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Abstract 

The Internet of Things (IoT), which describes the equipment of physical objects with sensors, 

actuators, computing logic, and connectivity, has attracted much attention. Although many fac-

ets of the IoT have already been explored, existing works either treat smart things as black box 

or focus on their technical characteristics. From an engineering management perspective, how-

ever, also a profound understanding of non-technical smart thing characteristics is key. Hence, 

we developed and evaluated a corresponding multi-layer taxonomy based on the latest IoT lit-

erature and a deliberately broad sample of 200 smart things, which covers the diversity of smart 

things available on the market. Based on eleven dimensions, the taxonomy enables classifying 

smart things according to the layers of established IoT architectures. Based on our sample, we 

inferred five clusters, each covering a typical combination of non-technical smart thing char-

acteristics occurring in practice. These results extend our understanding of the IoT by struc-

turing non-technical characteristics of smart things and by abstracting the diversity of smart 

things into artefacts with manageable complexity. Our results inspire future research on the 

adoption, affordances, and design of smart things. Moreover, engineering managers can use 

our results in early phases of product development and process reengineering projects. 
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1 Introduction 

The emergence of digital technologies such as Social, Mobile, Analytics, and Cloud has entailed 

changes for individuals, organizations, and society [1, 2]. Among the technologies that have 

attracted much attention in recent years is the Internet of Things (IoT), which describes the 

equipment of physical objects with sensors, actuators, computing logic, and connectivity [3, 4]. 

These technology-equipped physical objects, also referred to as smart things, are the nucleus 

of the IoT and build the foundation for applications in diverse domains [2].  

Consulting and market research organizations attribute huge potential to the IoT. Market spend 

amounted to USD 690 billion in 2015 and is expected to reach USD 11.3 trillion in 2025 [5, 6]. 

Reportedly, 130 devices are connected to the Internet every second [7]. For five years in a row, 

the IoT has been a dominant trend in the Gartner Hype Cycle [8, 9]. The International Tele-

communication Union even expressed the vision that “from anytime, anyplace connectivity for 

anyone, we will now have connectivity for anything” [10, p. 2]. Moreover, the IoT is not limited 

to individual smart things but enables broader contexts such as product systems with interacting 

smart things and IoT ecosystems that coordinate product systems [4]. 

Multiple facets of the IoT have already been studied [11–13]. LaBuda and Gillespie [14], for 

instance, focus on technical challenges such as security, interoperability, and data processing. 

From a business-to-business (B2B) perspective, logistics and supply chain cases have been an-

alyzed [15, 16]. From a business-to-consumer (B2C) perspective, Dijkman et al. [17] and 

Turber et al. [18] discuss IoT-enabled business models, Oberländer et al. [3] pose that smart 

things evolve into autonomous actors, and Beverungen et al. [19] conceptualize smart things as 

boundary objects. Other works examine how the IoT influences user experience [20] or en-

hances data quality [21]. Their merits being undisputed, all these works treat smart things as 
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black box, disregarding that their characteristics determine how individuals can use smart things 

and how companies can incorporate them in their value propositions.  

Although they do not treat smart things as black box, Barker et al. [22], Dorsemaine et al. [23], 

López et al. [24] and Mountrouidou et al. [25] focus on the technical characteristics of smart 

things (e.g., operating system). For the purposes of engineering management, an understanding 

of both technical and non-technical characteristics is key. So far, only Püschel et al. [26] inves-

tigated non-technical smart thing characteristics (e.g., interaction partners). Their work, how-

ever, only builds on a small sample and, published several years ago, does not reflect the latest 

developments in the fast-evolving IoT literature and market. Hence, our research question is: 

What non-technical characteristics can be used to distinguish smart things? 

To answer this question, we analyzed smart things on two granularity levels. On a fine-grained 

level, we developed a taxonomy for classifying smart things via dimensions and non-technical 

characteristics structured according to the layers of established IoT architectures, which range 

from the physical product to digital services. To build and validate the taxonomy, we applied 

Nickerson et al.’s [27] established taxonomy development method. Moreover, we used a sam-

ple of 200 smart things and reviewed the latest IoT literature. The sample deliberately included 

smart things from diverse IoT application domains to cover the full range of smart things and 

to increase the applicability of our results. On a coarse-grained level, we applied cluster analysis 

to inductively infer smart thing clusters from our sample, each covering a typical combination 

of non-technical characteristics, to abstract from the combinatorial diversity of smart things and 

to gain high-level insights into smart things available on the market.  

Our study is structured as follows: In section 2, we provide domain background on the IoT. In 

section 3, we outline our research method. In sections 4 and 5, we present our results. Our study 

concludes in section 6 with implications, followed by a discussion of limitations and an outlook.  
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2 Background 

Smart things relate to the third wave of IT [4]. The first wave brought process automation, 

which increased productivity through automated data collection, processing, and analysis [28]. 

Characterized by the uptake of the Internet, the second wave enabled new levels of connectivity 

with free data exchange. In the third wave, IT is embedded into products through sensors, ac-

tuators, computing components, and connectivity [29]. This is characteristic of pervasive digital 

technologies in general and the IoT in particular [4, 30].  

For some time, there was no common understanding of the term Internet of Things [2, 11, 31]. 

One reason was that the term has been used to convey different conceptualizations of two di-

mensions: the communication and the thing dimension. As for communication, it was not clear 

whether wired networks were included [32]. The same holds for the thing dimension regarding 

the inclusion of devices such as personal computers (PCs), smartphones, or tablets and whether 

smart things may only feature a digital representation [2, 3, 11]. In recent works, the IoT is 

defined as the connectivity of physical objects, equipped with sensors, actuators, and computing 

logic, with the Internet through communication technology [3]. Wired and wireless communi-

cation is covered [32, 33]. Moreover, smart things should exist independently from IT [34, 35], 

which is why PCs, smartphones, and tablets serve as intermediaries between humans and smart 

things [32]. Finally, physical materiality and a digital representation are required [19, 36].  

The latest generations of smart things can act independently from human agency in ever more 

scenarios [4, 37]. Oberländer et al. [3] pose that the IoT enables a new perspective on material 

agency, which has been defined as the way objects act when humans provoke it [37, 38]. This 

understanding should be updated, as the IoT empowers smart things to act and make decisions 
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independently of human agency. This capability, also referred to as autonomy or self-depend-

ency, uses self-x (e.g., self-monitoring, -diagnosis, -configuration, -learning) and extended data 

analysis capabilities (e.g., predictive and prescriptive analytics) [4, 39, 40].  

