
tinguishes MAAI from conventional automation technologies such as RPA, accounts
for its capacity to perform dynamic knowledge work, and positions it within existing
IS streams, particularly around agentic IS. The following section builds on this foun-
dation and introduces a conceptual framework that characterizes MAAI not as a rigid
automation tool, but as a new class of intelligent systems.

3 Multi-Agent AI

To understand MAAI and its emerging role in automating complex knowledge work,
we must move beyond the limitations of traditional process automation and its reliance
on rigid, predefined workflows. MAAI marks a departure from such approaches by
introducing a fundamentally different class of intelligent systems. To clarify what
constitutes this new paradigm, we first provide a definition that captures the essential
characteristics of MAAI:

Definition

Multi-Agent AI (MAAI) refers to a system architecture composed of multi-
ple autonomous or semi-autonomous AI-based agents that collaboratively perceive,
reason, and act to perform context-sensitive, cognitive tasks. These agents
dynamically structure workflows, coordinate roles across heterogeneous enti-
ties, including humans, and interact through interfaces within socio-technical
environments.

While this definition outlines what MAAI is, it leaves open the question of how
such systems operate in practice. To address this, we conceptualize MAAI as a lay-
ered system of five stacked components (Cs)—each encapsulating and wrapping AI
capabilities in a Matrjoschka-like architecture (Figure 1). These components do not
enforce a fixed process but enable AI-based agents to collaboratively perceive, process,
and act their path forward, moving beyond traditional RPA approaches. Moreover,
MAAI is not designed to execute a rigid, known workflow; they are designed to dynam-
ically construct agent-integrated workflows as they interact with data, other agents,
and their environment. This section presents the framework’s components, focusing
on its agent-based dynamics, foundational technologies, and interaction interfaces. To
enhance the comprehensibility of the framework and future applicability of MAAI, we
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present an illustrative exemplary use case of an insurance company displayed in fig. 2.
This example, situated in the domain of digital markets, demonstrates the framework’s
capability to respond autonomously to customer inquiries regarding policy coverage
for vehicle damage. Specifically, the automation involves the framework’s components
to determine whether the car damage claim falls within the scope of a customer’s
insurance policy. The customer submits the inquiry through a digital platform, for
example, a mobile insurance app, including a textual description and images of the
damaged cars and scenery.

Component C1: Foundation Model (FM)

The base of the framework rests on FMs, which refer to a class of large-scale models,
pre-trained on vast amounts of data, that serve as a versatile base for a variety of
downstream tasks (Bommasani et al., 2021; Schneider et al., 2024). Typically based
on deep neural networks like transformers, FMs capture complex data relationships
and can be fine-tuned for specific tasks or used as-is across various applications. FMs
are often LLMs or large multimodal models (LMMs), such as GPT-x or Gemini.
While LLMs solely provide natural language processing, LMMs also extend the ability
to process further data modalities, such as vision or audio data. Yet, both unfold
the computational capabilities essential for complex decision-making, reasoning and
dealing with unstructured data (Lu et al., 2023; Paranjape et al., 2023; Schick et al.,
2023). This makes them highly flexible and versatile for different tasks; thus, they act
as a primary component of an AI-based agent and source of processing power within
the framework both for taking in and generating unstructured data and for reasoning.
To put FMs in the perspective of IS research, Schneider et al. (2024) introduce three
key features that are of central importance to our framework: emergent capabilities,
homogenization, and prompt sensitivity.

