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A Project Portfolio Management Approach to  

Tackling the Exploration/Exploitation Trade-off 

 

Abstract: Organizational ambidexterity (OA) is an essential capability for surviving in dynamic busi-

ness environments that advocates the simultaneous engagement in exploration and exploitation. Over 

the last decades, knowledge on OA has substantially matured, covering insights into antecedents, out-

comes, and moderators of OA. However, there is little prescriptive knowledge that offers guidance on 

how to put OA into practice and to tackle the trade-off between exploration and exploitation. To address 

this gap, we adopted the design science research paradigm and proposed an economic decision model 

as artefact. The decision model assists organizations in selecting and scheduling exploration and exploi-

tation projects to become ambidextrous in an economically reasonable manner. As for justificatory 

knowledge, the decision model draws from prescriptive knowledge on project portfolio management 

and value-based management, and from descriptive knowledge related to OA to structure the field of 

action. To evaluate the decision model, we discussed its design specification against theory-backed de-

sign objectives and with industry experts. We also instantiated the decision model as a software proto-

type and applied the prototype to a case based on real-world data.  

Keywords: Organizational ambidexterity, Exploration, Exploitation, Project portfolio management, 

Value-based management, Decision model 

1 Introduction 

In dynamic business environments, organizations face substantial challenges (Agostini et al. 2016; Jan-

sen et al. 2009). On the one hand, they must explore opportunities of innovative products and processes 

and engage in emerging markets. On the other hand, they must exploit existing products and processes 

in mature markets via efficient operations (Eisenhardt et al. 2010; Moreno-Luzon et al. 2014; Turner et 

al. 2013). As exploration and exploitation strive for different objectives and compete for scarce re-

sources, there is a trade-off between both modes (O’Reilly and Tushman 2013). Currently, many organ-

izations fail in developing organizational ambidexterity (OA), the dual capability that enables organiza-

tions to tackle the trade-off between exploration and exploitation (exploration/exploitation trade-off) to 

achieve long-term success in dynamic business environments (Birkinshaw and Gupta 2013; He and 

Wong 2004). One reason is that organizations do not know how to put OA into practice (He and Wong 

2004; Jansen et al. 2006), a circumstance calling for further research (Moreno-Luzon et al. 2014; Pelle-

grinelli et al. 2015). 

Exploration and exploitation are key concepts of OA (Duncan 1976; March 1991; O’Reilly and Tush-

man 2013). Many disciplines including innovation and technology management, strategic management, 

or organizational design extensively discussed OA in general as well as exploration and exploitation in 

particular (Raisch and Birkinshaw 2008; Simsek 2009). Correspondingly, extant OA research can be 

split into three streams: outcomes, antecedents, and moderators (O’Reilly and Tushman 2013). The first 

stream supports that OA entails superior firm performance in terms of sales growth, profitability, and 

operational performance (Gibson and Birkinshaw 2004; He and Wong 2004; Lubatkin et al. 2006). The 

second stream investigates antecedents of OA, i.e. structures or mechanisms that describe how organi-

zations should balance exploration and exploitation (O’Reilly and Tushman 2013). While early studies 

favored a temporal sequencing of exploration and exploitation, recent studies make the case for focusing 

on both modes simultaneously (Siggelkow and Levinthal 2003; Tushman and O’Reilly 1996; Tushman 
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and Romanelli 1985). Simultaneous approaches, in turn, split into structural, contextual, and leadership-

based OA, distinguishing whether exploration and exploitation are implemented via dual structures, 

capabilities of individuals, or leadership processes (Gibson and Birkinshaw 2004; Smith and Tushman 

2005; Tushman and O’Reilly 1996). Thereby, structural approaches not only focus on the organizational 

level, but also on the group and individual level (Heckmann et al. 2016; Lee et al. 2015; Turner et al. 

2015). Particularly, structural OA advocates that the exploration/exploitation trade-off can be tackled 

via projects (Chandrasekaran et al. 2012; Pellegrinelli et al. 2015). However, related work is rare and 

remains conceptual. The third research stream investigates how environmental factors affect or moderate 

the relationship among antecedents and firm performance (Auh and Menguc 2005; Jansen et al. 2009; 

Sidhu et al. 2004). 

Our analysis revealed that research on OA is dominated by conceptual and empirical studies. The im-

portance of pursuing exploration and exploitation has been highlighted repeatedly, and the conceptual 

distinction between both OA modes has been studied intensively (Gibson and Birkinshaw 2004; He and 

Wong 2004; Jansen et al. 2006). However, there is a lack of prescriptive knowledge that helps organi-

zations to put OA into practice by tackling the exploration/exploitation trade-off. Specifically, there is 

little knowledge on how organization can prioritize investments in exploration and exploitation over 

time (O’Reilly and Tushman 2013; Pellegrinelli et al. 2015; Röder et al. 2014). To address this gap and 

to extend existing conceptual work on OA, we build on the structural approach and leverage knowledge 

from project portfolio management (PPM) and value-based management (VBM). Correspondingly, our 

research question is as follows: How can organizations decide which exploration and exploitation pro-

jects they should implement to become ambidextrous in an economically reasonable manner? 

To answer this research question, we adopted the design science research (DSR) paradigm (Gregor and 

Hevner 2013). Our artefact is an economic decision model that assists organizations in the selection and 

scheduling of exploration and exploitation projects. The decision model prioritizes project portfolios, 

i.e. unique compilations of exploration and exploitation projects, in terms of their contribution to the 

organization’s long-term firm value, recommending the implementation of the value-maximizing port-

folio. As already outlined, the decision model draws from prescriptive knowledge on PPM, i.e. project 

portfolio selection and scheduling, and VBM, i.e. objective functions for corporate decision-making as 

justificatory knowledge. It also leverages descriptive knowledge on OA to structure the field of action.  

This setup is sensible for multiple reasons: First, decision models are valid design artefacts (March and 

Smith 1995). Second, PPM enables the selection and scheduling of projects, while balancing multiple 

objectives, accounting for constraints, and building on project types with specific effects (Pellegrinelli 

et al. 2015; Petit 2012). Exploration and exploitation projects, which are used in the proposed decision 

model, cover both OA modes and their effects. PPM provides sufficient flexibility to cope with dynamic 

business environments, as once-compiled project portfolios can be reviewed repeatedly (Martinsuo et 

al. 2014; Petit and Hobbs 2010). PPM is a mature discipline and has been adopted in many companies 

(Project Management Institute 2013). It has also been shown to be a useful analytical lens for balancing 

exploration and exploitation (Pellegrinelli et al. 2015). Third, value orientation is an accepted paradigm 

of corporate decision-making that enables decisions in line with the objective of maximizing an organ-

ization’s long-term firm value (Buhl et al. 2011; Damodaran 2012; vom Brocke and Sonnenberg 2015). 

VBM complements PPM, as it provides objective functions for the comparison of decision alternatives, 

i.e. project portfolios, by integrating project effects into a single economic value judgment (Bolsinger 

2015). Only the combined application of PPM and VBM in the OA context enables determining which 

exploration and exploitation projects organizations should implement to become ambidextrous in an 

economically reasonable manner. Finally, this study builds on and extends our prior work on business 
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process improvement and capability development by focusing on the exploration/exploitation trade-off 

and taking a PPM perspective (anonymized). 

Our study is structured along the DSR process provided by Peffers et al. (2008). Having identified and 

justified the research problem in this section, we compile relevant justificatory knowledge and derive 

design objectives in section 2. In section 3, we outline our research method and evaluation strategy. In 

section 4, we introduce our decision model’s design specification. In section 5, we report on our evalu-

ation activities. We conclude in section 6 by summarizing key results, discussing implications and lim-

itations, and pointing to directions for future research. 

2 Theoretical Background 

2.1 Organizational Ambidexterity 

In general, ambidexterity refers to the ability “to use the right and left hands equally well” (Turner et al. 

2015). In particular, OA refers to an organization’s dual capability of adapting and responding to envi-

ronmental change by engaging in exploration and exploitation (Tushmann and O’Reilly 1996). As such, 

OA is vital for surviving in dynamic business environments (Agostini et al. 2016; Jansen et al. 2009). 

Below, we provide details on exploration and exploitation, i.e. two key concepts of OA, before we dis-

cuss OA from the so-called behavioral and outcome perspectives (Correia-Lima et al. 2013; Simsek 

2009). The outcome perspective reflects the first research stream presented in the introduction, whereas 

the behavioral perspective covers the second stream (O’Reilly and Tushman 2013; Simsek 2009). 

Exploration strives for leveraging the opportunities of innovative products and processes (O’Reilly and 

Tushman 2013). Taking an outside-in perspective, activities associated with exploration are discovery, 

experimentation, risk-taking, and radical innovation (He and Wong 2004; March 1991). Exploitation 

strives for the efficient operations of existing products and processes (Pellegrinelli et al. 2015; O’Reilly 

and Tushman 2008). Taking an inward-driven perspective, associated activities are problem solving, 

risk reduction, incremental innovation, and continuous improvement (He and Wong 2004; March 1991). 

As exploration and exploitation strive for different objectives, there is a trade-off between both modes 

(Turner et al. 2013). In case of extreme exploration, organizations will abound in innovative products 

and processes, but their economic potential will not be tapped, as learning curve effects are not realized 

(Prange and Schlegelmilch 2015; Sarkees and Hulland 2009). The operations of existing products and 

processes is not efficient either. In case of extreme exploitation, organizations feature highly efficient 

operations, but neglect innovation (Prange and Schlegelmilch 2015; Sarkees and Hulland 2009). They 

get stuck in evolution and run out of growth prospects (Levinthal and March 1993; Schilling 2015). 

Organizations that neglect exploration may be excluded from opportunity spaces (Benner and Tushman 

2003). As such extreme strategies jeopardize corporate success, exploration and exploitation must be 

balanced (O’Reilly and Tushman 2008; Prange and Schlegelmilch 2015; Sarkees and Hulland 2009).  

