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Abstract

Concept-based eXplainable Al (C-XAI) aims to overcome
the limitations of traditional saliency maps by converting
pixels into human-understandable concepts that are consis-
tent across an entire dataset. A crucial aspect of C-XAI
is completeness, which measures how well a set of con-
cepts explains a model’s decisions. Among C-XAI meth-
ods, Multi-Dimensional Concept Discovery (MCD) effec-
tively improves completeness by breaking down the CNN la-
tent space into distinct and interpretable concept subspaces.
However, MCD'’s explanations can be difficult for humans
to understand, raising concerns about their practical util-
ity. To address this, we propose Human-Understandable
Multi-dimensional Concept Discovery (HU-MCD). HU-
MCD uses the Segment Anything Model for concept identi-
fication and implements a CNN-specific input masking tech-
nique to reduce noise introduced by traditional masking
methods. These changes to MCD, paired with the com-
pleteness relation, enable HU-MCD to enhance concept un-
derstandability while maintaining explanation faithfulness.
Our experiments, including human subject studies, show
that HU-MCD provides more precise and reliable explana-
tions than existing C-XAI methods. The code is available at
https://github.com/grobruegge/hu—mcd.

1. Introduction

In recent years, industry and research have witnessed an ex-
ponential growth of Machine Learning (ML), particularly
accelerated by the advancements of Deep Learning (DL).
ML models have proven to solve various problems given
sufficient data. However, these models are not failure-free.
Previous work has identified various failure cases, including
vulnerability to adversarial attacks [35] or biased data [6]
and reliance on spurious features [39] that leads to shortcut
learning [14]. In high-stake sectors, such as autonomous
driving and healthcare, failures could lead to catastrophic
outcomes [26, 32]. To prevent such risks, ensuring reliable
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transparency of ML models is essential. With the recent Eu-
ropean regulations—including the General Data Protection
Regulation (GDPR) [19] and the European Al act [24]—
this need for transparency has made eXplainable Artificial
Intelligence (XAI) a central topic in ML research [36]. XAI
methods aim to provide transparency of ML models by pro-
viding insights into their decision-making processes.

Due to their convenience, post-hoc explanations that do not
require modifying the underlying model architecture are
widely used in the computer vision domain, particularly lo-
cal XAl methods that provide explanations for single pre-
dictions [1, 33, 45]. For instance, saliency maps highlight
areas in images that are significant for the model’s predic-
tions. However, there is a growing consensus that these
methods do not provide understandable explanations. Ade-
bayo et al. [2] find that these maps are independent of both
the model and the data-generating process, questioning the
reliability of such approaches. Moreover, local explanation
methods are vulnerable to human confirmation bias [37]—
the tendency of humans to favor information that confirms
their preexisting assumptions while disregarding contradic-
tory evidence. Finally, the human interpretation of local ex-
planations, such as attribution maps on individual instances,
poses challenges and may lead humans to draw contradic-
tory conclusions [16, 20, 21]. Highlighting the location
of important regions within an image—where the model
“looks”—is thus not sufficient for humans to interpret the
reasoning of a model. Humans also require the semantic
content—what the model “sees” [12].

To address the shortcomings of local methods, Concept-
based XAI (C-XAI) has emerged as a promising line of
research within the area of global post-hoc explanations—
which take a more holistic approach and explain the over-
all decision logic of ML models [30]. Concepts refer to
patterns learned by the model that can be associated with
high-level and human-understandable visual attributes. For
instance, in the medical field, the recognition of such pat-
terns is crucial to assist clinicians in improving diagnos-
tic accuracy. Lucieri et al. [25] utilize C-XAI in a medi-
cal scenario and demonstrate its use in dermatology. While
early methods used pre-defined concept datasets [4, 20, 47]
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against which the model is evaluated, more recent work
has developed frameworks for automatic concept discovery
[11, 15, 37, 44]. First, these frameworks identify visual at-
tributes in images of specific classes for a given task. Then,
they cluster similar attributes to form meaningful concepts
related to that task. However, they have a conflicting rela-
tionship between discovering human-understandable con-
cepts and faithfully quantifying their significance to model
predictions, often prioritizing one over the other.