Emergent capabilities refer to skills that FMs develop during training, such as in-
context learning (Min et al., 2022). This allows the model to perform new tasks, like
solving mathematical problems or analogical reasoning, without explicit training for
those tasks (Brown et al., 2020; Webb, Holyoak, & Lu, 2023). These capabilities are
more pronounced in larger models like GPT-4 (Kaplan et al., 2020), and enable FMs to
perform in various downstream tasks through prompt engineering, reducing the need
for fine-tuning. However, the unpredictability of emergent behavior also introduces
uncertainty, making it harder to foresee how the models will respond to slight changes
in input. Homogenization addresses the concentration of a few dominant FMs, often
developed by a few organizations using limited large datasets (Bommasani et al., 2021).
This trend is driven by the high costs of training these models and the dominance of
major companies with proprietary data. Homogenization has advantages, such as mak-
ing AI development cheaper and faster by allowing advances in FMs to be inherited by
downstream systems (Liu et al., 2023). However, it also centralizes power and raises
concerns about dependency, ethical risks, and algorithmic monoculture, where biases
and flaws from FMs are propagated across many AI applications (Fishman & Hancox-
Li, 2022; Kleinberg & Raghavan, 2021). Prompt sensitivity refers to how the specific
structure of input can significantly influence the behavior of FMs. The ability to guide
and fine-tune model outputs using prompts is crucial for controlling and customizing
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Fig. 1 Multi-Agent AI is characterized by a framework by a framework composed of a multi-agent-
system (MAS) structured along five interrelated components. At its core, diverse Foundation Models
(C1), such as large language or multimodal models, equip agents with the functionality to process
multimodal inputs, integrate background knowledge, perform reasoning, and generate coherent out-
puts. The Data-centric Perception & Action (C2) component enables agents to gather, contextualize,
and act upon information from their environment. Dynamic Orchestration (C3) manages the coor-
dination and decision-making among multiple agents and external services, allowing flexible and
adaptive task allocation. The Agent-integrated Workflow (C4) defines the sequence, interdependence,
and logic of agent activities. Finally, the Interaction Interface (C5) connects the MAS to its users or
external systems—either via user interfaces (UI) for human-AI collaboration or through application
programming interfaces (APIs) for integration with other software systems.

agents. Small changes in prompts can yield vastly different outcomes, making prompt
engineering—optimizing prompts for desired results—an essential technique (Schmidt,
Spencer-Smith, Fu, & White, 2023). This also highlights challenges, such as adver-
sarial attacks (jailbreaks) that exploit prompt vulnerabilities (A. Wei, Haghtalab, &
Steinhardt, 2023).

In our exemplary insurance use case, FMs are crucial for handling the increasing
complexity and data volume. Their scalability and generalization capabilities enable
them to manage large and diverse inquiries—ranging from simple coverage questions
to complex, multimodal inquiries—while drawing on a broad, pre-trained knowledge
base. FMs, particularly LMMs, can seamlessly process and integrate various data types
(e.g., textual claims or images of car damage) within a unified system, eliminating the
need for different specialized AI models. Additionally, their ability to be fine-tuned
allows them to adapt to the insurance particularities, ensuring long-term flexibility
and relevance, such as standards and style of customer responses.

Component C2: Data-centric Perception & Action

Building upon FMs, AI-based agents comprise perception and action composing C2
to interact with their environment (Xi et al., 2023). In line with prior research in com-
puter science, we define agents as entities that are modeled using concepts traditionally
associated with human characteristics, such as autonomy, social ability, reactivity and
pro-activeness (Goodwin, 1995; Wooldridge & Jennings, 1995). Rooted in MAS and
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Fig. 2 An exemplary MAAI-based workflow in an insurance company setting. The illustration shows
how multiple specialized AI-based agents, each leveraging a Foundation Model (C1) and a Data-
centric Perception & Action component (C2), are dynamically orchestrated (C3) to form an Agent-
integrated Workflow (C4). The workflow begins by defining the customer’s objective—clarifying
coverage for car damage—, structuring the necessary tasks and agent roles, and subsequently pro-
cessing those tasks to deliver a comprehensive, policy-compliant response. Throughout this process,
the Interaction Interface (C5) facilitates intuitive interaction, ensuring that human stakeholders can
monitor or intervene as needed.

informed by agentic IS concepts, AI-based agents extend traditional process automa-
tion by incorporating human-centric capabilities like collaboration, decision-making,
and adaptability. Consequently, each AI-based agent must incorporate mechanisms to
perceive and act upon its environment, grounded in a data-centric approach (Jaku-
bik, Vössing, Kühl, Walk, & Satzger, 2024). This approach acknowledges that while
the underlying FM—its architecture and capacities—remain fixed, its effective adap-
tation and specialization are based on information in the form of data it receives and
processes.