From a behavioral perspective, exploration and exploitation are linked to the resource-based view of the 

firm and dynamic capability theory, where capabilities are defined as repeatable patterns of action in the 

use of assets (O’Reilly and Tushman 2008; Wade and Hulland 2004). As stable resource configurations 

do not guarantee sustained competitive advantage in dynamic business environments, organizations also 

require capabilities that facilitate and govern change (Collis, 1994; Teece, Pisano, & Shuen, 1997). Thus, 

capabilities are split into operational and dynamic capabilities (Pavlou and El Sawy 2011). Operational 

and dynamic capabilities relate to exploitation and exploration, respectively. Operational capabilities 

refer to the effectiveness and efficiency of daily operations and the organization of work (Winter 2003; 
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Zollo and Winter 2002). The organization of work can, for example, be characterized via automation 

degree, number of process/product variants, nonroutine ratio (i.e. the fraction of process executions that 

require special treatment), or mandatory task ratio (i.e. the fraction of routine tasks that must be executed 

in nonroutine operations) (Afflerbach et al. 2016; Lillrank 2003; Linhart et al. 2015). Dynamic capabil-

ities, in contrast, integrate, build, and reconfigure operational capabilities (Teece and Pisano 1994; Zollo 

and Winter 2002). Dynamic capabilities affect an organization’s output indirectly through operational 

capabilities (Helfat and Peteraf, 2003). Dynamic capabilities are split into sensing, seizing, and trans-

forming capabilities (O’Reilly and Tushman 2008; Teece 2007). Sensing comprises the scanning and 

searching for new technological developments, changing customer needs, or new target markets, or 

problems (Teece 2007). Seizing capabilities address emerging opportunities and problem solutions by 

investment strategies and resource allocation (Teece 2007). Transforming refers to the implementation 

of opportunities and solutions (Teece 2007). Thereby, transforming capabilities reflect an organization’s 

ability to cope with nonroutine activities on short notice (flexibility-to-use) and to implement future 

exploration and exploitation projects (flexibility-to-change) (Afflerbach et al. 2014; Gebauer and Scho-

ber 2005).  

From an outcome perspective, exploration and exploitation have different effects (He and Wong 2004; 

Jansen et al. 2009). As exploration strives for innovative products and processes based on radical inno-

vation, it affects an organization’s innovation degree (He and Wong 2004). As, in the beginning, organ-

izations are inexperienced in the operation of innovative products and processes, exploration partly de-

stroys once-achieved learning effects (Sarkees and Hulland 2009). As exploitation strives for efficient 

operations via continuous improvement and incremental innovation, it primarily affects operational per-

formance (Dumas et al. 2013; O’Reilly and Tushman 2008). Operational performance is a multi-dimen-

sional construct, operationalized in terms of performance criteria such as time, cost, or quality (Franco-

Santos et al. 2012; Reijers and Mansar 2005). As improving operational performance regarding one 

criterion generally worsens other performance criteria, not only a trade-off between exploration and 

exploitation, but also among performance criteria needs to be resolved (Reijers and Mansar 2005). This 

leads to the following design objective (DO): 

(DO.1) Behavioral and outcome perspective on OA: To address the exploration/exploitation trade-off, 

it is necessary to develop operational and dynamic capabilities (behavioral perspective). It is also nec-

essary to treat operational performance as a multi-dimensional concept and to incorporate performance 

criteria for exploration and exploitation (outcome perspective).  

2.2 Project Portfolio Selection and Scheduling 

Project portfolios include projects selected to achieve distinct objectives and to accomplish corporate 

change (Dye and Pennypacker 1999; Project Management Institute 2013). Typically, not all available 

project candidates can be implemented simultaneously, as they compete for scarce resources (Archer 

and Ghasemzadeh 1999; Dye and Pennypacker 1999). Thus, PPM deals with the management of project 

portfolios to facilitate the effective usage of resources, account for project interactions and constraints, 

and balance stakeholder interests (Pellegrinelli et al. 2015; Project Management Institute 2013). PPM 

also is an iterative process as once-compiled project portfolios can be reviewed repeatedly to cope with 

internal and external changes (Stettina and Hörz 2015; Young and Conboy, 2013). As PPM can also be 

tailored to specific project types (Lehnert et al. 2016b), it is a suitable reference discipline for tackling 

the exploration/exploitation trade-off in dynamic business environments.  
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Two essential activities of PPM are project portfolio selection and project scheduling. These activities 

cover the selection of the most appropriate projects from a list of candidates and the scheduling of se-

lected projects for distinct planning periods in line with pre-defined performance criteria and constraints 

(Archer and Ghasemzadeh 1999). Project portfolio selection comprises five stages: pre-screening, indi-

vidual project analysis, screening, optimal portfolio selection, and portfolio adjustment. Starting with a 

pre-screening, project candidates are checked for strategic alignment and whether they are mandatory. 

During individual project analysis and screening, candidates are evaluated individually regarding their 

impact on the performance criteria such as cost, revenue, or customer satisfaction. Project candidates 

are rejected in case their anticipated effects do not satisfy pre-defined thresholds. The optimal portfolio 

selection stage selects those projects that jointly meet the performance criteria best. If projects should 

be scheduled for distinct periods, this also happens in this stage. Finally, the optimal project portfolio 

can be adjusted if needed.  

To make sensible project selection and scheduling decisions, it is vital to account for project interactions 

and constraints, for example latest completion dates or limited budgets (Lehnert et al. 2016b). Project 

interactions can be split into inter-temporal vs. intra-temporal, deterministic vs. stochastic, and schedul-

ing vs. no scheduling interactions (Kundisch and Meier 2011). Individual project portfolios are affected 

by intra-temporal interactions, whereas decisions on future projects depend on inter-temporal interac-

tions (Gear and Cowie 1980). Inter-temporal project interactions affect in which order projects can be 

implemented (Bardhan et al. 2004). A common inter-temporal interaction is a predecessor-successor 

relationship, where one project depends on the outcome of another project (Lehnert et al. 2016b). As for 

intra-temporal interactions, an example is that two projects require the same scarce resource, e.g. special 

equipment or a specific expert, such that they must not be scheduled for the same period (Lehnert et al. 

2016b). If project effects are certain or were estimated as single values, interactions are deterministic. If 

project effects are treated as random variables and information about probability distributions are lever-

aged for decision-making purposes, they are stochastic (Medaglia et al. 2007). Scheduling interactions 

only occur if projects may start in different planning periods. 

Beyond project portfolio selection and scheduling, PPM encompasses the continuous monitoring of pro-

ject implementation to ensure the realization of benefits (Beer et al. 2013; Rad and Levin 2006). Thus, 

project portfolio selection and scheduling are not one-off tasks (Martinsuo and Lehtonen 2007; Petit 

2012). Rather, they should be executed repeatedly to review project portfolios (Kester et al. 2011). Such 

reviews entail the reassessment of once-estimated project effects as internal and external changes may 

cause the deletion, cancellation, or reprioritization of projects. It may also be necessary to add projects 

(Martinsuo et al. 2014; Petit and Hobbs 2010). Thus, we specify the following design objective: 

(DO.2) Project portfolio selection and scheduling: To tackle the exploration/exploitation trade-off, it is 

necessary to consider only projects that align with an organization’s corporate strategy, evaluate projects 

individually before compiling them into project portfolios, consider project interactions and constraints, 

and continuously review once-compiled project portfolios. 

3 Research Method and Evaluation Strategy 

Our study follows the DSR process by Peffers et al. (2008). Our artefact is an economic decision model 

that assists organizations in selecting and scheduling exploration and exploitation projects to maximize 

their firm value. The model refers to the optimal portfolio selection stage of Archer and Ghasemzadeh’s 

(1999) project portfolio selection process. To specify the decision model’s design specification in the 

design and development phase, we combined normative analytical modeling and multi-criteria decision 
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analysis as research methods. Normative analytical modelling captures the essentials of decision prob-

lems in terms of mathematical representations to produce prescriptive results (Meredith et al. 1989). 

Multi-criteria decision analysis helps structure decision problems by incorporating multiple decision 

criteria, resolving conflicts, and appraising value judgments (Keeney and Raiffa 1993).  

Combining normative analytical modeling and multi-criteria decision analysis is sensible for three rea-

sons: First, tackling the exploration/exploitation trade-off from a PPM perspective requires valuating 

competing alternatives, i.e. project portfolios. Second, the valuation of project portfolios requires meas-

uring the effects of exploration and exploitation projects via performance criteria and resolving trade-

offs. Third, the number of project portfolios usually is such high that they cannot be valued manually. 

Decision models are beneficial as they serve as formal requirements specification for software proto-

types, which automate both the compilation and valuation of project portfolios. 

Cohon (2013) proposed a six-step procedure for solving multi-criteria problems: (1) identification and 

mathematical modeling of relevant decision criteria, (2) definition of decision variables and constraints, 

(3) data collection, (4) generation and valuation of alternatives, (5) selection of the preferred alternative, 

and (6) implementation of the selected alternative. In addition, assumptions should be made transparent. 

Steps (1) and (2) are crucial for the development of the decision model, whereas steps (3) to (5) relate 

to the application of the decision model. To develop the decision model’s design specification, we pro-

ceeded as proposed by Cohon (2013). First, we introduce the decision model’s general setting in section 

4.1 and a layered conceptual architecture in section 4.2. In sections 4.3 to 4.5, we derive and formalize 

decision criteria for each layer based on the literature to capture the effects of exploration and exploita-

tion projects. Finally, we integrate these criteria in an objective function that serves as decision variable.  

To demonstrate and evaluate our decision model, we adopted Sonnenberg and vom Brocke’s (2012) 

evaluation framework, which covers two evaluation dimensions: ex-ante/ex-post and artificial/natural-

istic evaluation (Pries-Heje et al. 2008; Venable et al. 2012). Ex-ante evaluation is conducted before an 

artefact is instantiated, while ex-post evaluation happens after instantiation. Naturalistic evaluation re-

quires artefacts to be challenged by real people, tasks, or systems. Artificial evaluation takes places in 

controlled settings. The evaluation framework comprises four activities: EVAL1 to EVAL4 (Pries-Heje 

et al. 2008; Venable et al. 2012). EVAL1 refers to the identification and justification of the DSR problem 

and the derivation of design objectives to assess whether artefacts address the research problem. We 

reported on these activities in sections 1 and 2. EVAL2 strives for validated design specifications in 

terms of real-world fidelity and understandability. To validate the decision model’s design specification, 

we discussed it against the design objectives and with industry experts. We report on results in sections 

5.1 and 5.2. EVAL3 strives for artificially validated artefact instantiations to provide a proof of concept. 

To do so, we implemented the decision model as a software prototype, which we sketch in section 5.3. 