When IoT solutions are implemented, architecture models known as IoT (technology) architec-

tures have emerged. Figure 1 provides an overview of existing architectures. Popular examples 

ranging from the physical product to digital services are the works of Porter and Heppelmann 

[4], Fleisch et al. [41], and Yoo et al. [42]. As the layers of these architectures largely overlap, 

Püschel et al. [26] compiled an integrated architecture including a thing, an interaction, a data, 

and a service layer. The thing layer relates to the physical thing equipped with sensors, actua-

tors, and computing logic. The interaction layer covers the ability of physical things to interact 

with and be remotely accessed by other entities. The data layer covers data sources and usage. 

The service layer investigates the value proposition of smart things and their role in broader 

contexts such as IoT ecosystems. As our work builds on and extends Püschel et al. [26], we 

used their integrated IoT architecture for grouping the dimensions included in our taxonomy. 

Figure 1: Popular IoT Architectures from the Literature (Simplified Illustration) 

 

3 Research Method 

To answer our research question, we first developed a taxonomy of smart things with a focus 

on non-technical characteristics and then inferred clusters representing typical combinations of 

these characteristics. The taxonomy and the clusters build on a sample of smart things compiled 
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from diverse IoT domains [2]. Figure 2 provides an overview of our research process, before 

we present details in the following sections. As we compiled the sample during the development 

of the taxonomy, we present details when outlining how we developed the taxonomy. 

Figure 2: Research Process 

 

3.1 Development of a Taxonomy of Smart Things 

We first developed a taxonomy of smart things in line with Nickerson et al. [27], who proposed 

one of the most established taxonomy development methods [43]. Often used synonymously 

with terms such as framework or typology, taxonomies are empirically and/or conceptually 

derived groupings in terms of dimensions and characteristics. Whereas, from a theory-building 

perspective, taxonomies represent theories for analyzing [44], they can also be understood as 

design artifacts enabling the classification of existing and future objects [27]. Taxonomies rep-

resent an ‘organizational systematics’ approach, which is crucial for sound scientific method 

and theoretical advancements [45, 46]. 

Nickerson et al.’s [27] taxonomy development method includes the following steps: determi-

nation of a meta-characteristic, determination of objective and subjective ending conditions, 

iterative choice of approach, design or revision of the taxonomy, and testing of ending condi-
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tions. The meta-characteristic is the basis from which all other characteristics are derived, re-

flecting the purpose of a taxonomy. As for the choice of approach, Nickerson et al. [27] propose 

an empirical-to-conceptual and a conceptual-to-empirical approach. In the empirical-to-con-

ceptual approach, real-life objects are selected, characteristics are induced, given conceptual 

labels, and assigned to dimensions. In the conceptual-to-empirical approach, researchers first 

propose dimensions and characteristics, before dimensions and characteristics are examined by 

classifying objects. This leads to an initial or revised taxonomy. Both approaches are iterated 

as required until all ending conditions are met. 

In line with our research question, our meta-characteristic was characteristics of smart things 

structured according to the layers of IoT architectures. We used the layers of established IoT 

architectures to group dimensions in order to increase the taxonomy’s understandability and to 

cover relevant non-technical perspectives on smart things. We used the objective ending con-

ditions proposed by Nickerson et al. [27]: every characteristic is unique in its dimension, every 

dimension is unique and not repeated, at least one object is classified under each characteristic 

of each dimension, and no new dimensions or characteristics have been added in the last itera-

tion. Regarding subjective ending conditions, the taxonomy development process terminated 

after all co-authors agreed that the taxonomy was concise, robust, comprehensive, explanatory, 

and extendible. Below, we provide details on all iterations and on how we compiled our sample 

of 200 smart things (Table 1).  

Iteration 1: In the first iteration, we chose the conceptual-to-empirical approach to conceptual-

ize dimensions and characteristics based on the latest IoT literature. With Nickerson et al. [27] 

recommending to build on existing taxonomies, we used Püschel et al.’s [26] work as a starting 
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point as they were the only to propose a taxonomy with non-technical smart things characteris-

tics. To challenge the initial taxonomy, we used the latest versions of those 50 things Püschel 

et al. [26] had compiled through a literature review and a search in the Crunch Base database.  

Table 1: Iterations of the Taxonomy Development Process 

# It Approach Changes  Ending conditions Real-life objects 

1 Conceptual-to-
empirical 

- Addition of the  
dimension autonomy to the thing 

layer (based on the literature) 

- Addition of the human-com-

puter interaction to the interac-

tion layer (based on literature)  

- Removal of the dimension hu-

man-computer interaction based 

on object classification 

x Objective conditions violated: 

- Empty characteristic (i.e., human-com-

puter interaction) as the type of interaction 
(e.g., mechanical or acoustic) described the 

smart thing for the intended users in too 

much detail 

50 (updated) real-life examples 
as used by Püschel et al. [26] 

  - Update of the definitions of the 

sensing capabilities dimension in 

line with Daft and Engel [49] 

x Subjective conditions violated: 

- Not explanatory as the former definition 

described that smart things collect little or 
huge amounts of data which did not allow 

for to comparing smart things 

 

  - Addition of the dimension eco-

system integration to the service 

layer and removal of the dimen-
sion thing compatibility  

x Objective conditions violated:  

- Redundancy regarding duplication of the 

dimensions ecosystem integration and thing 
compatibility 

 

2 Empirical-to-
conceptual 

- Removal of the characteristic 
many-to-many of the dimension 

multiplicity 

x Objective conditions violated: 

- Empty characteristic as the taxonomy  

focuses on single smart thing 

Additional 75 smart things iden-
tified from recent best lists in 

technology news web sources 

(e.g., CNET and TechCrunch) 
and from publicly updated IoT 

lists (e.g., iotlist.co and smar-

thomedb.com). Overall sample: 
125 smart things 

  - Switch of the two characteris-

tics limited and none of the di-
mension offline functionality 

x Subjective conditions violated: 

- Not concise/useful as smart things could 
not be classified intuitively as we classify 

smart things along the dimensions’ scale 
(i.e., ordinal scale) 

 

  - Renaming of the dimension 

main purpose to value proposi-
tion and emphasize the differen-

tiation of the characteristics 

thing-centric and service-centric 

x Subjective conditions violated: 

- Not explanatory as smart things are  
defined by the provided value which can be 

primarily physical (i.e., thing-centric) or 

digital (i.e., service-centric) 

 

3 Empirical-to-

conceptual 

- Final fine-tuning of labels of 

characteristics to enable unam-
biguous and intuitive classifica-

tion 

✓ All objective and subjective conditions 

met: 

Every dimension is unique and not repeated, 

at least one object can be classified under 

each characteristic of each dimension. All 
authors agreed that the taxonomy was con-

cise, robust, comprehensive, extendible, and 

explanatory 

Additional 75 smart things iden-

tified from recent best lists in 
technology news web sources 

(e.g., CNET and TechCrunch) 

and from publicly updated IoT 
lists (e.g., iotlist.co and smar-

thomedb.com). Overall sample 

of 200 smart things 
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Iteration 2 and 3: In the next iterations, we applied the empirical-to-conceptual approach. This 

allowed for considering the latest developments in the market. In both iterations, we used addi-

tional 75 smart things to infer new characteristics based on recent lists from technology web 

sources (i.e., CNET, TechCrunch, and ECT News Network’s TechNewsWorld). We also added 

smart things from publicly updated IoT lists (e.g., iotlist.co and smarthomedb.com). Thereby, 

we aimed for a highly diverse sample that covers the full range of smart things available on the 

market and relevant IoT application domains to support the applicability of the taxonomy [2]. 

