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Abstract 

Demand-side management and demand response are integral building blocks for environmental sus-

tainability. Exchange-based power pricing serves as an economic mechanism to set incentives to shift 

demand to periods where prices are low. Low power prices also serve as an indicator for green(er) 

power, since high feed-ins from variable renewable sources push the electricity price downward. For 

businesses, minimizing electricity costs thus not only contributes to economic but also environmental 

sustainability. Hence, especially energy-intensive businesses can become greener and more competitive 

by integrating volatile electricity prices into their production planning activities. In this paper, we 

demonstrate that the length of the planning horizons is key to achieve more sustainable outcomes due 

to the trade-off between decision flexibility and information accuracy. Decision flexibility – i.e. the ca-

pability to shift processes – increases with longer planning horizons. Information accuracy – i.e. price 

accuracy – increases with shorter planning horizons. Information Systems (IS) can help to balance this 

trade-off. We follow a data-driven approach and derive both actual and predicted electricity spot prices 

from historic electricity intraday market data in Germany. We find that decision flexibility and infor-

mation accuracy affect the planning horizon as conceived. First results indicate that more sustainable 

outcomes are achieved with longer planning horizons.  

Keywords: Decision support systems, demand response, energy-aware scheduling, sustainability. 
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1 Introduction  

Energy-intensive businesses (EIBs) can be described by their large energy consumption (Song and Oh, 

2015), as prevalent in industries like aluminum, basic chemicals, pulp and paper, or steel (U.S. Energy 

Information Administration, 2016). Globally, EIBs consume more than a quarter of the total delivered 

energy1 (U.S. Energy Information Administration, 2016). The energy costs can reach up to 40% of their 

total productions costs on average (European Commission, 2016) making it a very relevant economic 

lever. As for electricity, an EIB consumes at least 150 GWh annually, corresponding to 50,000+ house-

holds (Eurostat, 2017; Agora Energiewende, 2014). Wholesale electricity prices exhibit very high vol-

atility (Zhang and Grossmann, 2016) which is higher than most other commodities’ volatility (Aggarwal 

et al., 2009). Since an EIB can manage large proportions of its electricity consumption, it can exploit 

this volatility over time (Merkert and Harjunkoski, 2017). If an EIB’s capacities are not running at full-

load and production processes are sufficiently decoupled from other production stages (Merkert et al., 

2015), the EIB can align its production with exchange-based electricity prices (Merkert and Harjunko-

ski, 2017). This is commonly referred to as energy-aware scheduling  – a form of demand response 

(Albadi and El-Saadany, 2008; Merkert and Harjunkoski, 2017). When variable renewable sources gen-

erate electricity, the additional supply pushes the wholesale price downward (Hirth, 2013). Low ex-

change prices thus indicate a green(er) power mix (Hirth, 2013). Most important with regard to sustain-

ability is thus that aligning electricity consumption with wholesale prices does not only contribute to 

economic but also environmental sustainability. This link gives especially EIBs an edge to foster energy 

transitions while improving their competitiveness (Finn and Fitzpatrick, 2014).  

Smart grid technologies establish the required infrastructure for data collection and exchange (Zhang 

and Grossmann, 2016; Yalcintas et al., 2015), improvements in modelling and algorithms lay the basis 

for energy-aware scheduling (Merkert et al., 2015). Moreover, automated decision and optimisation 

support with regard to the sustainable use of energy has become pivotal (Harjunkoski et al., 2014; Plitsos 

et al., 2017). Information systems (IS) thus have been enabling the integration of energy and wholesale 

electricity prices into planning activities. Despite these advances in favour of energy-aware scheduling, 

there are unresolved challenges, which necessarily have to be addressed (Zhang and Grossmann, 2016). 