For instance, Automatic Concept-based Explanations
(ACE) [15] uses image segmentation clustering for con-
cept discovery. While obtaining promising results in terms
of understandability, the segments must be inpainted and
rescaled to meet the model input requirements, resulting in
noise that distorts the model’s predictions. Furthermore, to
ensure understandable concepts, ACE uses several heuris-
tics to exclude outliers but does not consider the degree of
information loss, thus raising concerns regarding the faith-
fulness of its explanations. More recent work has addressed
some of the limitations of ACE. In particular, Invertible
Concept-based Explanations (ICE) [44] replaces image seg-
ments with hidden feature maps, and Concept Recursive
Activation FacTorization for Explainability (CRAFT) [11]
utilizes quadratic image patches to circumvent inpainting
requirements. Nonetheless, a key challenge remains to
guarantee faithful explanations: the quantification of the
completeness of a concept set, i.e., the extent to which
these concepts are sufficient to explain the model’s predic-
tions. Multi-Dimensional Concept Discovery (MCD) [37]
generalizes upon ICE and incorporates a completeness rela-
tion, highlighting the superior faithfulness of their concepts
compared to previous methods. However, MCD does not
quantitatively assess the understandability of its discovered
concepts.

In this work, we propose a novel framework that provides
both understandable and faithful explanations: Human-
Understandable MCD (HU-MCD). To discover concepts
that are human-understandable, we use the Segment Any-
thing Model (SAM) [22]. To overcome the noise intro-
duced by the use of rescaled or inpainted images, we em-
ploy a novel input masking scheme tailored for Convo-
lutional Neural Networks (CNNs) [3]. Subsequently, we
adopt the MCD framework, which enables both local and
global concept importance scoring to quantify the signifi-
cance of each concept for the model’s predictions. Unlike
ACE, HU-MCD incorporates a completeness relation, al-
lowing to account for potential information loss during con-
cept discovery, further enhancing the explanations’ faithful-
ness.

We evaluate HU-MCD on the ImageNetlk [9] dataset
and demonstrate that HU-MCD outperforms state-of-the-art
methods in both the understandability of discovered con-
cepts and the faithfulness in attributing their importance to

the model. Furthermore, we benchmark HU-MCD using
Concept Deletion (C-Deletion) and Concept Insertion (C-
Insertion), thereby demonstrating that the concept impor-
tance scores faithfully represent the model’s reasoning.
Overall, our main contributions are threefold: (1) We intro-
duce HU-MCD—a framework for automatic completeness-
aware concept-based explanations that uses SAM for
human-understandable concept discovery. By using SAM,
the manual labeling effort in real-world settings can be re-
duced. (2) To ensure explanations that faithfully relate
to the model’s decision-making, we use an input masking
scheme tailored for CNNs that effectively mitigates noise
introduced by the segmentation masks. (3) We design a
human subject study and conduct extensive experiments
on established benchmarks to verify the understandability
and faithfulness of the concepts generated by HU-MCD.
Thereby, HU-MCD takes further steps towards aligning Al
decisions with legal regulations (e.g., EU Al Act).

2. Related Work

Supervised Post-Hoc Concept Analysis. Recent re-
search demonstrated that CNNs can encapsulate human-
understandable concepts without being explicitly trained
on these concepts [46]. This discovery led to the devel-
opment of several XAI methods, aiming to discover these
concepts and measure their influence on model predic-
tions [4, 13, 20, 47]. Notably, the Testing with Concept
Activation Vectors (TCAV) framework [20] introduces the
notion of Concept Activation Vectors (CAVs)—the weights
of a linear classifier used to separate activations corre-
sponding to a specific concept from those corresponding
to random data within the activation maps of a neural net-
work’s final convolutional layer. CAVs provide a formal-
ized method for representing and quantifying concepts, en-
abling the interpretation of model behavior in terms of
human-understandable features.