Thereby, we restricted our sample to the B2C domain as much more information about smart 

things is publicly available [3]. We get back to this limitation in Section 6. 

Table 2: Sample Overview 

Application Domain 

(according to [2]) 

Fraction  Cluster (based on our cluster analysis, see Appendix 3 for details) Fraction 

Smart Home 49%  Standalone Thing-Centric Executant 19% 

Smart Health  17%  Connected Thing-Centric Performer 20% 

Smart Energy 9%  Standalone Service-Centric Monitor 26% 

Individual Well-Being 21%  Connected Service-Centric Partner 15% 

Smart Mobility 3%  Self-Learning Service-Centric All-rounder 20% 

Smart City 2%    

 

After all ending conditions had been met (Table 1), two co-authors evaluated the taxonomy by 

independently classifying the sample (Appendix 2) based on public information (Appendix 1). 

Agreement was measured in terms of hit rates [47, 48]. As for dimensions with non-exclusive 

characteristics, i.e., an individual smart thing can feature more characteristics of one dimension, 

we also accounted for partial agreement to weigh all dimensions equally. 

3.2 Identification of Smart Thing Clusters 

Based on our taxonomy, we aimed at understanding on a more coarse-grained level which non-

technical smart thing characteristics typically occur together, as the taxonomy offers 272,160 

http://iotlis.co/
http://smarthomedb.com/
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possibilities for classifying smart things1. While such a high granularity supports product de-

velopment by structuring the design space used for ideation, it is too detailed for managerial 

purposes. Hence, we set out to identify clusters by applying cluster analysis to the sample of 

200 smart things according to the taxonomy. 

Cluster analysis is a statistical data analysis technique that groups objects according to their 

similarity [50, 51]. The literature offers various cluster algorithms, with the separation into hi-

erarchical and partitioning algorithms being most common one [52, 53]. Partitioning algorithms 

use a given number of clusters, followed by an iterative re-assignment of objects. Hierarchical 

algorithms either group objects according to their similarity in an agglomerative way starting 

with as many clusters as objects or they divide clusters starting with one cluster including all 

objects [54]. We used Ward’s [55] agglomerative algorithm [56, 57] and the Manhattan metric 

as distance measure, as both have proven useful in combination and fit our data [58].  

Based on the taxonomy, we considered three variable types: (1) dimensions with nominal and 

mutually exclusive characteristics, (2) dimensions with nominal and non-exclusive character-

istics, and (3) dimensions with ordinal and mutually exclusive characteristics. To treat all di-

mensions equally, we normalized the maximum distance of two smart things to 1 per dimen-

sion. As for the first two variable types, we used Bacher et al.’s [59] approach to encoding 

nominal binary variables, using one binary variable per characteristic. As for the third type, we 

used quasi-metric scaling based on numbers ranging from 0 to 1 [60, 61].  

After that, we determined the appropriate number of clusters, a decision that required a joint 

quantitative and qualitative justification [62]. To get a feeling about the number of clusters, we 

                                                 
1 The number of possible realizations can be calculated as follows: For dimensions with mutually exclusive character-

istics, the number of characteristics is considered. For dimensions with non-exclusive characteristics, the cardinality of 

the characteristics’ power set minus 1 is considered. Finally, all dimension-specific parameters must be multiplied, lead-

ing to the following possible number of realizations: = 3 ∙ 2 ∙ 2 ∙ 3 ∙ (24-1) ∙ (23-1) ∙ 2 ∙ 2 ∙ 3∙ (22-1) ∙ 2 = 272,160 
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started by analyzing the error sum of squares (ESS) [55, 63], the majority rule for twenty com-

mon indices [64], and two graphical indices [64]. The ESS suggested using three clusters. The 

CH [65] and the Duda index [66], which performed best in a simulation study by Milligan and 

Cooper [67], suggested using two and 12 clusters, respectively. Another 18 relevant indices 

returned between one and 15 clusters, and the majority rule recommended using three clusters 

[64]. As for the graphical indices, the Hubert index suggested five clusters, while the Dindex 

suggested three and five clusters. Hence, we concluded that the appropriate solution was likely 

to have between three to five clusters. Subsequently, we interpreted the solutions with three, 

four, and five clusters – and that with six clusters to offset potential bias. In the solutions with 

three and four clusters, valuable information was lost (e.g., autonomy and ecosystem integra-

tion). In the six-cluster solution, one cluster with 15 smart things was separated from another 

with 51 smart things. As the new cluster only had one constitutive characteristic, we dropped 

this solution. Finally, we chose five cluster solution, as each cluster could be reasonably inter-

preted standalone and in relation to the other clusters. We provide more details in Section 5. 

To evaluate the clusters and their names determined within the author team, we applied the Q-

sort, a statistical approach used to classify items (i.e., smart things as Q-set) in accordance with 

predefined constructs (i.e., the clusters) by two or more judges (P-set). Developed to examine 

people’s attitudes and opinions [68], the Q-sort has been applied in marketing, psychology, and 

sociology [69] and to evaluate taxonomies [3, 70]. The judges’ agreement forms the basis for 

assessing reliability and validity [48]. We measured reliability via the Kappa Coefficient, de-

fined as “the proportion of joint judgment in which there is agreement after chance agreement 

is excluded” [48, p. 115]. While Cohen’s Kappa [71] accounts for two judges, Fleiss’ Kappa 

deals with more than two judges [72]. Validity was measured as recommended via hit rates, 
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i.e., the frequency at which items are correctly assigned. Table 3 summarizes the theoretical 

background of the Q-Sort approach. 

Table 3: Evaluation Criteria for Two Rounds of the Q-Sort 

 Scenario 1 Scenario 2 

P-set 2 co-authors 15 academics with an IoT background 

Q-set 20 smart things 20 smart things 

Construct validity measure Hit ratio Hit ratio  

Reliability measure Cohen’s Kappa coefficient  Fleiss’ Kappa coefficient 

 

When applying the Q-sort, judges require a detailed understanding and should not be selected 

randomly [73]. Hence, we involved participants with an IoT background. As for the Q-set, we 

selected 20 smart things, at least three per cluster. We also selected at least two smart things 

per application domain (i.e., Smart Home, Smart Health, Smart Energy, and Individual Well-

Being). In a first scenario, two co-authors yet unfamiliar with the clusters classified the Q-set. 