Representing the most elaborate evaluation activity, EVAL4 validates the applicability and usefulness 

of artefact instantiations in naturalistic settings, covering steps (3) to (5) of Cohon’s procedure for solv-

ing multi-criteria problems. We applied the software prototype to real data. We reflect on the results of 

the prototype application in section 5.3. Although this comes close to a full-fledged EVAL4, we applied 

the prototype to real-world data, not in an entirely naturalistic setting. This is planned for future research.  
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4 Design Specification of the Decision Model 

4.1 General Setting 

The decision model helps determine which exploration and exploitation projects an organization should 

implement in which order become ambidextrous in an economically reasonable manner. Its unit of anal-

ysis are project portfolios, i.e. exploration and exploitation projects that have been scheduled for distinct 

planning periods in line with project interactions and constraints (Lehnert et al. 2016b). Based on the 

principles of VBM, corporate decision-making strives for maximizing an organization’s long-term firm 

value. Thus, the decision model uses the risk-adjusted expected net present value (NPV), an acknowl-

edged proxy of an organization’s long-term firm value, to valuate and compare project portfolios (Buhl 

et al. 2011; vom Brocke and Sonnenberg 2015). The decision model recommends the implementation 

of the value-maximizing portfolio. The value-maximizing portfolio represents the economically most 

reasonable way for the organization to become ambidextrous and to balance exploration and exploitation 

over time, based on the project candidates at hand. Importantly, the decision model does not aim to 

estimate the real NPV of project portfolios as precisely as possible, but to compare portfolios based on 

a consistent calculation logic. With OA being vital in dynamic environments, the decision model needs 

to be applied repeatedly. This enables accounting for internal and external changes by adjusting, can-

celling, or deleting projects, by adding new projects, or by re-assessing project effects.  

The decision model covers the optimal portfolio selection stage of Archer and Ghasemzadeh’s (1999) 

reference process. Thus, it requires a list of project candidates as input, which have already been checked 

for strategic fit. In addition, the effects of these candidates must have been estimated and challenged in 

the individual project analysis and screening stages. In the optimal portfolio selection stage, the decision 

model calculates the risk-adjusted expected NPV for all admissible project portfolios, i.e. portfolios that 

do not violate project interactions or constraints. The number of admissible project portfolios usually is 

large due to the combinatorial complexity entailed by project selection and scheduling.  

To illustrate how the decision model is working, Figure 1 shows four exemplary project portfolios based 

on exploitation and exploration projects. For example, portfolio 1 includes all projects, where “Ex-

plore 1” and “Exploit 2” are scheduled for the first period, “Explore 3” for the second, and “Explore 2” 

and “Exploit 1” for the third period. In addition, we assume that there are two interactions: “Explore 1” 

and “Explore 3” require the same domain expert, and “Explore 3” requires the output of “Exploit 2”. 

Thus, “Explore 1” and “Explore 3” must not be scheduled for the same period (intra-temporal interac-

tion), and “Exploit 2” must be finished before “Explore 3” can start (inter-temporal interaction). In the 

example, portfolios 2 and 3 are not admissible as portfolio 2 violates the intra-temporal interaction, 

whereas project portfolio 3 violates the inter-temporal interaction. Portfolios 1 and 4 are admissible and 

valuated in terms their risk-adjusted expected NPV. Here, portfolio 1 is the value-maximizing portfolio. 
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Figure 1. Example of the optimal portfolio selection stage 

4.2 Conceptual Architecture  

As mentioned in section 4.1, the decision model calculates the risk-adjusted expected NPV of admissible 

project portfolios by linking the effects of exploration and exploitation projects across multiple planning 

periods. To do so, the decision model builds on a conceptual architecture with three layers: project layer, 

behavioral layer, and outcome layer. Fehler! Verweisquelle konnte nicht gefunden werden. shows 

the conceptual architecture for a single period. After a high-level overview in this section, we define 

each criterion layer-by-layer based on the literature and provide examples in sections 4.3 to 4.5. We also 

outline assumptions and propose mathematical equations that formalize the relations among the criteria. 

We critically reflect on assumptions in section 5.1. An overview of all mathematical variables used in 

the decision model can be found in Appendix 1. 

The project layer is the basis for the compilation of project portfolios (Lehnert et al. 2016b). It includes 

exploration and exploitation project to cover both OA modes (Duncan 1976; March 1991). This separa-

tion is rooted in the structural approach (Pellegrinelli et al. 2015). In line with the behavioral perspective 

(O’Reilly and Tushman 2008; Wade and Hulland 2004), the behavioral layer uses knowledge on oper-

ational capabilities to cover how operations are organized (Zollo and Winter 2002). As for dynamic 

capabilities, the behavioral layer covers an organization’s transforming capabilities (Teece 2007). The 

decision model abstracts from sensing and seizing capabilities, a decision that we reflect in section 5.1. 

Drawing from the outcome perspective (He and Wong 2004; Jansen et al. 2009), the outcome layer uses 

knowledge on VBM and performance measurement (Buhl et al. 2011; Franco-Santos et al. 2012; Reijers 

and Mansar 2005). It includes monetary and non-monetary performance criteria for exploration, e.g. 

innovation degree, and exploitation, e.g. quality and time (Dumas et al. 2013; He and Wong 2004). In 

single planning periods, monetary and non-monetary performance criteria are aggregated into the peri-

odic cash flow, an input parameter of the risk-adjusted expected NPV. Defined as the sum of periodic 

cash flows discounted by a risk-adjusted interest rate, the risk-adjusted expected NPV covers all plan-

ning periods and enables comparing project portfolios (Copeland et al. 2005; Damodaran 2012). 
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Figure 2. Conceptual architecture of the decision model (single-period view) 

As depicted in Figure 2, exploration and exploitation projects influence the criteria included in the be-

havioral and the outcome layer. Further, the criteria from the behavioral and the outcome layer are linked 

as operational and non-monetary performance criteria must be monetized to calculate periodic cash 

flows and the risk-adjusted expected NPV (Bolsinger 2015; Damodaran 2012). To do so, we distinguish 

between direct and indirect effects. Direct effects either link a project type and a criterion from the 

behavioral or the outcome layer or two criteria, meaning that one criterion influences the other. For 

example, this applies to time and demand. Indirect effects moderate direct effects, meaning that a crite-

rion influences the strength of a direct effect. For example, flexibility-to-change moderates the effect of 

exploration projects on investment outflows. Many effects, particularly those in the outcome layer, have 

an unambiguous polarity. For example, investment outflows have a negative effect on the periodic cash 

flow. Other effects, particularly those originating from the project layer, are ambiguous, meaning that 

they depend on the project at hand (Linhart et al. 2015). For example, while exploitation projects can in 

general affect time positively, negative, or not at all, the effect of a specific project is unambiguous.  

To illustrate how project effects cascade through the conceptual architecture, we provide two examples. 

First, consider an exploration project that improves an organization’s innovation degree and flexibility-

to-use, i.e. its ability to deal with nonroutine activities. The positive effect on flexibility-to-use reduces 

the processing time. This, in turn, increases the expected demand and results in increased operating and 

periodic cash flow. Likewise, a higher innovation degree increases the expected demand, and transitively 

the operating as well as the periodic cash flow. Second, consider an exploitation project that decreases 

the nonroutine ratio, i.e. the fraction of operations requiring special treatment, and increases processing 

time. A lower nonroutine ratio decreases the operating outflows and increases quality, a circumstance 

that increases the demand. However, the exploitation project also increases time, an effect that reduces 

expected demand. In this example, the positive effect of increased quality and the negative effect of 

increased time may cancel each other out. Further, both projects cause investment outflows.  
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4.3 Project Layer 

The project layer includes exploration and exploitation projects (Chandrasekaran et al. 2012; O’Reilly 

and Tushman 2008). This separation helps keep the decision model parsimonious. Hybrid forms, which 

occur in industry, can be covered by linking exploration and an exploitation projects via project inter-

actions. Below, we overview the effects of both project types, which are also compiled in Appendix 

along corresponding mathematical variables.  

Exploitation Projects 

Exploitation projects strive for efficient operations by means of incremental innovation and the devel-

opment of operational capabilities (O’Reilly and Tushman 2008). On the one hand, exploitation projects 

can directly influence operational performance criteria, i.e. quality, time, and operating outflows, located 

in the outcome layer (Dumas et al. 2013; Winter 2003). On the other hand, they can affect those char-

acteristics from the behavioral layer that characterize the organization of work, i.e. nonroutine ratio and 

mandatory task ratio (Linhart et al. 2015). The latter reflects the fraction of routine tasks also included 

in nonroutine activities. For example, the implementation of a quality management system may increase 

quality and fixed outflows. Further, a process standardization project may reduce operating outflows 

and decrease the nonroutine ratio. All exploitation projects cause investment outflows.  

Exploration Projects 

Exploration projects strive for radical innovation and the development of an organization’s transforming 

capabilities (O’Reilly and Tushman 2008). On the one hand, exploration projects can improve the or-

ganization’s innovation degree, while worsening operating outflows. The innovation degree measures 

an organization’s innovativeness as perceived by its customers (He and Wong 2004). The second effect 

is rooted in the fact that organizations at first have no experience with innovative products and services. 

Thus, once-achieved cost-reducing experience curve effects are partly destroyed (Sarkees and Hulland 

2009). On the other hand, exploration projects can strengthen an organization’s flexibility-to-use and 

flexibility-to-change capabilities, which are known to make nonroutine operations more time-efficient 

and the implementation of future projects more cost-efficient (Gebauer and Schober 2005; Lehnert et 

al. 2016b). For example, introducing new product features may improve the innovation degree, while 

experience curve effects are destroyed, and outflows raise. The implementation of a modular production 

technology improves flexibility-to-use capabilities. Further, training employees in project management 

increases an organization’s flexibility-to-change capabilities.  

As the experts, who participated in the decision model’s evaluation, suggested, the decision model ac-

counts for incremental and radical innovation (Schilling 2015). Incremental innovation can be imple-

mented by exploitation projects, i.e. small improvements of routine operations, whereas radical innova-

tion is captured via exploration projects, i.e. next-generation products or extensions of existing products 

or services. The decision model thus abstracts from disruptive innovation, as related effects are difficult 

to estimate and cannot be reasonably integrated in a decision model that schedules projects to multiple 

planning periods in advance (Schilling 2015).  