Unsupervised Post-Hoc Concept Discovery. While the
methods above rely on the availability of a human-defined
concepts dataset, subsequent work aimed to eliminate
this dependency by automatically discovering concepts.
ACE [15] uses superpixel segmentation of class images,
clusters their embeddings, and groups similar segments
as examples of a concept, which are then analyzed using
TCAV. However, the clustering step requires that images
are cropped, mean-padded, and resized to the model’s in-
put size. These image manipulations distort the aspect ra-
tio, introduce noise, and discard the overall scale ratio. Ad-
ditionally, ACE applies several heuristics to discard irrel-
evant segments and clusters but does not account for the
information loss during this process. More recent work
addresses these shortcomings [11, 37, 41, 44]. Yeh et al.
[41] builds on ACE by introducing the notion of complete-
ness—the extent to which concept scores serve as sufficient
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statistics for recovering the model’s prediction. However,
they provide limited qualitative results and lack a rigorous
human-subject study comparing their approach to similar
work. ICE [44] applies Non-negative Matrix Factoriza-
tion (NMF) on feature maps to identify concepts by disen-
tangling frequently appearing directions within the feature
space. CRAFT [11] combines ACE and ICE by applying
NMF to feature vectors of image sub-regions, thereby elim-
inating the necessity for a baseline value to inpaint masked
regions for image segments but still requiring rescaling. Un-
like ICE, CRAFT uses Sobol indices instead of TCAV but
lacks a completeness relation. Instead of representing con-
cepts as a single direction in the feature space, MCD [37] al-
lows concepts to lie on a hyperplane spanned across differ-
ent convolutional channel directions, thus generalizing ICE.
This is realized by Sparse Subspace Clustering (SSC) for
feature vector clustering and a subsequent Principle Com-
ponent Analysis (PCA) for cluster basis derivation. Ob-
serving the projection into the subspace not covered by the
concepts allows for defining a global completeness score
directly on the model’s parameters, which differs from the
original completeness definition [41]. Similar to ICE, MCD
aims to mitigate the noise introduced by rescaling and in-
painting image segments. However, their methodology
lacks an evaluation of the understandability of the con-
cept. Finally, Segment Any Concept (SAC) [34] provides
local post-hoc concept explanation. Their definition of con-
cepts differs from the methodologies discussed earlier, fo-
cusing exclusively on individual image regions within sin-
gle images rather than on shared patterns across multiple
instances.

Self-Interpretable Concept Models. All the methods
above make no modification to the underlying model archi-
tecture. An alternative approach is to re-design the archi-
tecture such that the decision process is inherently linked
to concepts’ representations. For instance, Concept Bot-
tleneck Models (CBM) [23] introduce a concept bottle-
neck layer, where single neurons are explicitly linked to
pre-defined concepts which has inspired several subsequent
studies [10, 42]. While CBMs require concept annotation
for the training dataset, self-interpretable models can also
be designed in an unsupervised manner [8, 27, 40].

3. Proposed Method

Building on the objectives of discovering human-
understandable concepts and faithfully attributing their
contribution to the model’s prediction strategy, we pro-
pose Human-Understandable Multi-Dimensional Concept
Discovery (HU-MCD). As shown in Figure 1, we dis-
tinguish two stages for HU-MCD to align with existing
literature [12]. First, we discover relevant concepts by
segmenting class images using SAM [22], a foundation
model for instance segmentation. We cluster them using

SSC based on their representation within the feature space
of the model. To avoid introducing noise that might distort
the model’s prediction by rescaling and inpainting image
segments, we employ an input masking scheme specifically
designed for CNNs [3]. Second, we adapt the MCD
framework proposed by Vielhaben et al. [37], which allows
for both local and global concept importance scoring and
incorporates a completeness relation by decomposing the
model’s feature space into multi-dimensional concepts.

3.1. Concept Discovery

We choose a set of images that encapsulate the concepts
against which the model will be tested. The selection of
samples is not constrained, giving users the flexibility to
choose class-specific samples or utilize the entire training
set to derive class-agnostic concepts. Inspired by ACE,
we use a segmentation algorithm to obtain a dataset com-
prising distinct image regions acting as concept candidates.
In particular, we use SAM [22], as it provides precise and
comprehensive instance segmentation with strong zero-shot
generalization demonstrated across a broad spectrum of
tasks [34]. Using the masks provided by SAM, we select,
for each image, the most granular decomposition, consider-
ing all masks covering at least 1% of the image.