In a second scenario, 15 academics with an IoT background did the same. For both scenarios, 

we calculated reliability and validity. Details can be found in Appendix 3 and the results of the 

Q-Sort in Section 5. 

4 A Multi-Layer Taxonomy of Smart Things 

We now present our taxonomy, which comprises four layers according to established IoT ar-

chitectures (Section 2) and eleven dimensions grouped according to these layers. Table 4 shows 

the taxonomy and compiles relevant definitions. Below, we present each layer in detail. Starting 

with a short description per layer, we present all related dimensions and characteristics using 

justificatory references and real-world examples from our sample. 
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4.1 Thing Layer  

The thing layer is the foundation for all other layers [4]. Here, physical things are transformed 

into smart things by being equipped with sensing and acting capabilities [2]. The thing layer 

also covers the autonomy of smart things [74].   

Table 4: Multi-layer Taxonomy of Smart Things 

 Dimension Characteristics Scale Exclusivity 

S
e
r
v
ic

e 

Ecosystem Integration None Proprietary Open Ordinal ME 

Value Proposition Thing-centric Service-centric Nominal ME 

Offline Functionality None Limited Nominal ME 

D
a

ta
 Data Usage Transactional 

Analytical  

(basic) 

Analytical 

(extended) 
Ordinal ME 

Data Source Thing State Thing Context Thing Usage Cloud Nominal NE 

In
te

r
a
c
ti

o
n

 

Interaction Partner User(s) Business(es) Thing(s) Nominal NE 

Interaction Multiplicity One-to-one One-to-many Nominal ME 

Interaction Direction Unidirectional Bi-directional Nominal ME 

T
h

in
g
 

Autonomy None Self-Controlled Self-Learning Ordinal ME 

Acting Capabilities Own Intermediary Nominal NE 

Sensing Capabilities Lean Rich Ordinal ME 

ME: Mutually exclusive NE: Non-exclusive           

 

Sensing Capabilities: The collection of data about the physical environment (e.g., temperature, 

humidity, or brightness) is constitutive of smart things [2]. Different technologies are available 

to implement sensing capabilities [11]. Appelboom et al. [75] provide an extensive overview 

of sensor types and related technologies. For our purposes, we take an information processing 

perspective in line with media richness theory [49]. With information richness being defined as 

the ability of information to change understanding, we focus on what smart things can collect 

and deliberately abstract from technical details. We also abstract from the sheer quantity of 

sensors implemented in a smart thing. Rather, we focus on whether a smart thing has lean or 

rich sensing capabilities. Smart things feature lean sensing capabilities, if they collect simple 

data, e.g., the smart shower Eva Drop equipped with position and temperature sensors. Rich 
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sensing capabilities are found in smart things that collect complex data, such as the smart secu-

rity camera Nest Cam IQ that uses 4K-colour and sub-sound sensors.  

Table 5: Definitions and Justificatory References 

Dimension Definitions Justificatory  

References 

Ecosystem  

Integration 

None: There is no possibility to integrate the smart thing into ecosystems. 

Proprietary: The smart thing can be integrated into ecosystems but is only compatible  

with smart things of the same provider or manufacturer. 

Open: The smart thing can be integrated into different ecosystems, as it is compatible with 

smart things of other providers and manufacturers. 

[4, 32, 40, 41, 76] 

Value  

Proposition 

Thing-centric: The smart thing primarily serves a thing-related purpose.  

Service-centric: The smart thing serves as distribution mechanism for digital services.  

Offline  

Functionality 

None: The smart thing provides no functionality without Internet connection. 

Limited: The smart thing provides parts of its functionality without Internet connection.  

Data  

Usage 

Transactional: The smart thing processes data of transactions or interactions. 

Analytical (basic): The smart thing processes data for descriptive purposes. 

Analytical (extended): The smart thing processes data for diagnostic, predictive, or  

prescriptive purposes.  

[2, 12, 16, 40, 74, 

77, 78] 

Data  

Source 

Thing state: The smart thing processes data about its internal condition.  

Thing context: The smart thing processes data about its physical environment.  

Thing usage: The smart thing processes data about its usage.  

Cloud: The smart thing processes external data primarily from the cloud. 

Interaction  

Partner 

User(s): The smart thing interacts with human users.  

Business(es): The smart thing interacts with businesses.  

Thing(s): The smart thing interacts with other smart things. 

[3, 4, 40, 41, 79, 80] 

Interaction 

Multiplicity 

One-to-one: The smart thing interacts with a single interaction partner. 

One-to-many: The smart thing interacts with many interaction partners. 

Interaction 

Direction 

Unidirectional: Data flows in one direction. 

Bidirectional: Data flows in all directions. 

Autonomy None: The smart thing cannot learn and needs an external trigger for any action. 

Self-controlled: The smart thing cannot learn but operates in an independent manner  

without external intervention to fulfil specific tasks. It needs external triggers.  

Self-learning: The smart thing can act and decide in line with goals and improves over time 

by learning. It takes over decision-making tasks and adapt to a user’s needs and preferences. 
The smart thing acts without external intervention and does not require external triggers. 

[2, 4, 19, 32, 39, 42, 
49, 74] 

Acting  

Capabilities 

Own: The smart thing directly interacts with the environment. 

Intermediary: The smart thing relies on intermediaries to interact with the environment.  

Sensing  

Capabilities 

Lean: The smart thing collects simple data. 

Rich: The smart thing collects complex data. 
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Acting Capabilities: In addition to collecting data from the environment through sensors, smart 

things can influence their environment through actuators [19]. We conceptualize acting capa-

bilities by examining how smart things influence their environment (e.g., via audible signals, 

text, or voice messages). In contrast to the interaction layer, this dimension primarily focuses 

on a smart thing’s local level. As for the characteristics of this dimension, we distinguish be-

tween smart things with own acting capabilities (e.g., the activity tracker vivosmart HR+ dis-

plays diverse fitness data on its screen) and smart things that rely on intermediary devices such 

as smartphones or tools (e.g., the smart lock Lockitron sends notifications via smartphone) [32]. 

The suitability of this distinction has been confirmed by the classification of the 200 smart 

things. In line with the definition of the interaction layer, a smart thing can also act via inter-

mediaries, for example, by using Bluetooth, local Wi-Fi, or Internet. Since smart things can 

have own and intermediary acting capabilities, both characteristics are non-exclusive.  