In data-centric AI, the primary idea for improving system performance and tailor-
ing behaviors lies not in modifying the AI models’ architecture but rather in refining,
selecting, and structuring the data that the agent perceives and uses as context. Con-
sequently, the perception component must sense and prepare diverse forms of data,
optimizing them for the FM’s internal representations. Although the FM’s funda-
mental capabilities remain constant, the agent’s skillfulness, domain relevance, and
ability to handle evolving tasks are shaped by the data that it ingests and transforms
into actionable insights. Since FMs store their learned representations in architectural
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parameters (weights) obtained from extensive, prior training, they only influence their
performance by altering the data they process, both as input and through retrieval
of external information. Perception in MAAI operates entirely on data: it trans-
forms raw environmental inputs into structured, coherent formats that align with the
FM’s learned latent space of representations. This includes external data from sen-
sors, documents, user inputs, application programming interfaces (APIs), and other
sources, as well as internally managed context (e.g., previously generated text or
prompt-engineered instructions). Through techniques like retrieval-augmented gener-
ation (RAG) (Gao et al., 2023; Lewis et al., 2020), structured templates (Schmidt et
al., 2023; J. Wei et al., 2022), and APIs (Liang et al., 2024), the perception component
curates and enhances the data delivered to the FM, effectively guiding the model’s
output without changing its core parameters. AI-based agents can access external
databases or knowledge repositories through these mechanisms, retrieving relevant
information dynamically to augment the context available to the FM. Here, the choice
and quality of data—which documents to retrieve, what contexts to include, and how
to structure the information—enforce distinct characteristics of the AI-based agent.

Once the FM processes the perceived data and produces an output, the action com-
ponent interprets this output and executes actions in a data-mediated environment.
Actions themselves are represented and performed through data: producing a textual
response, generating a visual artifact, calling an API, or interacting with external sys-
tems are all rendered as data flows. This concept often involves leveraging specialized
tools that enable the FM to perform specific functions, such as engaging in vocal con-
versations. By conceptualizing perception and action as data-centric processes—where
even the agent’s “touch” on its environment occurs through data-level transformations
and interfaces—agents operate within and manipulate data representations. In addi-
tion to perception and action, C2 contains the capability to store and manage data,
thereby increasing the contextual richness available to the FM. This stored context
provides continuity across tasks, enabling AI-based agents to refine their decisions and
responses based on historical and situational data.

Consider again the workflow of an insurance company handling a customer’s car
damage claim (Figure 2). Each specialized AI-based agent—be it the policy ana-
lyst, claims processor, or customer service agent—derives its expertise and context
from both static and dynamic sources. Static elements such as predefined roles,
agent profiles, and base prompts encode task-specific behavior and domain knowl-
edge. Dynamically retrieved data, such as policy documents, customer records, or
regulatory APIs, are then integrated during task execution to contextualize percep-
tion and guide action. For instance, the policy analyst can interpret insurance clauses
by retrieving relevant documents, while the customer service agent adjusts tone and
content by drawing on conversation history, customer records, and domain-specific
prompts. After processing this curated input data, the FM’s output directs the subse-
quent actions, enabling context-specific responses such as generating reports, sending
messages, or integrating with external tools. These actions, too, remain data-driven:
both perception and execution are shaped by what data can be accessed, structured,
and operationalized in the agent’s environment.
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Component C3: Dynamic Orchestration