To account for the effects of both project types, we assume (Lehnert et al. 2016b): Project effects become 

manifest immediately after project completion. They can be assessed independently from other projects, 

available as relative numbers and linked multiplicatively. Projects can take differently long, and multi-

ple projects can be implemented in parallel to enable simultaneous engagement in exploration and ex-

ploitation. We discuss implications of this assumption in section 5.1.  
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4.4 Behavioral Layer 

Operational Capabilities 

The behavioral layer covers criteria related to an organization’s operational and transforming capabili-

ties. Operational capabilities refer to the efficiency and effectiveness of daily operations and the organ-

ization of work (Winter 2003; Zollo and Winter 2002). Operations are typically streamlined by stand-

ardization and automation (Karmarkar 2014; Johnston et al. 2012). Thereby, routine and nonroutine 

operations must be distinguished as both have a different performance. While routine operations handle 

processes with well-defined inputs and outputs, nonroutine operations handle activities that require spe-

cial treatment (Lillrank 2003). Two useful criteria for distinguishing routine and nonroutine operations 

are nonroutine ratio and mandatory task ratio (Linhart et al. 2015). The nonroutine ratio captures the 

fraction of activities that require special treatment. The mandatory task ratio indicates which fraction of 

routine activities are also included in nonroutine operations. Both ratios can be influenced by exploita-

tion projects. Their value in a distinct period depends on their initial value and related effects of previ-

ously implemented exploitation projects. Eq. 1 and Eq. 2 quantify this relationship.  

𝑁𝑦 = 𝑁0 ∙  ∏ 𝑜𝑗

𝑗 ∈ EXPLOIT_COMP𝑦−1

 (Eq. 1) 

𝑀𝑦 = 𝑀0 ∙ ∏ 𝑝𝑗

𝑗 ∈ EXPLOIT_COMP𝑦−1

 (Eq. 2) 

Transforming Capabilities 

Transforming capabilities capture an organization’s ability to reconfigure operational capabilities and 

facilitate change (Teece 2007). As flexibility is closely related to organizational change, we use related 

knowledge to operationalize transforming capabilities (Afflerbach et al. 2014). Gebauer and Schober 

(2005) distinguish flexibility-to-use and flexibility-to-change. Flexibility-to-use makes nonroutine op-

erations more time-efficient, as it reduces preparation and setup times. For instance, the implementation 

of a modular production technology improves flexibility-to-use, which reduces the processing time of 

nonroutine operations. Flexibility-to-change makes the implementation of projects more cost-efficient 

(Lehnert et al. 2016b). This can be achieved by training employees in project management methods. 

Flexibility-to-use and -change can be affected by exploration projects. Their value in a distinct period 

depends on their initial value and related effects of previously implemented exploration projects. The 

respective formulae are shown in Eq. 3 and Eq. 4.  

𝐹𝑦
use = 𝐹0

use ∙ ∏ 𝑏𝑗

𝑗 ∈ EXPLORE_COMP𝑦−1

 (Eq. 3) 

𝐹𝑦
change

= 𝐹0
change

∙ ∏ 𝑐𝑗

𝑗 ∈ EXPLORE_COMP𝑦−1

 (Eq. 4) 
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4.5 Outcome Layer 

Risk-adjusted Expected Net Present Value 

The outcome layer covers monetary and non-monetary performance criteria. These criteria are directly 

influenced by exploration and exploitation projects, or transitively via criteria from the behavioral layer. 

From a single-period perspective, which is taken in Figure 2, performance criteria are successively mon-

etized and aggregated to the periodic cash flow (Bolsinger 2015). From a multi-periodic perspective, 

periodic cash flows influence the risk-adjusted expected NPV, which is the decision model’s objective 

function and used to compare project portfolios (Damodaran 2012). Below, we first provide details on 

the risk-adjusted expected NPV, before elaborating on its components. 

The risk-adjusted expected NPV, as shown in Eq. 5, measures the value contribution of a project port-

folio as the sum of its discounted periodic cash flows based on a risk-adjusted interest rate (Copeland et 

al. 2005; Damodaran 2012). The argmax function used in Eq. 5 returns the value-maximizing portfolio. 

The risk-adjusted expected NPV builds on the periodic cash flows, which are split into investment out-

flows, fixed outflows, and operating cash flows (Lehnert et al. 2016b). Investment outflows accrue for 

the implementation of projects. By definition, fixed outflows occur independently from the demand, i.e. 

no matter how many products and services are sold. An example is the maintenance of a production 

system or workflow management system. In contrast, operating cash flows depend on the expected de-

mand, sales price, and operating outflows. The demand reflects how many products and services are 

sold. In our decision model, the demand is driven by time, quality, and innovation degree (Linhart et al. 

2015; Oubiña et al. 2007). As the demand is highly company-specific, we do not further specify it here. 

The price mirrors how much customers pay per unit of sold products and services, and it is assumed to 

be constant. Finally, operating outflows accrue for the production of products and services. To complete 

the presentation of the decision model, we elaborate on each component of the NPV below. 

𝑟∗ = argmax
𝑟𝜖𝑅

𝑁𝑃𝑉𝑟
 

= argmax
𝑟𝜖𝑅

∑
𝐶𝐹𝑦

per

(1 + 𝑧)𝑦

𝑌

𝑦=0

 

=   argmax
𝑟𝜖𝑅

∑[ − 
𝑂𝑦

inv

(1 + 𝑧)𝑦

𝑌

𝑦=0

− 
𝑂𝑦

fix

(1 + 𝑧)𝑦
+  

𝐶𝐹𝑦
op

(1 + 𝑧)𝑦+1
] 

=   argmax
𝑟𝜖𝑅

∑[ − 
𝑂𝑦

inv

(1 + 𝑧)𝑦

𝑌

𝑦=0

− 
𝑂𝑦

fix

(1 + 𝑧)𝑦
+  

𝑛(𝑡𝑦 , 𝑞𝑦 , 𝑖𝑦) ∙  (𝑝 − 𝑂𝑦
op

)

(1 + 𝑧)𝑦+1
] 

(Eq. 5) 

Investment Outflows 

The investment outflows in a distinct period depend on the exploration and exploitation projects that are 

currently running in that period. As the decision model allows for scheduling several projects for one 

period as well as differently long projects, the investment outflows can encompass several projects. In 

addition, they depend on the flexibility-to-change level that has been achieved by the prior implemen-

tation of exploration projects. Both effects are shown in (Eq. 6). 

𝑂𝑦
inv = ∑ 𝑂𝑗

inv

𝑗 ∈ (EXPLOIT_RUN𝑦 ∪ EXPLORE_RUN𝑦)

∙ 𝐹𝑦
change

 
(Eq. 6) 
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Fixed Outflows 

In line with the differentiation between routine and nonroutine operations, there are fixed outflows for 

routine operations, e.g. for wages or standard IT services, and nonroutine operations, e.g. for preparatory 

tasks or configurable IT services. The total fixed outflows in a distinct period depend on the initial fixed 

outflows for routine and nonroutine operations as well as on related effects of previously implemented 

exploitation projects. The formulae are shown in equations Eq. 7 to Eq. 9. 

𝑂𝑦
fix =  𝑂𝑦

fix,R + 𝑂𝑦
fix,NR

 (Eq. 7) 

𝑂𝑦
fix,NR = 𝑂0

fix,NR ∙ ∏ 𝑚𝑗

𝑗 ∈ EXPLOIT_COMP𝑦−1

 (Eq. 8) 

𝑂𝑦
fix,R = 𝑂0

fix,R ∙ ∏ 𝑛𝑗

𝑗 ∈ EXPLOIT_COMP𝑦−1

 (Eq. 9) 

Operating Outflows 

The average total operating outflows must account for routine and nonroutine operations, too. To do so, 

the nonroutine ratio weighs the outflows for routine and nonroutine operations, as shown in Eq. (10). 

The operating outflows for both routine and nonroutine operations in a distinct period depend on their 

initial values and related effects of all exploitation projects completed so far. The operating outflows for 

nonroutine operations further comprise the fraction by which nonroutine operations include routine tasks 

as represented by the mandatory task ratio as well as outflows that capture additional effort for nonrou-

tine operations, e.g. for extensive manual work. This is shown in Eq. 11. Operating outflows for routine 

operations are reduced by experience curve effects, as shown in Eq. 12. There are no experience curve 

effects for nonroutine operations due to their non-repetitive character. Experience curve effects capture 

the positive effects of executing routine operations (Henderson 1973). The more demand is handled by 

routine operations, the higher the experience curve effects. This is because operating outflows drop by 

a constant factor each time the cumulated demand doubles (Henderson 1973). This effect is formalized 

via a power law function with constant elasticity, as shown in (Eq. 13). However, radical innovation as 

implemented via exploration projects partly destroys experience curve effects, as the cumulated demand 

is partly reset (Sarkees and Hulland 2009).  

𝑂𝑦
op

= 𝑂𝑦
op,R

∙ (1 − 𝑁𝑦) +  𝑂𝑦
op,NR

∙ 𝑁𝑦 (Eq. 10) 

𝑂𝑦
op,NR

=  𝑀𝑦 ∙ 𝑂𝑦
op,R

+ ∆𝑂0
op,NR

∙ ∏ 𝑘𝑗

𝑗 ∈ EXPLOIT_COMP𝑦−1

 (Eq. 11) 

𝑂𝑦
op,R

= 𝑂0
op,R

∙ 𝐸𝑦 ∙  ∏ 𝑙𝑗
𝑗 ∈ EXPLOIT_COMP𝑦−1

 

 

(Eq. 12) 

𝐸𝑦 = (𝑑𝑗 ∙ 𝐶𝐷𝑦−1)−𝛼 
(Eq. 13) 

Time 

Time and operating outflows can be treated similarly, as both depend on criteria from the behavioral 

layer. Thus, the average total processing time consists of a component for routine and nonroutine oper-

ations, weighted by the nonroutine ratio, as shown in Eq. (14). The processing time of routine operations 

covers waiting time and working time, whereas for nonroutine operations, additional time must be con-

sidered to capture more complex work and setup. Based on the mandatory task ratio, the processing time 
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of nonroutine operations partly depends on the processing time of routine operations. The additional 

processing time for nonroutine operations also depend on the organization’s flexibility-to-use capabili-

ties. The average total processing time in a given period depends on the initial processing time of routine 

and nonroutine operations and time effects of previously implemented exploitation projects. This is for-

malized in Eq. (15) and Eq. (16).  