Concepts are inherently linked to the hidden represen-
tation of intermediate feature layers. Previous work has
demonstrated that state-of-the-art CNNs learn to represent
different features of the data by mapping distinct concepts
to different regions of the embedding space [43]. Thus, we
employ SSC to ensure that the data points within different
clusters lie on a union of distinct low-dimensional sub-
spaces embedded within a higher-dimensional space [37],
effectively grouping perceptually similar segments as
entities of the same concept. Instead of opting for an
arbitrary cluster count (as seen in prior studies such as 10 in
Zhang et al. [44] or 25 in Ghorbani et al. [15] and Fel et al.
[11]), we leverage the robust segmentation capabilities of
SAM and determine the number of clusters based on the
average number of segments per image.

Processing image segments presents the challenge of pass-
ing irregularly shaped regions through CNN models while
extracting feature embeddings. This task is complex due
to the fixed-size input requirement of CNN architectures,
necessitating rescaling and/or the incorporation of baseline
colors to fill masked-out regions, as implemented in ACE.
However, many baseline colors are not truly neutral [18],
potentially introducing artifacts that can bias the model’s
predictions. Approaches to address this problem include
classical imputation algorithms [5] as suggested by Viel-
haben et al. [37] or deep generative models [7]. While these
can be effective, they may inadvertently reveal hidden in-
formation by recovering masked-out regions or require ex-
pensive model training.
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Figure 1. Overview of HU-MCD.

To improve upon ACE, we aim to avoid introducing spu-
rious cues from the mask shape or color. Recent studies
indicate that Vision Transformers are less susceptible to
masking patterns and colors [18], partially because they can
omit patch tokens. In a similar spirit, Balasubramanian and
Feizi [3] propose a layer masking scheme for CNNs: rather
than inserting a baseline color, both the input image and
an accompanying mask are propagated through each layer.
This effectively simulates running the CNN on an irregu-
larly shaped input—ignoring any activations arising purely
from masked regions. By capitalizing on the hierarchical
nature of CNNs (whose stacked convolutional layers ex-
pand their receptive fields gradually), the masking scheme
retains only those values dependent on the unmasked input
while discarding those reliant solely on the masked-out ar-
eas. Empirically, this leads to better preservation of model
accuracy and more faithful explanations.

A key challenge in this setup are convolutions near mask
edges. Discarding edge convolutions can cause the un-
masked portion to rapidly diminish, whereas propagating
edges may introduce artifacts by inadvertently revealing
masked regions to the model. To mitigate such effects, Bal-
asubramanian and Feizi [3] propose neighborhood padding,
where the unmasked boundary pixels are padded with an
average of their adjacent (non-masked) neighbors. This
padding is iterated until it reaches the convolution ker-

nel size. However, given that SAM often produces masks
closely aligned with true object edges, extensive padding
would remove relevant shape information. For example,
an accurately segmented mask of a car tire—once padded
to the kernel size—could yield a uniform fill, discarding
shape detail entirely. We thus propagate the unmasked im-
age along with the mask to the first convolutional layer and
only apply the masking scheme thereafter. For instance, in
a ResNet50 model (with a 7 x 7 kernel in the first con-
volution), this grants the kernel access to a narrow band
of context around the mask, preventing over-aggressive re-
moval of relevant shape cues. If a particular mask covers
more than 25% of the image, we shrink it by the convolu-
tion kernel size to avoid exposing large portions of an ob-
ject’s outline when only the background was intended to be
masked. Although not flawless, this pragmatic strategy ad-
dresses most typical scenarios: small objects remain intact,
and large background regions avoid inadvertently revealing
the object shape.