To effectively integrate the outputs and actions of various agents and maintain coher-
ence within the agent-integrated workflow, AI-based agents must possess a distinct
identity that grants them social standing (Bisk et al., 2020). This identity is essential
for enabling social cooperation and competition within a MAS. The implementation
of such a system comprises a registry of role-specific agents, each designed to be
selected and deployed based on the demands of the task at hand (Pezeshkpour et
al., 2024). This composition must be dynamically orchestrated in alignment with the
specific requirements of the workflow. The orchestration should be sufficiently adapt-
able, allowing each workflow to autonomously determine its optimal configuration of
agents. This ensures the orchestration can address the full complexity inherent in
knowledge-intensive tasks. The orchestrated agents’ capabilities are extended by con-
necting external services such as messaging applications or payment tools. In line
with previous architectures like service-oriented computing, this integration allows
orchestrated agents to execute actions that require interaction with external systems,
broadening the scope of tasks they can handle (Calisti, Leymann, Dignum, Kowalczyk,
& Unland, 2010; Tapia, Alonso, Zato, Gil, & de La Prieta, 2010; Ye et al., 2023).

In the context of MASs, the division of labor principle underpins the specialization
of agents, where each agent, equipped with domain-specific expertise, is optimized for
executing particular tasks. This specialization enhances the efficiency and precision of
task execution, as it minimizes the overhead associated with task switching by decom-
posing complex workflows into discrete, manageable subtasks. Xi et al. (2023) delineate
agent interactions into two primary paradigms: cooperative interaction for complemen-
tarity and adversarial interaction for strategic advancement. Cooperative interaction
involves agents that continuously evaluate their counterparts’ operational states and
capabilities, engaging in collaborative task execution and knowledge exchange (Li,
Hammoud, Itani, Khizbullin, & Ghanem, 2023). This interaction can be either dis-
ordered or ordered. In disordered cooperation, multiple agents operate with a high
degree of autonomy, freely contributing their inputs and feedback within the sys-
tem, which may result in misaligned objectives and potential disruptions in workflow
orchestration (Mandi, Jain, & Song, 2024). Conversely, ordered cooperation adheres
to predefined communication protocols, where agents sequentially process informa-
tion, with downstream agents dependent on the outputs of upstream counterparts (Li
et al., 2023; Talebirad & Nadiri, 2023). Dynamic orchestration mechanisms such as
a moderator agent can be deployed to manage such interactions effectively to reg-
ulate communication flows and ensure adherence to structured review processes. In
adversarial settings, agents dynamically reconfigure their strategies in response to real-
time environmental feedback and the actions of competing agents (Abdelnabi, Gomaa,
Sivaprasad, Schönherr, & Fritz, 2024). This adaptive behavior is crucial in adversar-
ial MASs, where the objective is to optimize decision-making and enhance the quality
of responses in high-stakes scenarios (Xi et al., 2023). AI-based agents may indepen-
dently pursue optimization objectives, such as utility maximization, which aligns with
principles of game theory (Mao et al., 2023). However, to maintain a structured com-
petitive environment, deploying a moderator agent can facilitate the orchestration of
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interactions, ensuring that the competitive dynamics remain aligned with the overall
system objectives.

In our insurance company use case, dynamic orchestration is essential for managing
cooperative agent interactions. Cooperative interactions allow agents to independently
contribute towards aligning on a common objective. For example, the policy analyst
reviews the insurance policy for car insurance, while the claims processor verifies case
details against historical data. A moderator agent is critical in this phase, regulating
the dynamic information flow from both roles and ensuring alignment of agent outputs
to produce a coherent and meaningful objective, thus maintaining the integrity of the
MAAI. The cooperative scenario gains prominence in this use case when the objective
is defined, allowing agents to engage in interactions that balance individual goals
with overarching system objectives. In such contexts, the strategic oversight provided
by a moderator is crucial for managing both cooperative and competitive dynamics,
ensuring that the interplay between agents culminates in a cohesive and effective
response to the customer inquiry.