𝑡𝑦 = 𝑡𝑦
R ∙ (1 − 𝑁𝑦) + 𝑡𝑦

NR ∙ 𝑁𝑦 (Eq. 15) 

𝑡𝑦
NR =  𝑀𝑦 ∙ 𝑡𝑦

R +  ∆𝑡0
NR ∙ 𝐹𝑦

use ∙ ∏ 𝑒𝑗

𝑗 ∈ EXPLOIT_COMP𝑦−1

 (Eq. 16) 

𝑡𝑦
R =  𝑡0

R ∙ ∏ 𝑓𝑗

𝑗 ∈ EXPLOIT_COMP𝑦−1

 (Eq. 17) 

Quality 

The average total quality in a distinct period depends on the nonroutine ratio as well as on the quality of 

routine and nonroutine operations. This is shown in Eq. (18). As there is no direct relationship between 

routine and nonroutine quality, both can be assessed independently (Linhart et al. 2015). Moreover, they 

depend on their initial value and the quality effects of previously implemented exploitation projects, as 

shown in Eq. (19) and Eq. (20). To account for the property that quality typically has an upper boundary, 

e.g. error rates cannot exceed 100%, the decision model integrates such a boundary in Eq. (17) (Dumas 

et al. 2013; Leyer et al. 2015). Thus, money may be wasted if an exploitation project with strong quality 

effects is implemented and quality is already very close to its upper boundary.  

𝑞𝑦 = min (𝑞𝑦
total; 𝑞max) 

(Eq. 18) 

𝑞𝑦
total = 𝑞𝑦

R ∙ (1 − 𝑁𝑦) + 𝑞𝑦
NR ∙ 𝑁𝑦 

(Eq. 19) 

𝑞𝑦
NR = 𝑞0

NR ∙ ∏ 𝑔𝑗

𝑗 ∈ EXPLOIT_COMP𝑦−1

 
(Eq. 20) 

𝑞𝑦
R = 𝑞0

R ∙ ∏ ℎ𝑗

𝑗 ∈ EXPLOIT_COMP𝑦−1

 
(Eq. 21) 

Innovation Degree 

Finally, the innovation degree measures an organization’s innovativeness as perceived by its customers 

(He and Wong 2004). To calculate the innovation degree, it is not necessary to distinguish between 

routine and nonroutine operations. Further, the innovation degree is influenced by exploration projects. 

Accordingly, the innovation degree in a distinct period depends on its initial value, the positive effects 

of all previously implemented exploration projects, and the negative effects of all degeneration effects 

accumulated up to that period. This is shown in Eq. (21). The decision model features a degeneration 

effect to penalize if the organization focuses too much on exploitation. This is common as the innova-

tiveness of products and services perceived by customers decreases over time if the organization does 

not invest in exploration (Schilling 2015).  

𝑖𝑦 = 𝑖0 ∙ ∏ 𝑎𝑗

𝑗 ∈ EXPLORE_COMP𝑦−1

 (Eq. 22) 
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5 Evaluation 

5.1 Feature Comparison 

In line with our evaluation strategy, we discussed the decision model’s design specification against the 

design objectives and with industry experts. The discussion against the design objectives, an artificial 

evaluation method known as feature comparison, helps assess whether the decision model addresses the 

research problem. In contrast, expert interviews helped challenge the decision model’s real-world fidel-

ity and understandability. In sum, feature comparison revealed that the decision model addresses both 

design objectives, but not to the full extent. The decision model is beset with limitations from a theoret-

ical perspective for the sake of increased applicability. However, as supported by the experts’ feedback, 

the decision model is understandable for analytically versed practitioners from medium-sized and larger 

organizations, and it covers most constellations that occur in industry settings. We discuss the results of 

feature comparison and the expert interviews below.  

Regarding design objective (DO.1), which refers to the behavioral and outcome perspectives, the deci-

sion model builds on exploration and exploitation projects to cover both modes. Admittedly, the distinc-

tion between exploration and exploitation projects is simplifying. However, the decision model can deal 

with hybrid forms, which occur in industry, by linking exploitation and exploration projects via project 

interactions. Both project types have distinct effects on characteristics of operational and transforming 

capabilities from the behavioral layer as well as on the innovation degree and operational performance 

criteria from the outcome layer, which are aggregated to the risk-adjusted expected NPV. All project 

effects included in the decision model are backed by literature. Although the risk-adjusted expected 

NPV is an accepted objective function, it accounts only implicitly for the risks associated with corporate 

decisions via a risk-adjusted interest rate. This complies with the decision model’s focus on deterministic 

project effects, an assumption we discuss below. Theoretically, it would be possible to account for risks 

more explicitly, e.g. via probability distributions and certainty equivalents. However, this would con-

siderably increase the decision model’s complexity and reduce its applicability. For example, the incor-

poration of project effects with probability distributions typically prohibits that the optimal project port-

folio can be determined analytically. Instead, simulation or complex numerical approaches are required. 

As for dynamic capabilities, the decision model focuses on transformation capabilities. This is reasona-

ble as sensing capabilities, i.e. the detection of opportunities, problems, and changes, become manifest 

between subsequent applications of the decision model. Hence, we recommended applying the decision 

model repeatedly. As for seizing capabilities, i.e. the determination of investment strategies, the decision 

model itself contributes to an organization’s seizing capabilities, as it guides the selection and scheduling 

of exploration and exploitation projects. 

As for design objective (DO.2), which refers to project portfolio selection and scheduling, the decision 

model is located at the optimal portfolio selection stage of Archer and Ghasemzadeh’s (1999) reference 

process. Thus, it requires the results of all previous stages as input. The decision model also caters for 

various project interactions and constraints. However, it assumes that project effects are deterministic, 

can be assessed prior to the application of the decision model in terms of relative numbers, and become 

manifest immediately after project completion. Though being common, these assumptions simplify re-

ality. The reason for focusing on deterministic effects is that stochastic effects entail much more data 

collection effort and can hardly be assessed in naturalistic settings, if at all. While the consideration of 

stochastic effects would increase real-world fidelity, it would substantially increase the model’s com-

plexity reduce applicability. As shown in the prototype application, a scenario approach using optimistic 
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and pessimistic parameter estimations is a viable compromise. Second, the ex-ante assessment of rela-

tive project effects simplifies data collection and enables multi-period decision-making. The absolute 

magnitude of such effects depends on all previously implemented projects and becomes manifest when 

project portfolios are valuated. Otherwise, project effects had to be estimated for all projects combina-

tions that may be implemented before. This is infeasible owing to interdependencies and estimation 

inaccuracies (Beer et al. 2013). Thus, we recommended applying the decision model repeatedly to con-

tinuously reassess once-estimated effects. Third, the assumption that effects become manifest immedi-

ately after completion neglects that benefits tend to realize with delay and only partially. Our rationale 

for this assumption is the same as for deterministic effects. Although this assumption leads to an over-

estimation of NPVs, it does not bias the results, because the calculation logic of the decision model is 

consistently applied to all project portfolios. Thus, the ranking of the portfolios remains unchanged.  

5.2 Expert Interviews 

To complement feature comparison, we interviewed industry experts involved in OA-related decision-

making. When recruiting experts, we specified the following criteria: Individuals needed more than 10 

years’ experience, hold a leading position, and have substantial project experience. On the aggregated 

level, we aimed to cover various departments and industries, as OA is an interdisciplinary phenomenon. 

We also required the experts to differ by personal and academic backgrounds. We followed a conven-

ience sampling approach, i.e. we invited experts from our personal network (Glaser and Strauss 1967). 

Aware of the fact that convenience sampling is a nonprobability method, we choose it to gain initial 

insights into the understandability and real-world fidelity of our decision model (Saunders et al. 2012). 

Although we could draw from a reliable network, it was hard to compile a sample meeting the criteria 

above. We conducted interviews with experts until we received no new insights and we agreed that 

saturation had been reached. In total, we interviewed eight experts as shown in Appendix 2.  

We conducted a semi-structured interview with each expert (Myers and Newman 2007). Interviews took 

about 90 minutes and were attended by two researchers. We provided the experts with an initial version 

of the decision model’s design specification, asking for comments on real-world fidelity and under-

standability. Having introduced the ideas of exploration, exploitation, and the associated trade-off, we 

discussed the decision model’s conceptual architecture, each criterion, and the effects among them. 

Overall, the experts supported the relevance of our research and confirmed the research gap. They stated 

that their organizations are facing the exploration/exploitation trade-off, and that guidance on how to 

prioritize investments in exploration and exploitation is in high need. Nevertheless, challenges regarding 

the application of the decision model, the estimation of various input parameters, and the implementa-

tion of real-world settings in a simplified way are addressed by the experts. All in all, they considered 

the decision model a valuable tool. An overview of the experts’ feedback and how it was incorporated 

is included in Appendix 3. Below, we present comprehensive results.  

As for real-world fidelity, the experts confirmed that the decision model covers many constellations that 

occur in their organizations. They appreciated that the decision model builds on the principles of PPM 

and VBM, while distinguishing between exploration and exploitation projects. In their opinion, PPM 

provides sufficient flexibility to deal with manifold real-world constellations, whereas VBM enables 

justifying OA decisions from a business value perspective, an important feature when talking to senior 

managers. The experts were also fine with the distinction between exploration and exploitation projects 

as both can be combined. While the experts indicated that it may be difficult to estimate the high number 

of effects for many projects, they agreed that this problem is not specific for the decision model at hand, 

but applies to PPM at large. Beyond confirming the effects on monetary and non-monetary performance 
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criteria, the experts stated that important effects included in the decision model also occur in practice: 

degeneration of the innovation degree, exploration projects’ destroying effect on the experience curve, 

dependency of the demand on quality, time, and innovation degree as well as the moderating effect of 

transforming capabilities. The experts anticipated that some parameters, i.e. innovation degree, demand, 

and transforming capabilities, will be hard to estimate, while this is comparatively easily for parameters 

such as time, quality, and operational outflows. To challenge this assessment, we applied the software 

prototype to real-world data. Details of the prototype application including potential data sources can be 

found in Appendix 4. A summary is presented in section 5.3. 

Regarding understandability, the experts confirmed that the decision model is understandable for ana-

lytically versed experts typically involved in corporate decision-making. According to the experts, the 

decision model’s understandability is supported by its layered architecture, the clear definition of in-

cluded criteria, and the mathematical formulas that capture the relation among the criteria. The experts 

indicated that the decision model is highly complex due to many intertwined criteria and its multi-project 

multi-period nature. Nevertheless, they acknowledged that the exploration/exploitation trade-off is com-

plex itself. A simple decision model would not suffice. Given the model’s complexity, the experts also 

stated that organizations, which plan to use the decision model, require mature PPM and performance 

measurement capabilities. Thus, the decision model particularly fits project- and data-driven organiza-

tions that not only feature mature capabilities, but also dispose of sufficient capacity to apply the deci-

sion model and collect data. Admittedly, all interviewed experts have been working with medium-sized 

or large organizations. Understandability and real-world fidelity of our decision model for small organ-

izations and other industries still needs to be assessed. 