3.2. Concept Importance Scoring

To quantify how identified concepts influence the predic-
tions of a model, we adapt the MCD framework. Initially,
concepts represent collections of segments associated with
similar visual patterns. To achieve independence from in-
dividual segments, MCD employs PCA on the hidden rep-
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resentations of cluster members, retaining the top principal
components as a representative subspace basis, capturing
recurring activation patterns. Repeating this process across
all clusters yields a set of subspaces that collectively form a
comprehensive basis for the feature space. An additional
orthogonal complement subspace captures residual infor-
mation not represented by the identified concepts, ensuring
a complete representation. Building upon this decomposi-
tion, Vielhaben et al. [37] introduced two complementary
metrics: concept activation, which quantifies a concept’s
presence, and concept relevance, which assesses the signif-
icance of a concept in predicting class labels.

In the original MCD implementation, no image segmenta-
tion is utilized; instead, an entire image is processed through
the network to generate a feature map, treating each spatial
location as a separate feature vector. MCD then decom-
poses these vectors to compute concept activation and rele-
vance scores, resulting in grid-aligned heatmaps upscaled
for visualization [31]. This approach, however, tends to
yield ambiguous and block-like regions, as the grid align-
ment may not correspond to actual object boundaries or
meaningful parts. In contrast, our proposed method inte-
grates SAM to guide the discovery of semantically mean-
ingful image regions, thus addressing these interpretability
limitations (see Section 4). Consequently, we adapted the
original metrics to operate explicitly on image segments, as
detailed below.

Concept Activation. Concept activation measures the
presence of a concept within a given image segment.
Specifically, each concept corresponds to a distinct low-
dimensional subspace within the network’s hidden layer.
By projecting an image segment’s hidden representation
onto this subspace, we quantify how strongly a concept is
expressed. Applying this procedure across all segments
generates a concept activation map highlighting regions
where each concept is predominantly active. By identify-
ing the concept with the maximum activation score for each
segment, we split images into distinct concept regions. Con-
cept prototypes—segments exhibiting the highest activation
scores within a sample set—provide intuitive visualizations.

Local Concept Relevance. While concept activation in-
dicates the presence of a concept, it does not directly reveal
the concept’s influence on the model’s prediction. To ad-
dress this, Vielhaben et al. [37] decompose the final hidden
layer representation—followed only by a linear mapping to
scalar class scores (logits)—into contributions from each
concept subspace. This decomposition generates local con-
cept relevance scores, which quantify each concept’s im-
pact on the classification decision at the instance level. Im-
portantly, summing these relevance contributions precisely
reconstructs the full logit value, satisfying a completeness
criterion. Thus, local relevance scores measure how indi-
vidual concepts contribute positively or negatively toward a

classifier’s decision. Applying this analysis segment-wise
results in concept relevance heatmaps.

Global Concept Relevance. In contrast to local rele-
vance, global concept relevance quantifies concept impor-
tance at the class level by projecting the final classification
layer’s weight vector onto the respective concept subspaces.
Similar to local relevance, summing global relevance scores
across concepts fully reconstructs the classifier’s predictive
capability, fulfilling a global completeness criterion based
on the model’s parameters.

A key advantage of this decomposition framework is its
inherent completeness relation, ensuring that summing ei-
ther local or global concept relevance values reproduces
the original model outputs (logits or weights). Thus,
HU-MCD combines human-interpretability—by leverag-
ing SAM-generated fine-grained, semantically meaning-
ful segments—and faithful interpretation—through adopt-
ing MCD’s completeness properties. Furthermore, our in-
put masking strategy supports model fidelity by minimizing
noise from baseline colors or mask boundaries.

4. Evaluation

We evaluate HU-MCD’s (1) understandability of the au-
tomatically discovered concepts from a human perspec-
tive and (2) faithfulness of the concept importance scores
in explaining the model prediction. We run our experi-
ments on the ImageNetlk dataset [9] using a selection of
ten classes that roughly align with CIFAR10 classes' as
proposed by Vielhaben et al. [37]. As model architecture,
HU-MCD uses ResNet50 with the weights provided by the
Python library timm [38]. For segmentation, we use SAM
with the pre-trained Vision Transformer Huge (ViT-h), the
largest of three available Image encoders. We then compare
our method with ACE [15] and MCD [37].
Implementation Details. We use SAM on 400 images per
class, randomly sampled from the ImageNet1k training set,
generating a comprehensive dataset of concept candidates.
The generalization of the discovered concept is then verified
using class images obtained from the ImageNetlk valida-
tion set. In the human-subject study, we implement MCD
to ensure the discovery of at least five concepts for each
class to ensure a fair comparison to the other methods.