In that vein, we suggest that there is a trade-off regarding the timeframe, which is considered for sched-

uling, i.e. – the length of the planning horizon: the longer the planning horizon the more price periods 

are taken into account. More price periods are more likely to incorporate larger price differences and 

price valleys - i.e. periods of low prices. We refer to this as decision flexibility. The more decision 

flexibility the higher are the cost saving potentials (Feuerriegel et al., 2012). However, at planning mo-

ment, future spot prices are uncertain and the level of uncertainty in the electricity price increases the 

longer it is planned ahead (Zhang et al., 2016; Aggarwal et al., 2009; Ierapetritou et al., 2002). We take 

an IS view of this and regard it as a lack of information (Watson et al., 2010). Poor price assumptions 

lead, in turn, more probably to suboptimal scheduling (Ierapetritou et al., 2002). Thus, better information 

accuracy can lower the total electricity costs. Decision flexibility will increase with longer planning 

horizons, while information accuracy increases with shorter planning horizons. The length of the plan-

ning horizons might have a significant impact on the effectiveness of energy-aware scheduling. There-

fore, determining the length of the planning horizon should be part of IS for energy-aware scheduling. 

Addressing this involves interdisciplinary research at the crossroads of IS and operations research (OR) 

in order to study the trade-off between decision flexibility and information accuracy. IS must inform the 

decision support to optimally size the planning horizon based on proven optimisation methods from OR. 

From this, we state the following overarching research question (RQ-O):  

How does the length of the planning horizons affect the electricity costs in energy-aware scheduling?  

We strive to address the various facets of RQ-O in a (series of) future full paper(s) – such as the quan-

tification of the potential environmental improvements, the separate analysis of EIB’s planning by se-

quential versus rolling horizons, or considering various electricity market setups. With this Research-

                                                      

1 Delivered energy corresponds to the heat content of energy consumed by the end-user. It incorporates electricity without 

conversion losses and fuels used for combined heat and power facilities. 
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in-Progress (RiP) paper, we take a first humble step in the direction of RQ-O. We refine the research 

question for this RiP paper (RQ-RiP), which is based on the hypothesis that there is a trade-off between 

decision flexibility and information accuracy having an impact on electricity costs, as follows:  

Does the length of the planning horizons affect the electricity costs in energy-aware scheduling? 

This and potential future articles in this stream shall contribute to the body of knowledge informing the 

design parameters of energy-aware-scheduling. With regard to the trade-off between decision flexibility 

and information accuracy,  the planning frequency or the planning policy similar to Sridharan and Berry 

(1990) or Xie et al. (2004) might have a relevant impact as well.  

2 Methodology  

We follow the research cycle proposed by Meredith et al. (1989). The cycle comprises the three consec-

utive and iterating stages of description, explanation, and testing. To the best of our knowledge, there is 

no prior research examining the aforementioned trade-off, which we wish to demonstrate with RQ-O 

and RQ-RiP. Hence, we launch an initial research cycle with this RiP paper, to which we will tie in our 

(series of) future full paper(s). The stage of description of the research cycle aims to comprehensively 

characterise a situation (Meredith et al., 1989). Hence, we outline how EIBs might size their planning 

horizon for energy-aware scheduling. The stage of explanation embeds this description into a concept 

(Meredith et al., 1989). We hypothesise, supported by prior research, that the length of planning horizon 

exhibits a trade-off between decision flexibility and information accuracy. The stage of testing examines 

whether the hypothesised concept holds true (Meredith et al., 1989). We intend to make research on the 

trade-off both, objective and transparent. However, intervening in planning activities of a real-world 

business is not possible without impact on its daily business. Furthermore, the scope of varying the 

length of the planning horizons is very limited and research deems inappropriate in timescale. Therefore, 

we mimic an EIB which minimises electricity costs of its production in a deterministic simulation (Neu-

mann and Morlock, 2004). The simulation allows to experimentally vary the length of the planning 

horizons in different scenarios. For objectivity, we conduct a scenario analysis and vary the character-

istics of the EIB’s production and its way to procure electricity. Within the simulation, we use a deter-

ministic optimisation model (Neumann and Morlock, 2004) to optimise the production schedule with 

regard to electricity prices. The EIB cannot know the future exchange prices but can only assume them 

– i.e. we mimic the EIB from an ex-ante perspective. For price assumptions, we utilise historical elec-

tricity price data from the German intraday markets, following the expectations theory from Fama and 

French (1987). For evaluation of the scenarios, we take an ex-post perspective. While the EIB utilises 

price assumption for scheduling, the final electricity costs are evaluated with realised prices. In analogy 

to Häckel et al. (2016), this serves as an established back-testing approach. In this paper, we present the 

description, the explanation and the simulation used for testing in section 3. They are applicable to both 

research questions RQ-O and RQ-RiP, if not stated otherwise. However, we will present the problem 

context formally in the (series of) future full paper(s) to come because of a RiP’s brevity. 