Autonomy: While smart things act autonomously in ever more scenarios, many neither learn 

nor act without external triggers [4]. We assign the autonomy level none to such smart things. 

For instance, the Situ food scale weighs food, displays the weight on a display, and sends in-

formation to the user’s smartphone. At its local level, however, the scale needs to be operated 

conventionally. Other smart things operate in a self-controlled manner such as the smart vac-

uum cleaner Roomba. This robot is equipped with sensors and software to scan and clean floors, 

operating in an independent way without external interference to fulfil cleaning tasks unless 

exceptions occur [74]. More sophisticated smart things are even able to learn about their envi-

ronment as well as adapt to their users’ needs and preferences [4]. Such self-learning smart 

things can act and decide in line with goals, without external interference and in distinct cases 

even without external triggers. They continually refine internal models of themselves and their 

environment [74]. Self-learning smart things also take over decision-making from users [3, 19, 



16 

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 

media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 

39]. As an example, the smart security camera Butterfleye learns the individual rhythm of home 

inhabitants and provides increasingly accurate alerts when something unexpected happens. 

4.2 Interaction Layer 

Also referred to as connectivity [41] or transmission [2], the interaction layer focuses on a phys-

ical thing’s embedding into the digital world. For example, Internet connection enables remote 

access to a smart thing’s sensing, acting, and computing capabilities [4, 41] as well as interac-

tions among smart things [79]. Hence, the interaction layer covers the interaction direction, 

multiplicity, and partners.  

Interaction Direction: Regarding the direction of interactions, a smart thing can participate in 

unidirectional and bidirectional interactions [3, 80]. Unidirectional interactions involve one-

way flows of data. For instance, Babolat’s smart tennis racket collects data during a game, 

which is forwarded to a user’s smartphone. In bidirectional interactions, two or more partners 

are actively involved, and data flows in all directions. For example, the smart bracelet Olive, 

designed to reduce stress, uses haptic feedback to alert the user when it detects elevated stress 

levels. Users can also tap the bracelet to register that they are in a good mood.  

Interaction Multiplicity: Smart things can also be classified in terms of the number of inter-

actions in which they engage [4]. In one-to-one interactions, a smart thing connects to one in-

teraction partner at a time [3]. For instance, the Lumo Run fitness tracker which attaches onto 

sports clothes and displays diverse fitness parameters on the user’s smartphone, is designed for 

use by one person at a time. One-to-many interactions take place among multiple partners. For 

instance, the EverSense Location-Sensing Thermostat can track the location of all members of 

a family via their smartphones, and adjusts the temperature of their house after the last person 

leaves and before the first person returns.  
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Interaction Partner: Smart things can interact with partners. Bucherer and Uckelmann [79] 

define consumers, things, businesses, and service providers. We do not account for service pro-

viders but consider them as businesses. Further, Beverungen et al. [19] conceptualize smart 

things as boundary objects among businesses and consumers. Thus, we distinguish three types 

of interaction partners: users, things, and businesses. Conceptualizing users as interaction part-

ners is straightforward: the use of any smart thing by an individual serves as example. Interac-

tions among things are exemplified by the smart doorbell system Skybell: if the Nest smoke 

detector inside the house gives a smoke or carbon monoxide warning, the LED lights on the 

Skybell outside the house change to red, signaling that it is unsafe to enter. If detecting motion, 

Skybell triggers the Nest camera, which starts monitoring from inside the home. Finally, the 

smart bracelet QMedic is an example of a smart thing’s interaction with a business: in case 

anomalies in mobility or sleep are detected, a call center is notified and in-home care provided. 

As a smart thing can interact with multiple partners, this dimension is non-exclusive [3]. 

4.3 Data Layer 

Data is key in the digital economy [1]. In the IoT context, data may even constitute a smart 

thing’s main value proposition [4, 19]. This is because smart things can locally process internal 

and external data and hence provide access to real-time data [40]. Accordingly, the data layer 

focuses on which data sources are used by a smart thing – be it collected through local sensors 

or exchanged with external sources – and on how smart things use data (usage).  

Data Source: As for the data source, we distinguish between thing state, thing context, thing 

usage, and cloud. Thing state refers to the internal condition of a smart thing, covering data 

such as identity, charging, or operating status [2]. The thing context refers to a thing’s physical 

environment (e.g., temperature or humidity), which is monitored via sensors [2]. Thing usage 

describes the data generated and processed during a smart thing’s interactions with partners or 
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users. Ultimately, smart things may have access to external data (e.g., weather forecast or en-

ergy prices) or additional enterprise data (e.g., warranty status) stored in the cloud. This also 

holds for other external sources, e.g., if a smart thing receives data directly from other smart 

things [40]. As a smart thing can process the input of different data sources, this dimension is 

non-exclusive [40]. The smart vacuum cleaner Roomba, for example, uses context data for co-

ordination during the cleaning process. Furthermore, users can adjust its cleaning settings. 

Data Usage: Data usage can be split into transactional and analytical categories [4, 40, 77]. 

Transactional usage refers to the processing of individual transactions or interactions. For in-

stance, the smart shower Eva Drop collects data about the water temperature and the person’s 

position in the shower and uses these data to adjust the water flow. In addition, data can be used 

for analytical purposes, which is commonly split into descriptive, diagnostic, predictive and 

prescriptive. We refer to descriptive data usage as analytical basic, while diagnostic, predictive, 

and prescriptive data usage is categorized as analytical extended. Smart things with basic ana-

lytical data usage enable descriptive analytics. The smart tracker Fitbit Charge, for instance, 

prepares the gathered data such as the distance run and the calories burned in order to provide 

them the user in an aggregated form. Analytical extended data usage provides more sophisti-

cated analytics, as in the case of the smart camera Nest Cam IQ, which can identify via face 

recognition technology whether a person entering the house is a family member or a stranger. 

4.4 Service Layer 

With smart things driving the fusion of the physical and the digital world, the variety of enabled 

services is said to be “limited only by imagination” [40, p. 114]. Against this backdrop and in 

line with established IoT architectures, the top-most layer of the taxonomy relates to services 

associated with smart things [41]. It covers whether a smart thing provides offline functionality, 

a smart thing’s value proposition, and its integration into ecosystems [4].  
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Offline Functionality: Connectivity is vital for smart things. In the IoT, the literature defines 

connectivity rather broadly, i.e., with a focus on a smart thing’s general communication capa-

bilities [32]. Rather than investigating specific communication technologies, we consider 

whether a smart thing’s functionality depends on a working Internet connection, as this influ-

ences in which services a smart thing can be involved. If a smart thing cannot provide any 

functionality without a working connection, its offline functionality is classified as none. The 

WeMo insight switch requires a working connection to perform its functions: to remotely con-

trol home appliances and track their energy use. If a smart thing provides parts of its function-

ality without a working Internet connection, it is classified as limited. For example, the smart 

light bulb LIFX works like an ordinary light if it is turned on or off at the switch. To access 

colors and other features, it needs an active Bluetooth, local Wi-Fi, or Internet connection. 