Component C4: Agent-integrated Workflow

Given the inherent flexibility and complexity of many real-world tasks, they necessi-
tate an agent-integrated workflow and dynamic decision-making process, which may
be automatically created within MAAI (Ye et al., 2023). Rooted in the “information
pull” paradigm, this component is conceptualized as a dynamic workflow, generated
in direct response to emergent information needs (Cichocki, Helal, Rusinkiewicz, &
Woelk, 1998). In the context of MAAI, this dynamic workflow is operationalized
through the orchestration of AI-based agents, which execute tasks guided by abstract
design patterns. Van der Aalst, ter Hofstede, Kiepuszewski, and Barros (2003) intro-
duced a spectrum of design patterns, ranging from elementary constructs to intricate
abstractions. The simpler design patterns are generally aligned with sequential or
parallel workflows, facilitating the pre-definition of workflow steps and enabling task-
oriented deployment through high-level directives (Xi et al., 2023). This approach
facilitates the orchestration to establish all requisite tasks in advance, allowing AI-
based agents to execute them autonomously. Each task’s outcome is then sequentially
forwarded to the subsequent task. Conversely, more intricate workflows exploit the
full intellectual potential of MASs through sophisticated orchestration. These work-
flows incorporate iterative loops, necessitating innovation-oriented deployment or even
lifecycle-oriented deployment, enabling agents to continuously interact with an open
and unknown environment (Xi et al., 2023).

In our example, the customer’s inquiry is addressed through a three-stage process:
initially, the overall objective is identified, followed by the structuring of the workflow,
and culminating in the processing of the tasks, all within the collaborative framework
facilitated by the dynamic orchestration of the MAS. Each stage supports dynamic
orchestration and decision-making, allowing for adaptive and responsive interactions
throughout the workflow. A policy analyst agent might need to query databases an
unknown number of times to gather sufficient information about a case. In such a com-
plex scenario, the agent-integrated workflow component showcases innovation-oriented
deployment, iteratively adjusting tasks as the process evolves. This method enhances
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flexibility and adaptability within workflow automation, accommodating changes and
enabling dynamic decision-making processes that emulate human-like deliberations
rather than adhering to rigid rule-based protocols.

Component C5: Interaction Interface

The interaction interface serves as the entry point for both human and system-level
engagement with MAAI. It encompasses not only user interfaces (UIs) but also APIs,
enabling integration with external systems and organizational platforms. While the
previous components enable AI-based agent coordination and agent-integrated work-
flow generation, the interaction interface ensures that these processes are accessible,
traceable, and actionable. As such, the UI constitutes the critical socio-technical junc-
tion where the system becomes actionable in organizational settings. Effective user
interfaces are also essential for enabling human oversight and intervention, especially in
complex, automated workflows (Sterz et al., 2024). Drawing on IS perspectives (Baird
& Maruping, 2021; Schuetz & Venkatesh, 2020), this component plays a dual role:
supporting human-AI collaboration through explainable, adaptive, and role-specific
interfaces, and facilitating machine-to-machine communication through structured
endpoints. In organizational settings, such interfaces must balance transparency with
usability—offering dashboards, conversational agents, or monitoring tools for internal
users, and streamlined interaction channels for external systems. This goes beyond
the necessity of having any interaction interface—it raises design requirements related
to explainability, adaptive feedback, and trust-building mechanisms in human-AI col-
laboration. Designing an appropriate interaction interface for MAAI thus depends
on the system’s purpose and user roles. For end-users, chatbot interfaces or decision
dashboards may suffice to deliver responses and gather input. For internal users (e.g.,
employees monitoring agent-integrated workflows), the UI must support traceabil-
ity of agent interactions, intervention capabilities, and contextual awareness. In both
cases, prior work in IS suggests the importance of adaptive, stateful interfaces and
role-specific views to manage complexity and promote trust (Gimpel, Graf-Drasch,
Laubacher, & Wöhl, 2020; Gnewuch, Morana, & Maedche, 2017).