For RQ-RiP, we focus on running a relevant proportion of the simulation scenarios, only. A single ex-

ample will give first evidence that the trade-off exists and legitimate the impact of the length of planning 

horizons in energy-aware scheduling. Further scenarios, required to state the general concept, will fol-

low in the (series of) future full paper(s). Hence, we only vary between the lengths of the planning 

horizons and the way of procuring electricity. All other parameters r fixed. We present these and evaluate 

the instantiation by the back-testing approach in section 4. In section 5, we eventually draw a conclusion 

with regard to RQ-RiP. We show limitations and give an outlook on our future research activities refer-

ring to RQ-O.  

3 Problem context 

Because EIBs are business organisations, decisions regarding planning activities are at least greatly in-

fluenced, if not entirely determined, by economic rationale (Simon, 1979). EIBs strive to improve (op-

timise) economic metrics e.g. economic-value added (Chen and Dodd, 1997). With regard to production 
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planning, cost management and corresponding metrics are most prevalent (Beamon, 1998). In this paper, 

we try to isolate the phenomenon represented by the trade-off. Hence, we set a clear focus on electricity 

costs leaving the consideration of costs and risks from staff, materials, other forms of energy, capital 

etc. for further research. We furthermore assume that the EIB is fully exposed to electricity price risk, 

as rescheduling and adoptions during the planning horizon are not possible.  

Relying on automated decision support for energy-aware scheduling, the EIB must – in advance – fix 

planning moments, at which it creates production schedules. In this paper, we consider EIBs, which 

schedule their production in sequential planning horizons. This means that at every planning moment, 

the EIB schedules the production processes for the upcoming planning horizon. The length of each 

planning horizon corresponds to the timeframe between two planning moments. The lengths of the plan-

ning horizons remain constant as scheduling is a periodical task for the EIB.  

We postulate that the length of the planning horizons determines the level of decision flexibility and 

information accuracy, which will affect the business’ electricity costs. For decision flexibility, we follow 

the view of Merkhofer (1977): “[…] the more alternatives available for a decision – the greater the 

decision flexibility.” Applied to the trade-off in this paper, longer planning horizons comprise more 

alternatives to operate production processes and thereby more decision flexibility. Such an effect was 

e.g. observed by Fridgen et al. (2016). They find that the savings from shifting the charging time of an 

electric vehicle increase for longer time windows. This ties in with Feuerriegel and Neumann (2014) 

and Feuerriegel et al. (2012). They find that savings from shifting and cutting loads increase with longer 

timeframes. They argue that with more time periods larger price differences are considered, what sup-

plements the savings. We schematically illustrate trade-off in three hypothesised versions in figure 1. 

All graphs display that with longer planning horizons costs attributed to the lack of decision flexibility 

decrease. As electricity prices are bounded (Epex Spot, 2017), we assume that the costs attributed to the 

lack of decision flexibility will reach a lower limit. For information accuracy, we refer to the accuracy 

of price assumptions. Information accuracy decreases with longer planning horizons as the future be-

comes increasingly uncertain. Such an effect was e.g. observed by Zhang et al. (2016). Although they 

forecast future prices instead of utilising market prices for predictions, we rest assured their findings are 

applicable to our context. Likewise, we transfer the findings from Aggarwal et al. (2009). They note that 

longer forecast horizons decrease the accuracy of forecasting models. Furthermore, Sridharan and Berry 

(1990) investigate design parameters to determine a businesses’ production program under demand un-

certainty. They find that longer planning horizons lead to worse decision-making. The graphs in figure 

1 display this behavior, as the costs attributed the lack of information accuracy increase with longer 

planning horizons. As electricity prices are bounded (Epex Spot, 2017), the costs attributed to the lack 

of information accuracy are bounded. Hence, we assume that the costs attributed to the lack of infor-

mation accuracy will reach an upper limit. 