4.1. Understandability

Human Subject Study Design. Motivated by Zhang et al.
[44], we use task prediction [17] for evaluation; participants
are given one test image with one concept highlighted and
five concept explanations from the same class as candidates
(as shown in Fig. 2). They are then asked to select the can-
didate to which the test image most likely belongs. To ac-
count for ambiguity, participants can choose up to three or

lairliner, beach wagon, hummingbird, Siamese cat, ox, golden re-
triever, tailed frog, zebra, container ship, police van
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Figure 2. Survey sample of the human subject experiment gener-
ated by HU-MCD. Participants are asked to assign the test image
on the left to the group on the right which is most similar by only
considering the highlighted region.

no candidates. Additionally, they are asked to rate the given
concept candidates by stating whether they are recogniz-
able and assigning a 1-2 word description for each candi-
date they rate as recognizable.

The study used a within-subject design involving 15 ex-
amples from three methods (ACE, MCD, and HU-MCD)
across five random CIFAR-10-like classes, presented in ran-
dom order. Each participant encountered three sequential
examples of each class, with method order randomized.
Explanations were generated following method-specific de-
tails, retaining the top-10 most influential concepts for each
class representing each concept by the top-10 prototypical
samples. Five concepts were randomly selected as candi-
dates for each test image. Ten random samples were created
per class and method, for a total of 300 different samples.
Each participant had a unique selection and order of sam-
ples and conducted a short tutorial.

The experiment was conducted online using SoSci Survey,
and participants were recruited through Prolific. Attention
checks were included to ensure participant comprehension
and exclude those who failed the checks. Participants with
a prediction accuracy below 20% (random choice) were ex-
cluded. A total of 41 participants completed the survey, and
each experiment lasted approximately 30 minutes. Partici-
pants were compensated with £3 plus an incentive of 3 pen-
nies per correct assignment, up to £3.45. Participant demo-
graphics were 61% male, 37% female, 2% unspecified, with
ages ranging from 18 to 68 (u = 36).

Metrics. Similar to Zhang et al. [44], we report the percent-
age of correctly identified concept explanations. The un-
derlying assumption is that better concept explanations en-
able participants to associate the highlighted region within
the test image to its corresponding concepts more accu-
rately (among five candidates). High prediction accuracy

Percentage Inner-Concept  Intra-Concept

Prediction Recognizable Description Description

Accuracy T

Concepts T Similarity T Similarity |
HU-MCD 70.24% 67.12% 0.49 0.28
Results ACE 42.93% 45.66% 0.39 0.29
MCD 31.22% 50.34% 0.41 0.38
ANOVA test p-values < 0.001 < 0.001 < 0.001 < 0.001
T-test HU-MCD vs. ACE < 0.001 < 0.001 < 0.001 0.0155
_values HU-MCD vs. MCD < 0.001 0.001 0.008 < 0.001
P ACE vs. MCD 0.029 0.3773 0.4133 < 0.001

Table 1. Results of the human-subject study to validate the un-
derstandability of the concept explanations generated by HU-
MCD. All results involving HU-MCD are statistically significant
(p < 0.05).

indicates the coherence of individual concepts by requir-
ing concept prototypes of the same concepts to be percep-
tually similar while being dissimilar to prototypes of other
concepts. By asking participants to select all recognizable
concepts, we further ensure the understandability of each
generated concept explanation. Comparing the 1-2 word
descriptions across participants serves as a supplementary
indicator of the explanatory quality of the generated con-
cepts. We use pre-trained GloVe [28] word vector represen-
tations for each description’, and we then compute the av-
erage pairwise cosine similarity to assess the consistency of
concept descriptions across participants (i.e., inner-concept
description similarity). Understandable concept explana-
tions should result in different participants assigning similar
descriptions to the same concept. Additionally, descriptions
across different concepts should differ to indicate that the
concepts characterize different attributes of a class. Thus,
we also calculate the pairwise cosine similarity of the de-
scription embeddings across concepts within one class for
each method (i.e., intra-concept description similarity).