Value Proposition: In line with the bridging of the physical and the digital world, smart things 

consist of a physical underlying and a digital representation [81, 82]. That way, smart things 

serve as a distribution mechanism for digital services [76]. Against this background, smart 

things with a thing-centric and a service-centric value proposition can be distinguished. Smart 

things with a thing-centric value proposition primarily serve a thing-related purpose in the phys-

ical world extended by a digital representation and services [4]. An example is Babolat’s tennis 

racket that helps players improve their game via an app, analyzing sensor data from the racket. 

Despite this valued-added service, the racket still retains its traditional functionality. Smart 

things with a service-centric value proposition also have a physical underlying, which primarily 

serves as a distribution mechanism. Related smart things cannot or hardly be used inde-

pendently from digital services. For example, Amazon’s Echo has no physical functionality but 

serves the provision of digital services (e.g., Alexa skills). 
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Ecosystem Integration: A priority in the development of smart things is to ensure that they 

not only collect and use data about themselves and their environment but also interact with 

other things [4]. This enables product systems, where smart things collaborate, and systems of 

systems that link product systems [4]. We refer to a smart thing’s integration into such broader 

contexts as ecosystem integration and distinguish three characteristics: none, proprietary, and 

open. The June oven operates standalone and is not part of any broader IoT contexts. The char-

acteristic proprietary refers to smart things that can be integrated into an ecosystem but which 

are only compatible with smart things from the same provider or manufacturer. For example, 

the smart camera Pivot is part of the Zmodo ecosystem. It can only be triggered by Zmodo 

sensors and controlled via the Zmodo app. Open ecosystem integration enables interoperability, 

covering smart things compatible with components across their own product family [40]. The 

Nest Thermostat, for instance, is equipped with an application programming interface (API) 

that allows information to be exchanged with products of other providers.  

4.5 Classification Results and Examples 

To evaluate the taxonomy and prepare the cluster analysis, two co-authors independently clas-

sified the 200 smart things. Specifically, 100% of the dimensions-specific hit rates exceeded 

85% (Table 6) and 91% of the object-specific hit rates exceeded 75% (Appendix 2). These hit 

rates confirm that the taxonomy is clear in terms of dimensions and characteristics [48].  

Table 6: Dimension-specific Hit Ratios 

Dimension Hit Ratio Dimension Hit Ratio 

Sensing capabilities 96% Data Source 93% 

Acting capabilities 94% Data Usage 89% 

Autonomy 88% Offline Functionality 95% 

Direction 92% Main Value Proposition 90% 

Multiplicity 95% Ecosystem Integration 86% 

Partner 92% Overall Hit Ratio 91% 
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Below, we exemplarily show the classification of two smart things from our sample to illustrate 

how the taxonomy can be applied to analyze existing smart things (Figure 3). These examples 

also illustrate the diversity of the smart things available on the market and covered by our tax-

onomy. As a first example, the Situ food scale has lean sensing capabilities for weighing food. 

Using own and intermediary acting capabilities, it shows the weight on its display and via an 

app. The scale is a non-autonomous device that needs a trigger for any action and interacts with 

one user at a time. It uses data for basic analytical purposes, e.g., the calculation of nutrients 

and calories. Without an Internet connection, the scale can be used as a conventional scale. 

Thus, it has limited offline functionality. This complies with the scale’s thing-centric purpose. 

The scale is used independent from other smart things and not integrated in ecosystem.  

Figure 3: Exemplary Classification of Situ Food Scale and Nest Cam IQ 

 

As a second example, the indoor security camera Nest Cam IQ gathers vast amounts of data via 

rich sensing capabilities. It uses own acting capabilities (e.g., speaker) and intermediaries (e.g., 

smartphone or tablet), and is a self-learning smart thing learning how to differentiate between 

family members and strangers. The Nest Cam IQ interacts with users via microphone and has 

extensive capabilities to interact with other smart things. Apart from gathering data during us-

age and by monitoring its environment, it can access cloud data, including its video history. 

This enables extended analytical data usage, e.g., face recognition. Yet the Nest Cam IQ has no 
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offline functionality and relies on its supervision service. It is compatible with smart things 

from the Nest ecosystem and third-party providers.  

5 Smart Thing Clusters 

Based on the classified sample, we indusctly inferred five clusters covering combinations of 

non-technical smart thing characteristics that typically occur together. Below, we introduce 

each cluster along with constitutive characteristics and real-world examples. The clusters are 

illustrated in Table 7 where we highlighted the most frequent characteristics per dimension. For 

non-exclusive dimensions, we included all characteristics covered by more than one third of 

the sample. Appendix 3 shows to which cluster the smart things from our sample were assigned. 

To structure the clusters, we first split them according to the value proposition dimension, which 

was the first division performed by the cluster algorithm. We found that, in subsequent divisions 

of the cluster algorithm, the clusters remained either thing- or service-centric. Hence, we split 

them in a thing- and a service-centric group. In both groups, we also found sub-groups showing 

different but increasing levels of autonomy and ecosystem integration. In a nutshell, smart 

things can be grouped according to their value proposition and smartness, which in turn 

becomes manifest in autonomy and ecosystem integration. In line with these findings, we 

identified expressive names within the author team: Standalone Thing-Centric Exectutants, 

Connected Thing-Centric Performers, Standalone Service-Centric Monitors, Connected 

Service-Centric Performers, and Self-Learning Service-Centric All-rounders.  

We evaluated the validity and reliability of both the clusters and the chosen names via the Q-

sort. In a first scenario, two co-authors unfamiliar with the cluster results achieved a hit rate of 

90% and a Kappa of 75%. In a second scenario, 15 researchers with an IoT background obtained 

a hit rate of 78% and a Kappa of 62%. These results reflect substantial agreement [83]. Detailed 

results are reported in Table 8. 
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Table 7: Smart Thing Clusters (most Frequent Characteristics) 
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5.1 Cluster 1: Standalone Thing-Centric Executants 

Standalone Thing-Centric Executants are everyday items with a thing-centric purpose enhanced 

by digital services. Most related smart things have lean sensing capabilities (87%), often pro-

vide own (68%) and always intermediary (100%) acting capabilities. Moreover, most related 

smart things are not autonomous (61%) and require external triggers for any action. Interactions 

occur with one partner (97%) who is the smart thing’s user (100%). As for data usage, only 
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basic data analytical purposes are supported (71%). In accordance with their thing-related pur-

pose (92%), related smart things can perform at least some of their functionality without an 

Internet connection (95%). Finally, related things are not integrated into ecosystems (90%).  