In the insurance company use case, the interaction interface connects customers,
employees, and the MAAI. A chatbot UI allows customers to submit claims and receive
updates, while internal APIs dynamically feed outputs from policy analysts or claims
processors into case management systems. These interaction interfaces ensure that the
system remains comprehensible, responsive, and compatible with existing workflows.

4 Challenges and Emerging Pathways for the IS
Community

The advent of MAAI represents a shift from conventional, narrowly defined automa-
tion toward more sophisticated, agent-based AI systems capable of addressing intricate
problem-solving and decision-making tasks. FMs, especially those found in generative
AI, represent a transformative potential for automating a wide range of knowledge
work. For the IS community, this development requires not only theoretical reflection
but also actionable guidance in research avenues spanning technical capabilities and
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Fig. 3 The figure maps the five-component MAAI framework—comprising FM, data-centric per-
ception & action, dynamic orchestration, agent-integrated workflow, and interaction interface—to
exemplary research questions from the three proposed analytical pathways: technical capabilities,
organizational and economic integration, and socio-technical implications.

organizational-economic integration alongside socio-technical implications. The con-
ceptual framework presented in this work offers such guidance. It is intended to inform
and structure developing or analyzing MAAI. Each component addresses a core archi-
tectural layer and provides a scaffold to formulate requirements, select technologies,
define agent roles, and assess socio-technical implications. Researchers can use the
framework to compare system architectures, identify gaps in existing solutions, and
formulate research questions grounded in component-specific challenges (cf. Figure 3).
Practitioners may use it as a reference for implementing modular, agent-based systems
in real-world settings.

4.1 Engineer Technical Capabilities (Components C1-C3)

MAAI’s potential to support employees and alleviate burdensome workloads intro-
duces significant engineering challenges, particularly in designing coherent systems
that enable the dynamic orchestration (C3) of agents within context-sensitive work-
flows. A key issue is that FMs (C1)—often developed externally and accessed via
APIs—limit organizational control over model evolution (e.g., domain-specific tun-
ing (Ray, 2023)), functionality, and propagated bias (Ji et al., 2023). In MAAI, faulty
outputs from one agent can influence others, compounding errors across the system.
This raises the need for processes that support ongoing alignment between model
capabilities, organizational needs, and customer-facing outcomes. To address these
challenges, applying design science research approaches (Tuunanen, Winter, & vom
Brocke, 2024) offers a structured foundation for deriving modular, adaptive design
patterns for MAAI. Existing frameworks remain largely conceptual (Händler, 2023;
J. Zhou et al., 2024) and lack prescriptive guidance for implementing agent-based AI
systems in practical, value-generating contexts (Chen et al., 2024; Crawford et al.,

14



2024; Durante et al., 2024). Researchers must develop reference architectures, decision
models, and modular software components that operationalize the orchestration of het-
erogeneous agents (C3), informed by domain-specific and organizational constraints.
Beyond technical orchestration, the effectiveness of data-centric perception and action
(C2) hinges on how agents access and interpret relevant information. Current data
retreival techniques rely heavily on static documentation, which limits responsiveness
to nuanced, real-world practices. There is a need to incorporate human-generated
insights—capturing how tasks are performed in practice—into retrieval mechanisms,
thereby increasing contextual sensitivity and enhancing agent performance in dynamic
environments. These challenges give rise to the following research questions:

RQ1 Governance of Externally Sourced Foundation Models (C1)

Given that foundation models are often externally developed and inte-
grated via APIs, leaving development teams with limited control over their
evolution, how can organizations establish continuous development and
deployment processes that align model capabilities with domain-specific
requirements and mitigate risks related to opacity, bias, and functional
drift?

RQ2 Human-in-the-Loop Knowledge Retrieval (C2) How can human-

generated insights and tacit expertise be systematically integrated into
knowledge retrieval mechanisms to enhance contextual relevance and move
beyond static sources such as documentation or wikis?