Based on the results of feature comparison and the expert feedback, we conclude that the decision model 

addresses both design objectives. It proposes compromises between the full extent of theoretically pos-

sible formalization and applicability. Further, the decision model is understandable for analytically 

versed experts and covers real-world constellations that typically occur in medium-sized and large or-

ganizations. Both evaluation activities showed that the decision model can be further developed in the 

future. We get back to these indications in section 6. 

5.3 Prototype Construction and Application 

To provide a proof of concept, we instantiated the decision model’s design specification as presented in 

section 4 as a software prototype. The prototype is necessary to apply the decision model, as the problem 

complexity heavily grows with the number of projects and periods (Lehnert et al. 2016a). Having pro-

vided all input parameters, users can define scenarios by enabling or disabling projects or constraints. 

The prototype then generates all admissible project portfolios and calculates their value contribution as 

specified in the objective function. The prototype uses optimistic and pessimistic effects to cater for 

estimation inaccuracies. Finally, the prototype orders project portfolios by their value contribution.  

We also applied the prototype to real-world data to challenge whether the model leads to sensible results, 

to gain experience in data collection and insights into the decision model’s applicability and usefulness. 

In this section, we only present a summary. Details including all input parameters, potential data sources, 

and optimization results can be found in Appendix 4. To apply the prototype, we collected data from an 

industry expert who was working with an organization from the telecommunications industry and who 

had already participated in the interviews. The expert provided us with input data for the organization’s 

operations, projects, and the general setting. We also defined scenarios. For each scenario, we assessed 

the optimal and worst project portfolio, while accounting for optimistic and pessimistic project effects.  
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The prototype construction confirmed that the decision model can be implemented. Currently, the pro-

totype is not a full-fledged software product, but has been developed for research purposes. It focuses 

on effectivity, i.e. the implementation of the decision model’s design specification. Efficiency in terms 

of fast solution times and a convenient user interface have not been in the center of interest. The appli-

cation of the prototype illustrated that the decision model returns interpretable portfolios of exploration 

and exploitation projects for multiple scenarios. We demonstrated that the decision model can be applied 

and input data can be collected, although the high number of parameters entails substantial data collec-

tion effort. As found in the expert interviews, some parameters are hard to estimate. Thus, the decision 

model should be applied repeatedly, not only to account for changes, but also to gain experience in data 

collection. As for usefulness, the industry expert was happy with the results as he could interpret the 

choice of the optimal project portfolio and think about scenarios in a structured manner. Further, the 

prototype returned concrete solutions for his problem. The expert also confirmed that the decision model 

as well as a more efficient and user-friendly prototype would support him in work. Thus, we conclude 

that the decision model is applicable in real-world settings and useful for corporate decision-makers. 

Nevertheless, we admit that we only gained experience from one case. To further challenge the applica-

bility and usefulness, we recommend conducting additional case studies.  

6 Discussion and Conclusion 

Given the increasing importance of OA and the lack of related prescriptive knowledge, we investigated 

how organizations can decide which exploration and exploitation projects they should implement to 

become ambidextrous in an economically reasonably manner. Adopting the DSR paradigm, our artefact 

is n decision model that assists organizations in selecting exploration and exploitation projects as well 

as in scheduling these projects for distinct planning periods. Drawing from prescriptive knowledge on 

PPM and VBM, the decision model valuates project portfolios based on their contribution to the long-

term firm value. The decision model further builds on exploration and exploitation projects to cover 

both modes of OA. Exploration projects improve an organization’s innovation degree, decrease opera-

tional performance by partly destroying experience curve effects, and enhance transforming capabilities. 

Exploitation projects affect operational capabilities, i.e. nonroutine and mandatory task ratio, and oper-

ational performance criteria such as time, cost, and quality. We evaluated the decision model by follow-

ing all activities from Sonnenberg and vom Brocke’s (2012) evaluation framework. We validated the 

decision model’s real-world fidelity and understandability by discussing its design specification against 

theory-backed design objectives and with industry experts. We also instantiated the decision model as a 

prototype and we applied the prototype to real-world data to gain insights into applicability and useful-

ness. Below, we first report on limitations, and then point to theoretical and managerial implications.  

Our research is beset with limitations related to the decision model’s design specification and its evalu-

ation. As we discussed some limitations in section 5, we only sketch them here. As all mathematical 

models, our decision model includes simplifying assumptions: It only caters for deterministic project 

effects and treats risks rather implicitly via a risk-adjusted interest rate. The decision model also assumes 

that project effects become manifest immediately after project completion and that they can be estimated 

ex-ante in terms of relative numbers independently from other projects. Moreover, in case a project lasts 

multiple periods, the investment outflows are split proportionately. Most of these assumptions are com-

mon in the literature. Nevertheless, they can be relaxed from a theoretical perspective. On the one hand, 

this would increase the decision model’s real-world fidelity. On the other, its applicability would suffer, 

as data collection causes disproportionate effort. The model would also benefit from further evaluation. 

We were able to discuss the design specification with eight experts whom we recruited from our personal 
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network. Although we do not consider convenience sampling a limitation itself, we admit that, given its 

complexity, the decision model should be discussed with further experts. The same holds for the appli-

cation of the decision model and the prototype. So far, we applied the decision model to real-world data, 

but not in a full-fledged naturalistic setting including real people, tasks, and systems. 

As for theoretical implications, our key contribution is a well-founded and validated decision model that 

tackles the exploration/exploitation trade-off. Building on mature descriptive OA knowledge (He and 

Wong 2004; Jansen et al. 2009; Gibson and Birkinshaw 2004; Tushman and O’Reilly 1996) as well as 

prescriptive VBM and PPM knowledge (Lehnert et al. 2016b, Linhart et al. 2015), the decision model 

adds to prescriptive OA knowledge. The decision model is the first to operationalize the structural OA 

approach and to tackle the exploration/exploitation trade-off analytically from a project portfolio selec-

tion and scheduling perspective. In particular, the decision model complements the work of Pellegrinelli 

et al. (2015), who chose a longitudinal case-based design to understand how OA can be achieved through 

projects and programs. While Pellegrinelli et al. (2015) analyzed the business transformation program 

of a European retail bank over about three years, our decision model does not only compile the manifold 

effects of exploration and exploitation projects in an analytically traceable manner, but also support the 

determination of the value-maximizing project portfolio. Further, the decision model is the first to inte-

grate the outcome and behavioral perspective of OA by prioritizing investments in exploration and ex-

ploitation. Earlier research focused exclusively on the outcome perspective, e.g. by investigating effects 

of exploration and exploitation on operational performance (He and Wong 2004; Jansen et al. 2009), or 

on the behavioural perspective, e.g. by conceptually linking OA with dynamic capability theory to un-

derstand how OA works in practice (O’Reilly and Tushman 2008).  

Fellow researchers can use the decision model’s design specification and the prototypical instantiation 

as foundation for their own work. They can address the limitations of our decision model regarding the 

incorporation of stochastic project interactions, the explicit treatment of risks, and the ex-ante estimation 

of project effects. To do so, researchers can draw from knowledge related to stochastic optimization, 

simulation, and benefits management. Whenever extending the model, we recommend carefully delib-

erating for which limitations increased real-world fidelity justifies additional data collection effort and 

complexity. One must keep in mind that the decision model does not aim to estimate the real NPV of 

project portfolios, but to compare them based on a consistent calculation logic. As for limitations related 

to the decision model’s evaluation, future research should seek the feedback of further experts – specif-

ically from hitherto uncovered industries and small organizations. Such feedback will provide insights 

into the model’s understandability and real-world fidelity. Future research should also apply the decision 

model in real-world settings to gain insights into usefulness and applicability. Further case studies will 

help identify how the decision model should be tailored to different organizational contexts. In the long 

run, these insights may set the scene for developing a design theory related to the exploration/exploita-

tion trade-off. Another worthwhile endeavor is the development of a knowledge base related to OA 

decision-making. Such a knowledge base should be co-created by researchers and practitioners, includ-

ing case descriptions and benchmarking data as well as guidelines and good practices for data collection. 

Beyond addressing limitations, future research may further develop the software prototype. For exam-

ple, the prototype requires more advanced visualization, scenario, and sensitivity analysis functionality. 

Finally, future research should investigate how sensing and seizing capabilities can be incorporated, 

accounting for the fact that these capabilities can be developed over time as well. 

As for managerial implications, our decision model provides decision-makers with a structured over-

view of criteria that influence the prioritization of exploration and exploitation – including relations 

among these criteria. Addressing the exploration/exploitation trade-off is a non-trivial endeavor that 
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needs continuous attention as interdependent effects of projects on various performance criteria must be 

balanced over time. These insights facilitate informed discussions among decision-makers on the most 

appropriate way to implement OA in specific contexts. Business development and strategy departments 

as well as program managers can use the design specification of our model as a blueprint for deriving 

organization-specific solutions and extending their own methods. When applying the decision model, 

decision-makers can use the hints and potential data sources listed in the prototype application. In its 

current form, the decision model can be applied best in medium-sized and large organizations operating 

in dynamic business environments that dispose of mature PPM and performance management capabili-

ties and have sufficient capacity to collect the required input data.  
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Appendix 1. Overview of mathematical variables 

Table A-1. Overview of mathematical variables 

Project layer  

EXPLORE_COMP𝑦 Exploration projects implemented until period 𝑦 

EXPLOIT_COMP𝑦 Exploitation projects implemented until period 𝑦 

EXPLORE_RUN𝑦
 Exploration projects currently running in period 𝑦 

EXPLOIT_RUN𝑦
 Exploitation projects currently running in period 𝑦 

𝑎𝑗 ∈ ℝ+ 
Relative effect 𝑎𝑗 ∈]0; ∞[ on the innovation degree. It equals 𝑎𝑗 ∈]1; ∞[, if an  

exploration project 𝑗 has been finished in period 𝑦 − 1. Otherwise, it equals 𝛿. 

𝛿 ∈ ]0; 1] Degeneration effect on innovation degree 

𝑏𝑗 − 𝑐𝑗 ∈ ℝ+ Relative effects of exploration projects with 𝑗 ∈ EXPLORE_COMP𝑦−1 

𝑑𝑗 ∈ ]0; 1] 
Relative effect 𝑑𝑗 ∈ ]0; 1] on the cumulated demand. It equals 𝑑𝑗 = 1, if no explo-

ration project 𝑗 has been finished in period 𝑦. Otherwise, it equals 𝑑𝑗 ∈ ]0; 1[. 