Experimental Results. As shown in Table 1, explanations
generated by HU-MCD demonstrate a higher prediction ac-
curacy over both ACE and MCD. This confirms that HU-
MCD generates a diverse set of concepts and that proto-
types of single concepts are perceived as perceptually sim-
ilar. The superior understandability of the concept expla-
nations is further supported by the percentage of concepts
marked as recognizable. Interestingly, MCD shows a no-
table gap between prediction accuracy and the percentage
of recognizable concepts. We observed that this is because
the concepts generated by MCD for each class are highly
similar, making it possible to recognize them individually
but difficult to distinguish them from each other. To un-
derscore this, we additionally evaluated the percentage of
recognizable concepts, considering only concepts for which
participants provide unique descriptions within each ques-
tion. This yields a proportion of 37,83% (- 7.83% in com-

2We use the glove-wiki-gigaword-300 model loaded via the Gensim
library [29]
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Figure 3. Concept examples for three of the ten CIFAR-10 alike classes generated by HU-MCD.

parison to the values reported in Table 1) of uniquely rec-
ognizable concepts for ACE, 38.43 % (- 11.91%) for MCD
and 61.03% (- 6.09%) for HU-MCD. Notably, MCD shows
the most substantial decline, indicating a lack of clear dis-
tinction among its discovered concepts, which limits their
effectiveness in explaining the model’s prediction behavior.

Finally, HU-MCD achieves the highest description similar-
ity for the same concepts across participants while main-
taining distinct descriptions for different concepts within a
class. This finding supports the understandability of HU-
MCD concepts, as they are perceived similarly by multiple
participants. In contrast, MCD shows minimal differences
between intra- and inter-concept description similarity, sug-
gesting that participants struggle to consistently identify
the meaning of individual concepts and distinguish them.
The reason for the improved distinguishability of concepts
can be attributed to the usage of SAM, which is trained
on human-annotated segmentation masks and thus produces
interpretable segments.

Case Study. Figure 3 displays sample concepts identified
by HU-MCD, represented by prototypical image segments
from the ImageNet1k validation set. It clearly demonstrates
the high quality of the segmentation masks, along with
the perceptual similarity among prototypes representing the
same concept and the distinctiveness between different con-
cepts within the same class, each highlighting unique at-
tributes of the class. These results align with findings from
the human-subject study, confirming that HU-MCD’s con-
cept explanations are human-understandable. HU-MCD
identifies not only entire objects but also parts and contex-

tual information, allowing humans to select and assess con-
cept significance and completeness for any subset of dis-
covered concepts. Notably, HU-MCD identifies concepts
indicating spurious correlations among class images, such
as human hands (concept 4) for the “tailed frog.” Quantify-
ing the significance of such concepts in model predictions
provides a valuable tool for systematic investigations into
spurious correlations, thereby addressing model biases.

4.2. Faithfulness

Metrics. To validate the faithfulness of HU-MCD explana-
tions and compare them to prior work, we use the Concept
Deletion (C-Deletion) and Concept Insertion (C-Insertion)
benchmarks [15]. C-Deletion identifies the smallest set of
concepts whose removal results in an incorrect prediction,
while C-Insertion identifies the smallest set sufficient for
a target class prediction. For each sample, concepts are
flipped (masked or unmasked) in decreasing order of local
relevance, and the results are aggregated into a single line
plot. Specifically, C-Deletion starts with the unmasked im-
age and gradually masks concepts, while C-Insertion starts
with the masked image and gradually reveals concepts.
Faithful concept relevance scores result in a sharp decrease
(C-Deletion) or increase (C-Insertion) in prediction accu-
racy with the number of flipped concepts. We report the
average model prediction accuracy as a function of the frac-
tion of occluded pixels, as proposed by Vielhaben et al. [37].
Experimental Setup. To obtain concept masks and lo-
cal importance scores for validation images, we segment
each image using SAM, compute latent activation with in-
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Figure 4. We delete (left) or insert (right) concepts in decreas-
ing order of concept importance and measure the impact on model
prediction accuracy, averaged over all validation images of ten /m-
ageNetlk classes. Each point represents a discovered concept.
Faithful concept importance scores are supposed to result in a
sharp decline (left) or ascent (right).