RQ3 Modular and Dynamic Agent Orchestration (C3) How can design

principles be applied to enable modular and dynamic orchestration of het-
erogeneous AI-based agents within MAAI systems, allowing workflows to
be adaptively structured and refined in real-time as tasks evolve?

4.2 Structure Organizational and Economic Integration
(Components C3-C4)

From a managerial standpoint, the integration of MAAI into enterprise work-
flows raises fundamental questions about the future of knowledge work and the
evolving role of human labor. While AI-based agents are increasingly capable of
autonomously executing complex, multi-step processes, human involvement currently
remain essential—not only for oversight and exception handling (Yee et al., 2024),
but also as a meaningful component within agentic ecosystems. Recent research sug-
gests that humans can function as “human agents” within MAAI (Guo et al., 2024;
Song et al., 2024), collaborating with AI-based agents to enrich decision-making,
ensure accountability (cf. European Union AI Act), and provide situational awareness
in dynamic environments. This shift toward hybrid orchestration (C3) necessitates
the development of mechanisms that dynamically allocate tasks to both human and
AI-based agents based on context-sensitive evaluations of skill, expertise, and value
contribution. Beyond static role definitions, such integration requires flexible orches-
tration logic capable of adapting workflows to real-time demands, ensuring that human
input is solicited when it is most impactful (Hemmer, Schemmer, Kühl, Vössing, &
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Satzger, 2024). Technical evaluations have already found that multiple AI agents work-
ing together do not always outperform single agents, highlighting the need for nuanced
analysis (Cemri et al., 2025). The practical realization of this vision also entails sig-
nificant change management: determining which workflows are best suited for full
automation, which require human-AI collaboration, and how to position humans effec-
tively within the broader system architecture. From an organizational perspective, the
deployment of MAAI is expected to create new forms of work and alter the compo-
sition of existing roles. As agent-based automation is embedded into workflows (C4),
organizations must assess the emergence of new professional categories and consider
how current fields evolve. Strategic implementation thus requires not only technical
integration but also workforce planning, training, and governance mechanisms to sup-
port long-term adaptation. Finally, the economic viability of MAAI also depends on
resource efficiency. Not all agents require large FMs; orchestration mechanisms (C3)
must assign tasks based on the complexity and data sensitivity of the task, leveraging
lightweight or specialized models where feasible. Techniques such as model paralleliza-
tion, quantization, or knowledge distillation can further reduce the computational
burden, making MAAI solutions more scalable and cost-effective (Zhu et al., 2024).
In light of these developments, we identify the following research questions:

RQ4 Human-AI Collaboration and Hybrid Orchestration (C3): How

can humans be integrated as active agents within MAAI, and how
can orchestration mechanisms dynamically allocate human and AI-based
agents to tasks based on the comparative value of human skills?

RQ5 Measuring Strategic Impact (C4): What metrics and evaluation

frameworks can be developed to assess the strategic and financial benefits
of integrating orchestrated AI-based agents into real-world organizational
workflows? And how do we measure the performance of a MAAI in a busi-
ness process—e.g., by aggregate outcome, by human satisfaction, or by
emergent properties?

RQ6 Role Transformation and Emerging Professions (C3, C4): Which

tasks and workflows are most impacted by the deployment of MAAI, and
what new professional roles (e.g., operations, orchestration design) are
likely to emerge as organizations adapt to MAAI?

RQ7 Resource Efficiency and Economic Scalability (C3): How can

orchestration strategies be optimized to ensure resource-efficient MAAI
deployments, balancing task complexity with the use of lightweight models,
parallelization, and modular architectures?