Two examples are the Oral-B smart toothbrush and the smart fork Hapifork, which observe 

brushing or eating habits and offer feedback via a smartphone. Independent from their digital 

services, they provide functionality as a toothbrush or fork. Furthermore, the analytical capa-

bilities of both smart things are restricted to analytical basic. Finally, both smart things only 

interact with their users and are not integrated into any ecosystems.  

Table 8: Cluster-specific Hit Ratios 

  Classification according to cluster analysis 

 Cluster 

Standalone 

Thing-Centric 
Executant 

Connected 

Thing-Centric 
Performer 

Standalone  

Service-Centric 
Monitor 

Connected 

Service-Centric 
Partner 

Self-Learning 

Service-Centric 
All-rounder 

Classification 

by participants 

Standalone Thing- 

Centric Executant 
91% 0% 11% 0% 0% 

Connected Thing- 

Centric Performer 
0% 71% 1% 18% 8% 

Standalone Service-

Centric Monitor 
9% 2% 76% 13% 2% 

Connected Service- 

Centric Partner 
0% 27% 11% 69% 5% 

Self-Learning Service-

Centric All-rounder 
0% 0% 1% 0% 85% 

 

5.2 Cluster 2: Connected Thing-Centric Performers 

Connected Thing-Centric Performers are everyday items integrated in broader IoT contexts. 

Most have lean sensing capabilities (83%) as well as own (93%) and intermediary (93%) acting 

capabilities. They also have a thing-centric purpose (98%). After an initial trigger, a small ma-

jority of related smart things can act in a self-controlled way without user interference (53%). 

Interactions typically occur with more than one partner (95%), mostly with users (98%) and 

other things (43%). Connected Thing-Centric Performers implement transactional (45%) or 
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basic analytical (45%) data usage capabilities. Most related smart things can perform parts of 

their functionality without Internet (95%). Thing-Centric Performers are typically integrated 

into ecosystems (68%). While some are only compatible with products from the same provider 

(18%), half (50%) of them can interact with other providers’ products.  

Examples are Bosch’s I-Dos smart washing machine, with its automatic dosing system, and the 

smart refrigerator Smart Instaview, which includes features such as voice control. The func-

tionality of both smart things is bound to the physical product and they can exist independently 

from additional services. Both I-Dos and Smart Instaview can be controlled via an app, and 

may be integrated into ecosystems established by multiple associated partners such as Bosch 

Home Connect or Google Home.  

5.3 Cluster 3: Standalone Service-Centric Monitors 

Standalone Service-Centric Monitors are smart things that monitor their environment or users 

without being integrated into ecosystems. Most related smart things possess lean sensing capa-

bilities (71%) and intermediary acting capabilities (100%, only 22% also have own acting ca-

pabilities). This implies that the thing itself primarily serves as distribution mechanism of dig-

ital services. Most Standalone Service-Centric monitors are not autonomous (55%), while oth-

ers function without user intervention (43%). Furthermore, most Standalone Service Centric 

Monitors interact with only one partner (59%), who is nearly always their user (98%). Data is 

collected while the thing is in use (77%) or gathered through monitoring the physical environ-

ment (47%). Data is mostly used for basic analytical purposes (69%). Without an Internet con-

nection, almost no functionality is available (92%). Finally, most Standalone Service-Centric 

monitors are not integrated into ecosystems (92%).  

Examples include the RunScribe smart fitness tracker and the Mon Baby device which monitors 

a baby’s sleep. Both devices consist of a clip attached to a running shoe or baby’s shirt without 
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own acting capabilities. The clip monitors running performance or sleep and enables analyses 

through an app. Hence, the smart thing itself primarily serves as a distribution mechanism for 

digital services and is unusable without the app, which is provided on an intermediary device.  

5.4 Cluster 4: Connected Service-Centric Partners 

Connected Service-Centric Partners are smart things with well-developed connectivity and 

compatibility. Almost all related smart things have lean sensing capabilities (97%). More than 

half have own acting capabilities (53%) and the clear majority has intermediary (94%) acting 

capabilities. Related smart things are either self-controlled (53%) or not autonomous (44%). 

Most can interact with more than one partner (88%), and Connected Service-Centric Partners 

do not only interact with users (97%) but also with other things (72%). Data is usually drawn 

from the thing’s context (69%) or is collected while the thing is in use (53%). More than half 

of the Connected Service-Centric Partners use data transactionally (53%), whereas basic ana-

lytical data usage only occurs in just over one-third (34%). Without an Internet connection, no 

functionality is available (100%). Another feature is that most related smart things support open 

ecosystem integration (72%).  

Examples include the Wi-Fi connected garage control Garageio, which consists of a black box 

installed in a garage, and the Amazon Dash Wand, a connected Alexa-enabled home barcode 

scanner. Both smart things primarily serve as distribution mechanisms for services and are in-

tegrated into ecosystems, working with other smart things and services such as Amazon Echo.  

5.5 Cluster 5: Self-Learning Service-Centric All-rounders 

Self-Learning Service-Centric All-rounders are sophisticated smart things that have high au-

tonomy and are integrated into IoT ecosystems. They have rich sensing capabilities (90%), and 
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usually have own (92%) and intermediary (97%) acting capabilities. Many Self-Learning Ser-

vice-Centric All-rounders can take over decision-making tasks from users at which they im-

prove over time (41%). Despite the share of only 41% self-learning devices, this cluster includes 

89% of all self-learning devices from our sample. Self-Learning Service-Centric All-rounders 

interact with users (100%) and other things (49%), and the majority can interact with more than 

one partner (85%). Data is collected from the thing’s environment (54%) or usage and, in some 

cases, from the cloud (39%). Most related smart things use data for extended analytical purposes 

(56%). Finally, most related smart things can be integrated into different ecosystems (69%) and 

many are compatible with products from other providers (54%).  

One example is the Nest smart thermostat, which learns and automatically adapts to its users’ 

behavior by re-configuring itself. It also works with lights, locks, and other products, and is 

compatible with different providers. A second example is the smart camera, Cocoon, which 

learns the unique patterns of a home and improves over time to avoid false alarms.  