𝑒𝑗 − ℎ𝑗 ∈ ℝ+; 𝑘𝑗 − 𝑝𝑗 ∈ ℝ+ Relative effects of exploitation projects with 𝑗 ∈ EXPLOIT_COMP𝑦−1
 

Behavioral layer 

𝑁𝑦 ∈ ]0; 1] Nonroutine ratio in period 𝑦 

𝑀𝑦 ∈ ]0; 1] Mandatory task ratio in period 𝑦 

𝐹𝑦
change

∈ ]0; 1]  Flexibility-to-change level in period 𝑦 

𝐹𝑦
use ∈ ]0; 1]  Flexibility-to-use level in period 𝑦 

Outcome layer 

𝑁𝑃𝑉𝑟 ∈ ℝ Risk-adjusted expected NPV of a distinct project portfolio 𝑟 

𝑟 ∈ 𝑅 A distinct project portfolio from the set of admissible portfolios 𝑅 

𝑟∗ ∈ 𝑅 The optimal project portfolio from the set of admissible portfolios 𝑅 

𝑦 ≤ 𝑌 ∈ ℕ Period within planning horizon 𝑌 

𝑧 ∈ ℝ0
+ Risk-adjusted interest rate 

𝑡𝑦 ∈ ℝ+ Average total processing time in period 𝑦 

𝑡𝑦
NR   Processing time for nonroutine operations in period 𝑦 

∆𝑡𝑦
NR   Additional time for nonroutine operations in period 𝑦 

𝑡𝑦
R   Processing time for routine operations in period 𝑦 

𝑞𝑦 ∈ ℝ+ Average total quality in period 𝑦 

𝑞𝑦
NR   Quality of nonroutine operations in period 𝑦 

𝑞𝑦
R   Quality of routine operations in period 𝑦 

𝑞max ∈ ℝ+ Upper quality boundary 

𝑖𝑦 ∈ ℝ+ Innovation degree in period 𝑦 

𝐶𝐹𝑦
per

∈ ℝ Periodic cash flows in period 𝑦 

𝐶𝐹𝑦
op

∈ ℝ Operating cash flows in period 𝑦 

𝑂𝑦
op

∈ ℝ+ Average total operating outflows in period 𝑦 

𝑂𝑦
op,NR

   Operating outflows for nonroutine operations in period 𝑦 

∆𝑂𝑦
op,NR

   Additional operating outflows for nonroutine operations in period 𝑦 

𝑂𝑦
op,R

   Operating outflows for routine operations in period 𝑦 

𝑂𝑦
inv ∈ ℝ+ Investment outflows in period 𝑦 

𝑂𝑦
fix ∈ ℝ+ Fixed outflows in period 𝑦 

𝑂𝑦
fix,NR

   Fixed outflows for nonroutine operations 

𝑂𝑦
fix,R

   Fixed outflows for routine operations 

𝑛(𝑡𝑦, 𝑞𝑦, 𝑖𝑦) ∈ ℝ+ Expected demand in period 𝑦 

𝐸𝑦 ∈ ]0; 1[ Experience curve effect in period 𝑦 

𝐶𝐷𝑦 
Cumulated demand up to period 𝑦 considering the demand of all prior  

periods and the respective relative effects 𝑑𝑦 ∈ ]0; 1] for each period 𝑦 

α ∈ ]0; 1] Constant elasticity used for the calculation of experience curve effects  

𝑝 ∈ ℝ+ Sales price of operations output 



26 

 

 

Appendix 2. Overview of the interviewed industry expert 

Table A-2. Overview of the interviewed industry experts 

ID  Current position /  
job title 

Work 

experience 

(in years) 

Academic  
background 

Industry Employees Annual 

revenue 

1 
Project manager for 

agile transformation 
>25 

Mechanical        

engineering 

Production –  

Power tools 

19,000 

(2015) 

EUR 4.2 

billion 

(2015) 

2 
IT project manager for 

innovation systems 
>10 

Business 

administration and 

information systems  

Production –  

Automotive 

122,000 

(2015) 

EUR 2.2 

billion 

(2015) 

3 

Head of project 

management office  
for technology 

integration 

>15 
Business         

administration 

Service –  

Telco 

14,000 

(2016) 

EUR 0.6 

billion 

(2015) 

4 
Senior sales manager 

for TV solutions 
>25 

Electrical         

engineering  

Service –  

Telco 

170,000 

(2015) 

USD 0.8 

billion 

(2015) 

5 

Head of discount 

negotiation 

commercial roaming 

>20 
Business          

administration 

Service –  

Telco 

225,000 

(2015) 

EUR 9.2 

billion 

(2015) 

6 
Vice president for  
content distribution  

>20 

Electrical, electronics, 

and communications 

engineering 

Service –  

Internet 

provider 

1,200 
(2014) 

EUR 1.9 

billion 

(2014) 

7 
Director for  
digital transformation  

>20 
Business          

administration 

Service – 

Banking 

100,000 

(2015) 

EUR 3.5 

billion 

(2015) 

8 
Principle  
innovation consulting 

>25 
Business          

administration 

Production –  

Electrical   

manufacturing 

350,000 

(2015) 

EUR 5.6 

billion 

(2015) 
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Appendix 3. Highlights from the expert interviews 

Table A-3. Highlights from the expert interviews 

Topic Comment Implications 

Project 

portfolio 

selection 

and 

scheduling  

 Organizations must define trigger points for 

the repeated application of the decision 

model to ensure that once-estimated 

parameters are reviewed and updated (ID1, 

ID3, ID4). 

 It is important to reassess project effects 

when re-applying the decision model due to 

internal or external changes to cope with 

planning uncertainty (ID2, ID8). 

 PPM depends on the capability to cancel 

projects that have become obsolete or are 

not successful. Otherwise, organizations 

will suffer from capacity overload (ID1). 

Section 4.1: Hint added that the 

decision model should be applied 

repeatedly.  

 

Section 4.1: Hint added that input 

parameters should be critically 

challenged when re-applying the 

decision model. 

Section 4.1: Hint added that 

projects can be cancelled or 

dropped when re-applying the 

decision model. 

Decision 

model in 

general  

 The innovation degree is crucial, but hard to 

operationalize in terms of performance 

indicators (ID3, ID5, ID7). 

 Demand is driven by quality, time, and 

innovation degree. Nevertheless, in industry 

settings, it is impossible to determine the 

demand unambiguously because of effects 

resulting from unpredictable customer 

behaviour or markets conditions (ID4, ID6). 

Appendix 4: Hint added on how to 

operationalize the innovation 

degree.  

Appendix 4: Hint added on how to 

estimate demand.  

 

 

Exploration 

and 

exploitation 

projects 

 It is impossible to estimate the effects of 

disruptive innovation. To overcome this 

difficulty, organizations should define a 

dedicated budget not associated with cash 

inflow expectations (ID4, ID7, ID8). 

 Launching an innovation does not only 

cause one-time investments, but also entails 

follow-up outflows (ID3, ID7). 

 

 

 Technological innovations are important to 

enable operational efficiency. As they only 

affect internal operations without being 

visible to customers, they should be treated 

as exploitation projects (ID6, ID8). 

Section 4.3: Mentioned that the 

decision model focuses on 

incremental and radical 

innovation. Disruptive innovation 

is out-of-scope. 

Section 4.5: Effect is covered by 

the decision model. It also covers 

the partial destruction of 

experience curve effects due to 

exploration. 

Section 4.3: It covers that 

innovative technologies can be 

used for exploration and 

exploitation, not only for product 

innovation visible to customers.  
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Appendix 4. Detailed description of prototype application  

In this section, we provide a detailed description of the prototype application. To apply the prototype, 

which implements the decision model presented in the manuscript, to real-world data, we chose one of 

the industry experts who had participated in the interviews. The expert was working in the telecommu-

nications industry. In line with his background, our case company is a telecommunication provider, 

whose operations include activities such as contract preparation, service provision, and hotline support. 

As required for the prototype application, the expert provided us with input data for current operations, 

planned projects, and the general setting. Owing to confidentiality, we had to anonymize and slightly 

modify the input parameters. However, the principle relations still hold. 

Operations data had to be collected from different sources, e.g. quality management, innovation man-

agement, workflow management, sales management, and customer relationship management systems. 

In detail, data on operational characteristics, economic indicators, and performance criteria for time, 

quality, and innovation degree could be retrieved from enterprise systems. However, values for the com-

pany’s transforming capabilities depended on the expert’s qualitative assessments. The same held true 

for the demand. While the periodic demand could be retrieved from the company’s sales management 

system, its dependency on quality, time, and innovation degree had to be estimated. The procedure of 

data collection for operations data is explained below, while all results are summarized in Table A-4.  

For assessing operational characteristics, i.e. nonroutine and mandatory task ratio, process models were 

analyzed. The analysis revealed that 20% of all operations are nonroutine operations, while 80% of these 

nonroutine operations can be covered by routine tasks. The transforming capabilities were set to 90% 

based on the expert’s assessment. A value of 100% would imply that the company’s employees had no 

superior skills in change and project management. Due to recent trainings, the human resources depart-

ment estimated that transforming capabilities have substantial potential to be further improved.  

Performance indicators for time, quality, and innovation degree were retrieved from enterprise systems 

and validated by the quality and innovation management departments. Time is operationalized as the 

time necessary to provide the service after signing a contract. It splits into time for routine operations 

and additional time for nonroutine operations. Quality is expressed in terms of customer satisfaction 

with the offered services’ scope and availability, while the quality for routine operations is higher than 

for nonroutine operations. The innovation degree was measured as the ratio between innovations intro-

duced over the last four periods in relation to innovations introduced by main competitors. For example, 

if organization 1 introduced three innovations over the last the three years, and the main competitors, 

that is, organizations 2 and 3, introduced four innovations, the innovation degree of organization 1 is 

75%. If the telecommunication provider focuses too much on exploitation and does not invest in the 

innovative services, the innovation degree decreases by 5%.  