4.3 Study Socio-technical Implications (Components C4-C5)

The societal perspectives of MAAI span ethical, labor, sustainability, and governance
concerns. As AI-based agents increasingly assume complex decision-making tasks, the
labor market may see both displacement and transformation of roles. While automa-
tion can democratize access to expert-like capabilities, it also risks downward pressure
on wages and the erosion of returns to general education (Acemoglu & Restrepo,
2020; Agrawal, Gans, & Goldfarb, 2023; Dwivedi et al., 2023). These dynamics call
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for proactive workforce planning and targeted interventions to mitigate inequality.
On the ethical front, preserving human responsibility becomes increasingly difficult as
agent interactions grow more autonomous and interdependent. Faulty outputs from
one agent may propagate through others, compounding risks. Transparent evaluation
and governance structures are essential to avoid overreliance and preserve accountabil-
ity (Deutscher Ethikrat, 2023; Ray, 2023; Schemmer et al., 2023). MAAI particularly
raises questions about fairness and accountability in decision-making workflows. Out-
puts can be evaluated at both final and intermediate stages, yet it remains unclear
whether fairness principles must apply uniformly—especially when not all outputs are
user-facing. This prompts a critical inquiry into whether interactions among AI-based
agents themselves must adhere to ethical standards reflective of human stakeholder
norms. From a socio-technical angle, UIs (C5) play a central role in making MAAI
interpretable. In agent integrated workflows (C4), where tasks and agent configu-
rations evolve on the fly, interfaces must provide transparency without cognitive
overload. Long-form textual outputs of agent dialogues may obscure rather than sup-
port informed oversight, complicating appropriate reliance (Schemmer et al., 2023)
and hence confident adoption (Ray, 2023). Research questions for the third research
avenue include:

RQ8 Multi-level Fairness in MAAI Workflows (C4): To what

extent should principles of algorithmic fairness be applied uniformly—
particularly when certain outputs may not directly interface with human
stakeholders?

RQ9 Transparent UI Design for Emergent Workflows (C5): How can

interaction interfaces be designed to transparently present the evolving
outputs and decisions of MAAI systems, especially in workflows where
tasks and agent roles are dynamically generated, and how can such
interfaces promote appropriate reliance without overwhelming users with
excessive or unintelligible information?

RQ10 Labor Market Dynamics and Human Integration via Orches-

tration (C3, C4): How will the widespread adoption of MAAI reshape
labor markets, particularly as human roles become dynamically integrated
into orchestrated workflows, and what policy interventions or training pro-
grams are needed to address resulting changes in employment levels, wage
structures, and skill demands?

RQ11 Ethical oversight (C4): How can agent-integrated workflows be

designed to maintain transparency, draw boundaries of human responsi-
bility, and prevent the undermining of accountability?

5 Conclusion and Research Directions

Multi-Agent AI (MAAI) marks a foundational shift in the automation of knowledge
work—moving beyond rigid task execution toward adaptive, agent-based collabora-
tion grounded in perception, reasoning, and dynamic orchestration. Rooted in the
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traditions of process automation, agentic information systems, and artificial intelli-
gence, MAAI responds to the increasing complexity of knowledge work illustrated in
our opening scenario: work that spans organizational boundaries and demands contex-
tual, expert-driven decision-making. To structure this emerging domain, we proposed
a layered five-component framework: Foundation model (C1), data-centric percep-
tion and action (C2), dynamic orchestration (C3), agent-integrated workflow (C4),
and user interface (C5). This Matrjoschka-like architecture not only explains how
MAAI systems function, but also structures the debate—unpacking the technical foun-
dations, interaction mechanisms, and human interfaces that define MAAI’s unique
socio-technical dynamics. The framework delineates three critical research avenues.
Technically, it calls for new approaches to agent modularity, orchestration, and per-
ception in systems that increasingly rely on opaque, externally developed models.
Organizationally, it prompts inquiry into hybrid human-AI workflows, changing labor
roles, and value distribution. Socio-technically, it highlights the need for accountable,
transparent systems capable of supporting trust, fairness, and responsible oversight in
multi-task settings.

By engaging these challenges, the IS community can shape MAAI not just as a
technical evolution, but as a transformative paradigm for how intelligence, coordina-
tion, and agency are distributed in digital systems—grounding future innovation of
MAAI in both conceptual clarity and societal relevance.
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