put masking, and apply SSC. Each segment is assigned to
a unique concept by selecting the maximum concept acti-
vation score and excluding segments aligned with the or-
thogonal complement, as these are assumed not to encapsu-
late substantial conceptual significance. The concept impor-
tance is calculated by averaging the local relevance score of
the corresponding segments, resulting in ordered local con-
cept masks. For ACE and MCD, we follow their original
implementation details, noting that ACE uses TCAV scores
instead of local concept importance scores. Results are then
averaged over 500 images, using 50 ImageNet1k validation
images for each of the ten CIFAR10-like classes, and only
concepts present in at least 75% of images across all classes
are flipped to ensure meaningful averages.

Experimental Results. The results for both C-Deletion and
C-Insertion are displayed in Fig. 4. HU-MCD outperforms
ACE and MCD in both benchmarks. This result emphasizes
the faithfulness of the concept importance scores generated
by HU-MCD in representing the model’s reasoning process.
Interestingly, the C-Insertion benchmark proves to be more
challenging than C-Deletion, given that the model begins
with a fully masked image, resulting in a near-random per-
formance for ACE. Although the gap narrows, HU-MCD
consistently achieves accuracy that is either superior to or
comparable with MCD.

5. Limitations

HU-MCD demonstrated promising results for the explana-
tions’ understandability and faithfulness. However, we ac-
knowledge certain limitations. First, non-coherent concepts
may arise due to segmentation errors, clustering inaccura-
cies, or limitations in the similarity metric. Such occur-

rences may be due to inherent methodological constraints or
discrepancies between the model’s and humans’ perception
of similarity. The user study shows that such occurrences
are infrequent. Future work can entail an exploration of hy-
perparameters to overcome this challenge.

Second, our experiments are conducted on visual data, and
the user study includes only ten classes. As emphasized by
previous work [41], the general idea of concept-based ex-
planations also applies to other data types, such as texts.
This adoption challenge provides a promising avenue for
future research to adapt HU-MCD to other modalities and
expand its usability. Additionally, future research can ex-
tend the evaluation of HU-MCD to a wider variety as well
as more fine-grained classes.

Finally, a technical limitation in the current setting is that
the experiments are restricted to layers followed solely
by linear operations to calculate concept relevance scores.
However, concept activations can reveal the learned struc-
tures within the feature space for any layer. As proposed
by Vielhaben et al. [37], future research could approximate
the remainder of the model with a linear model, thereby en-
abling the quantification of concept relevance at different
layers.

6. Conclusion

In this work, we introduced HU-MCD, a novel framework
designed to extract human-understandable concepts from
ML models automatically. HU-MCD satisfies two key cri-
teria that previous research has neglected: (1) providing
human-understandable concepts and (2) faithfully attribut-
ing their importance to the model’s predictions. For the
first time, we use the SAM to extract understandable con-
cepts automatically. Our approach extends prior concept
discovery methods that use segmentation techniques by im-
plementing a novel input masking scheme, which addresses
noise introduced by inpainting and rescaling requirements.
By representing concepts as multi-dimensional linear sub-
spaces within the hidden feature space of a trained ML
model, HU-MCD enables the decomposition of activations
into unique concept attributions. This facilitates the cal-
culation of concept importance scores both globally (per-
class) and locally (per-image). Additionally, HU-MCD in-
corporates a completeness relation, quantifying the extent
to which concepts sufficiently explain the model’s predic-
tions. This distinguishes it from most existing work in the
field and offers the possibility to analyze models from a
more human-centered perspective. We conduct extensive
experiments on common benchmarks as well as a user study
demonstrating both the faithfulness and understandability
of the explanations generated by HU-MCD.
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