Economic indicators for operating and fixed outflows as well as the price were also retrieved from en-

terprise systems and validated by the sales and financial department. Operating outflows for routine 

operations were set to 300 EUR, while 90 EUR come on top for nonroutine operations. Moreover, op-

erating outflows for routine operations can be reduced by an experience curve effect of 0.005. Customers 

had to pay a fixed service fee of EUR 540 per period. The demand function depends on several compo-

nents. About 60% of the case company’s customers, i.e. 1.1 million core customers, were not affected 

by changes in time, quality, and innovation degree. The remaining 40%, i.e. 0.7 million customers, are 

strongly affected by the innovation degree, followed by quality and time. The expert indicated that this 

demand function is typical for the telecommunications industry.  
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Table A-4. Input parameters of the prototype application (operations data) 

Operational  

characteristics 

Nonroutine ratio 𝑵𝐲 20% 

Mandatory task ratio 𝑀𝑦 80% 

Transforming  

capabilities 

Flexibility-to-use 𝐹𝑦
use 90% 

Flexibility-to-change 𝐹𝑦
change

 90% 

Performance 

indicators 

 

 

Additional time for nonroutine operation ∆𝑡𝑦
NR 3 days 

Processing time of routine operation 𝑡𝑦
R 8 days 

Quality of nonroutine operations 𝑞𝑦
NR 70% 

Quality of routine operations 𝑞𝑦
R 75% 

Innovation degree 𝑖𝑦 85% 

Degeneration effect 𝛿 5% 

Economic  

indicators 

 

 

 

Add. operating outflows of nonroutine operations 𝑂𝑦
op,NR

 EUR 90  

Operating outflows of routine operations 𝑂𝑦
op,R

 EUR 300  

Fixed outflows 𝑂𝑦
fix EUR 250 million 

Price 𝑝 EUR 540  

Elasticity for experience curve effect α 0.005 

Demand  

function 

𝑛 = 1,100,000 + 700,000 ∙ (0.3 ∙ ln 𝑞 + 1.5 ∙ ln 𝑖 + 𝑒1/𝑡)  

Cumulated demand 𝐶𝐷0 for experience curve effect 𝐸𝑦 1.6 million 

 

Project data were estimated by the expert together with some of the case company’s experienced project 

managers based on data from the company’s project management system and experience from past pro-

jects. Estimating the performance effects of all projects was the most challenging part of data collection. 

To account for estimation inaccuracies, we included optimistic and pessimistic effects. All projects are 

briefly introduced in Table A-5 and a summary of all project effects can be found in Table A-6. 

Table A-5. Overview of exploration and exploitation projects in focus 

Project 

ID 

Project 

type 

Description and project effects Investment 

outflows 

(1) Exploitation 

project 

Expansion of the network infrastructure 

Increases quality of routine and nonroutine opera-

tions, increases operating outflows for routine and 

additional operating outflows for nonroutine opera-

tions, and increases fixed outflows for routine opera-

tions 

EUR 8.5 million 

(2) Exploitation 

project 

Modularization of service delivery 

Reduces nonroutine ratio 

EUR 1.2 million 

(3) Exploitation 

project 

Improving IT Infrastructure 

Reduces operating outflows for routine and 

additional operating outflows for nonroutine 

EUR 10.8 million 
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operations, and reduces fixed outflows for routine 

operations 

(4) Exploration 

project 

Training in agile methods and project management 

skills 

Improves flexibility-to-use and flexibility-to-change 

EUR 2.8 million 

(5) Exploration 

project 

Introduction of a service feature 

Increases innovation degree and destroys cumulated 

demand 

EUR 4.5 million 

(6) Exploration 

project 

Introduction of a next-generation service 

Increases innovation degree and destroys cumulated 

demand 

EUR 9.5 million 

 

Table A-6. Input parameters of the prototype application (project data) 

Project 

ID 
Project effects on Opt. Pess. 

(1) 

 

Quality of routine operations 𝑞𝑦
R 1.15 1.1 

Quality of nonroutine operations 𝑞𝑦
NR 1.15 1.1 

Operating outflows of routine operations 𝑂𝑦
op,R

  1.002 1.0025 

Add. operating outflows of nonroutine operations 𝑂𝑦
op,NR

 1.002 1.0025 

Fixed outflows for routine operations 𝑂𝑦
fix,R

 1.001 1.0013 

(2) NR ratio 𝑁y 0.9 0.95 

(3) Operating outflows for routine operations 𝑂𝑦
op,R 0.988 0.991 

Add. operating outflows of nonroutine operations 𝑂𝑦
op,NR

 0.985 0.99 

Fixed outflows for routine operations 𝑂𝑦
fix,R

 0.991 0.992 

(4) Flexibility-to-use 𝐹𝑦
use 0.9 0.95 

Flexibility-to-change 𝐹𝑦
change

 0.95 0.97 

(5) Innovation degree 𝑖𝑦 0.99 0.98 

Effect 𝑑𝑗 on cumulated demand 𝐶𝐷𝑦−1 0.3 0.25 

(6) Innovation degree 𝑖𝑦 1.01 0.99 

Effect 𝑑𝑗 on cumulated demand 𝐶𝐷𝑦−1 0.2 0.1 

 

Finally, general data had to be taken from the case company’s corporate decision-making policies. In 

the case at hand, one period lasted six months. We analyzed a planning horizon of six periods, where 

projects could be implemented in the first four periods. As we aimed to interpret the results of the deci-

sion model’s application content-wise, we restricted the analysis to some projects and planning periods.  

Calculating the risk-adjusted expected NPV based on six periods is necessary to account for payback 

periods of late and future-oriented projects. The risk-adjusted interest rate was set to 2.5% per period. 

Further, the total investment budget was limited to EUR 30 million, and the maximum number of pro-

jects per period was set to two due to scarce resources, e.g. a limited number of project managers.  
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Based on the data, we used the prototype to determine all admissible project portfolios and calculated 

their value contribution in line with the decision model’s objective function and all equations mentioned 

in the manuscript. Together with the industry expert, we defined six relevant scenarios. Our reference is 

scenario (A), which we outlined above. This scenario required checking about 9.500 project portfolios. 

In scenarios (B) to (F), we varied individual input parameters, i.e. a shorter planning horizon (B), a lower 

investment budget (C), a mandatory project (D), lower innovation degree (E), and a lack of transforming 

capabilities (F). For each scenario, we determined the optimal and worst project portfolios, while 

accounting for optimistic (opt.) and pessimistic (pess.) effects. Below, we discuss the results of scenario 

(A) in detail and provide an overview of the results related to the other scenarios. The results are shown 

in Table A-7. 

Table A-7. Optimal and worst project portfolios from the scenario analysis 

  Optimal project portfolio Worst project portfolio 

(A) General case 

O
p

t.
 

({2,3}, {6}, {5}, { }) 

EUR 911.92 million 

({ }, { }, {4}, {3}) 

EUR 762.13 million 

P
es

s.
 

({1,3}, {2,4}, { }, { }) 

EUR 886.81 million 

({ }, {4}, {1}, {5,6}) 

EUR 750.11 million 

(B) Planning horizon  

(two periods only) 

O
p
t.

 

({1,3}, {2,4}) 

EUR 642.07 million 

({4}, {1}) 

EUR 567.61 million 

P
es

s.
 

({1,3}, {2,4}) 

EUR 631.52 million 

({4}, {5,6}) 

EUR 555.55 million 

(C) Budget restriction 

(EUR 20 million) 

O
p
t.

 

({6}, {1,2}, { }, { }) 

EUR 882.72 million 

({ }, { }, {4}, {3}) 

EUR 762.13 million 

P
es

s.
 

({2,3}, {1}, { }, { }) 

EUR 856.79 million 

({ }, { }, {4}, {5,6}) 

EUR 751.01 million 

(D) Mandatory project 

(project 5 in period 2) 

O
p
t.

 

({1,4}, {5}, {6}, { }) 

EUR 901.53 million 

({ }, {5,6}, {4}, { }) 

EUR 788.41 million 

P
es

s.
 

({1,2}, {5}, {6}, { }) 

EUR 864.3 million 

({ }, {5,6}, {4}, {1}) 

EUR 754.47 million 

(E) Innovation degree 

(𝒊𝒚 = 𝟎. 𝟓) 

O
p
t.

 

({6}, {1,2}, {5}, { }) 

EUR 121.54 million 

({ }, { }, {4}, {3}) 

EUR -26.32 million 

P
es

s.
 

({1,3}, {2,4}, { }, { }) 

EUR 96.10 million 

({ }, {4}, {3}, {5,6}) 

EUR -33.28 million 

(F) Transforming  

capabilities  

(𝑭𝒚
𝐜𝐡𝐚𝐧𝐠𝐞

= 𝟏, 𝑭𝒚
𝐮𝐬𝐞 = 𝟏) 

O
p

t.
 

({2,3}, {6}, {5}, { }) 

EUR 907.99 million 

 ({ }, { }, {4}, {3}) 

EUR 759.5 million 

P
es

s.
 

({1,3}, {2,4}, { }, { }) 

EUR 883.09 million 

({ }, {4}, {1}, {5,6}) 

EUR 746.36 million 

Notation: ({2,3}, {6}, {5}, { }) denotes a planning horizon of four periods, whereby project (2) and (3) have been scheduled 

for period 1, project 6 for period 2, project 5 for period 3, and no project for period 4. 
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Regarding the optimistic effects in scenario (A), the optimal portfolio includes two exploration and two 

exploitation projects, i.e. projects (2), (3), (5), and (6), scheduled over four periods. Projects (2) and (3) 

are scheduled for period 1, project (6) for period 2, and project (5) for period 3. No project is scheduled 

for period 4. The implementation of these projects will lead to a value contribution of about EUR 910 

million. The worst portfolio comprises two projects, i.e. projects (4) and (3), scheduled for the latest 

possible periods. The value contribution of the worst portfolio is 16 % lower than that of the optimal 

portfolio, which is worse than implementing no projects at all. In the optimal case, projects (2) and (3), 

i.e. both exploitation projects, are scheduled early. This is because project (2) reduces the NR ratio, an 

effect that improves operational performance with respect to time and quality. Both projects also reduce 

the operating and fixed outflows. Both exploration projects are scheduled to late periods. This is sensible 

as they are required to meet the customers’ expectations regarding innovation and to prevent a very high 

degeneration effect, which would occur if the company did not introduce new services.  

As the other scenarios differ only slightly from the reference case, we restrict our discussion to the most 

significant changes. Scenario (B) illustrates that a shorter planning horizon shifts the focus on the short-

term effects of exploitation projects. In scenario (C), the worst project portfolio based on pessimistic 

estimations corroborates that an extreme exploration focus it not sensible as innovations do not outweigh 

efficient operations. Scenario (D) shows that tighter restrictions, which become manifest in a mandatory 

project and a fixed period, typically lead to a lower value contribution – even if the same projects are 

selected. As shown in scenario (E), the innovation success of an organization strongly depends on its 

competitors’ innovativeness. Finally, scenario (F) underlines the importance of developing long-term 

oriented transforming capabilities. An analysis of the optimal project portfolios across all scenarios 

reveals that, in the case at hand, portfolios including both exploration and exploitation projects lead to 

higher value contributions compared to portfolios that include only exploration or exploitation projects.  

 