6 Conclusion and Outlook 

6.1 Contribution and Implications 

In recent years, the IoT has attracted considerable attention, as it affects our private and business 

lives in diverse domains. Although huge potential is attributed to the IoT, most works either 

treat smart things as black box or focus on technical characteristics. From an engineering man-

agement perspective, however, also an understanding of non-technical smart thing characteris-

tics is key to tap the full potential of the IoT. Hence, we set out to investigate such non-technical 

characteristics. Below, we discuss the implications of our research as well as limitations and an 

outlook on future research. Table 9 provides a management summary.  
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Table 9: Overview of Contributions, Implications, Limitations, and Outlook 

Contribution 

1. Taxonomy of non-technical smart thing characteristics structured according to established IoT architectures 

2. Clusters of smart things representing typical combinations of characteristics occurring in practice 

Theoretical implications 

1. Classification of smart things on two granularity levels 

2. Operationalization of existing IoT architectures through dimensions and characteristics of the taxonomy 

3. Complementation of existing works with a focus on technical smart thing characteristics through non-technical characteristics 

4. Update of existing works with a focus on non-technical smart thing characteristics through a broader sample and latest literature 

Managerial implications 

1. Smart things should not be treated as black box 

2. Smart things can be clustered on a high level according to their value proposition, autonomy, and ecosystem integration 

3. The design space of smart things has not yet been fully explored 

4. The clusters assist in strategic product portfolio decisions, while the taxonomy assists in early phases of product development 

Limitations 

1. Sample is limited to 200 smart things and the B2C context 

2. Clusters are not perfectly disjoint owing to inductive clustering  

Outlook 

1. The taxonomy should be updated from time to time and challenged through an extended sample 

2. Setting the focus of the role of the individual smart thing in broader contexts such as IoT ecosystems 

3. Research on adoption and affordances of smart things should be conducted 

4. Research on methods for the analysis and design of smart things should be conducted 

 

Our theoretical contribution is twofold: First, we proposed a literature-backed and broadly val-

idated taxonomy of non-technical smart thing characteristics, which enables the in-depth clas-

sification of individual smart things, based on the latest IoT literature and the latest generation 

of 200 smart things deliberately chosen from diverse IoT application domains. The dimensions 

included in the taxonomy are grouped according to the layers of established IoT architectures 

to foster the taxonomy’s understandability and to cover relevant perspectives on smart things 

ranging from physical product to digital service. Including multiple dimensions per layer, the 

taxonomy not only draws from but also operationalizes existing IoT architectures. By covering 

all layers of IoT architectures, the taxonomy complements the focus on technical characteristics 

of existing works such as Barker et al. [22], Dorsemaine et al. [23], López et al. [24], and 

Mountrouidou et al. [25]. Moreover, the taxonomy updates and extends Püschel et al.’s [26] 

work, as we confirmed dimensions (e.g., sensing capabilities and data usage), dropped dimen-
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sions (e.g., main purpose and thing compatibility), and found new ones (e.g., ecosystem inte-

gration and autonomy). Most specifically, the taxonomy supports the effective discussion of 

commonalities and differences of smart things, an important foundation for scientific progress 

and the capitalization of the IoT in industry [45, 46].  

As our second theoretical contribution, we inductively inferred and validated five smart thing 

clusters based on the classified sample. Each cluster represents a typical combination of non-

technical smart thing characteristics. The clusters abstract from the combinatorial diversity of 

smart things and provide high-level insights into the smart things on the market. We specifically 

found that value proposition, ecosystem integration, and autonomy are key for discussing smart 

things on a coarse-grained level. Overall, our results demonstrate that the diverse set of smart 

things on the market can be abstracted into specific artefacts, i.e., a taxonomy with a managea-

ble number of dimensions and a manageable number of smart thing clusters. 

Our results have the following implications for engineering managers:  

 First, smart things should not be treated as black box but should be classified according to 

defined characteristics, which determine how they can be used by individuals and be inte-

grated in organizations’ value propositions.  

 Second, the clusters revealed similarities among smart things on a coarse-grained level. This 

implies that engineering managers need not cope with the full combinatorial diversity set 

up by the taxonomy when analyzing smart things and that the design space of smart things 

has not yet been exhausted. Hence, there is a huge potential for new product offerings.  

 Third, our results support various decisions of engineering managers. A cluster-based high-

level analysis is reasonable in use cases such as strategic product portfolio decisions, before 

engaging in detailed discussions related to specific product design ideas in early phases of 
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product design using the taxonomy for structuring the design space of smart things. More-

over, knowledge about technical smart thing characteristics from existing works is relevant 

in later phases of product development, when smart products are implemented. In our own 

industry projects, the taxonomy and the clusters helped to analyze the smart things of com-

petitors as well as enhance existing and creating new products. Moreover, they helped to 

match the characteristics of smart things and customer needs, derive design recommenda-

tions, and create rough cost estimates as foundation of early go/no go decisions. 

 Fourth, engineering managers can use our findings beyond product development to account 

for the action possibilities of smart things in process reengineering projects and to assess 

respective performance effects (e.g., time, cost, quality, and flexibility). This includes not 

only own processes but, in line with our focus on the B2C context, also the processes of 

consumers who use one’s smart product offerings.  

Apart from these implications, we successfully applied the taxonomy and the clusters in re-

search (e.g., related to the design of smart things and the business value of IoT-based offerings) 

and industry projects (e.g., related to design of IoT-based solutions and business models). 

Hence, our findings already shaped up useful for diverse stakeholders. 

6.2 Limitations and Outlook 

As any research, our work is beset with limitations. First, despite carefully selected 200 smart 

things, our sample is restricted to a certain period and focuses on the B2C context. Given the 

fast-moving nature of the IoT, it is likely that so far under-represented characteristics will be-

come common and that new characteristics will emerge in the future. Moreover, as the clusters 

were inferred inductively from the sample, some blurring was unavoidable. Hence, the taxon-

omy and the clusters should be reassessed from time to time to account for new developments. 

We also restricted the sample to smart things from B2C contexts as much more information is 
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publicly available. Nevertheless, research should challenge how the taxonomy needs to be ex-

tended to fit other contexts. A corresponding sample should include smart things from the B2B 

context, e.g., smart factories. Finally, we admit that, despite its focus on the B2C context, the 

sample is broad in terms of the included smart things’ diversity. In our opinion, this is a feature 

not a bug, as the development of a broadly applicable taxonomy and clusters, which cover the 

full range of smart things available on the market, requires such a sample. 

Second, in line with our research question, the taxonomy and the clusters take the perspective 

of individual smart things. However, the IoT will not unfold its potential if smart things remain 

the center of interest in research and industry. Hence, research should also focus on the role of 

smart things in IoT ecosystems. Our findings can serve as foundation for such research. 

Finally, our findings stimulate future research on the IoT. From a descriptive view, the identi-

fied non-technical characteristics and the clusters may serve as input for exploring drivers re-

lated to the adoption and use of smart things. They can also serve as foundation for further 

investigating affordances of smart things. From a prescriptive view, our results inspire research 

on developing methods for the analysis and design of smart things as well as on extending 

existing product design and process reengineering methods with respect to smart things.  
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