 

Figure 1. Hypothesised (electricity) cost development in dependence on the length of the plan-

ning horizons 

In figure 1, the electricity costs result from the sum of the costs attributet to the lack of information 

accuracy and decision flexibility. Dependend on the level of impact of information accuracy or decision 

flexibility, we conceive three different versions of the trade-off. If information accuracy has higher 
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impact than decision flexibility we suppose rising electricity costs with longer horizons (cf. figure 1a). 

This means that the EIB shall plan with the minimum possible length of the planning horizons. If 

decision flexibility has higher impact than information accuracy we suppose declining electricity costs 

with longer horizons (cf. figure 1c). This means that the EIB shall plan with the maximum possible 

length of planning horizons. If the level of impact for decision flexibility and information accuracy is or 

becomes similar, we suppose that electricity costs are minimal for a certain planning horizon (cf. figure 

1b).  

To demonstrate this effect, we apply a deterministic simulation (Neumann and Morlock, 2004). We 

mimic an EIB, which schedules production processes with respect to electricity prices in sequential 

planning horizons. We run the simulation in different scenarios and vary the lengths of the planning 

horizons for the specified simulation timeframe, similar to Xie et al. (2004). Figure 2 displays the sim-

ulation with two different lengths of planning horizons. At each planning moment, the business decides 

for the upcoming planning horizon when to operate production processes. The objective is to minimise 

electricity costs while considering the demanded target output and the production site’s capacity limita-

tions. The production processes all have a fixed duration, in the following referred to processing time, 

and a fixed electricity consumption profile. Thereby, shifting the processing times is the only lever to 

reduce electricity costs. We apply a deterministic optimisation model (Neumann and Morlock, 2004) to 

determine the most cost-effective processing times. For the target output, we assume the same utilisation 

relative to every length of planning horizons. This means that a planning horizon twice the length of 

another one also has twice the target output. This makes different lengths of the planning horizons com-

parable. We set the production site’s capacity such that the EIB can execute no more than one process 

at a time. We consider production processes, which cannot exceed the start and the end of a planning 

horizon. Every length of planning horizons is considered possible. There are no constrains like produc-

tion deadlines etc. We suppose that the version of the trade-off might depend on the characteristics of 

the EIB’s production. Hence, for generalisation, we conduct a scenario analysis and vary the input pa-

rameters of the simulation. For characteristics of the production processes, we, in this RiP paper apply 

only one archetypal electricity consumption profile. Also, in this first step, we refrain from changing 

characteristics of the production site such as the utilisation – i.e. raising or lowering the target output 

per planning horizon.  

 

Figure 2. Simulation runs with different length of planning horizons 

As for the electricity prices used in the optimisation model, we rely on the expectations theory from 

Fama and French (1987). According to this theory, the expected future spot price equals the price of a 

forward or futures contract plus a risk premium. Therefore, prices of forward or future contracts are a 

predictor of future spot prices. Huisman and Kilic (2012) and Haugom and Ullrich (2012) e.g. show the 

predictive power of forward and future contracts in the electricity markets of the Netherlands, NordPool 

or Pennsylvania-New Jersey-Maryland (PJM). We transfer these findings to the German intraday mar-

kets. We view all trades before gate closure as (very) short-term forward or future contracts for the 

referenced time period, in the following referred to delivery periods. The price at gate closure functions 

as the spot price. In the continuous intraday markets, the forward prices for a delivery period change 

over time what we interpret as change in the EIB’s level of information.  

As for the simulation, at each planning moment, the EIB observes the current prices and uses them to 

build the energy-aware schedule. As the spot price might be different from the forward price, the EIB 

faces the risk of suboptimal scheduling. However, the EIB can also buy immediately and fix the current 

price instead of postponing the procurement to the future. It has the possibility to avoid price risks. 
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However, the risk prevention might come in exchange for a risk premium2. We test whether the trade-

off exists for both cases.  

The simulation eventually computes the realised electricity costs for each scenario over the whole sim-

ulation timeframe. We want to stress that when procuring electricity immediately the electricity prices 

at planning moment and the realised prices are the same. When procuring electricity in the future, the 

realised prices do not correspond to the prices at the planning moment. This is the price uncertainty the 

EIB faces. For benchmarking purposes, we compare both ways of procurement against an ex-post case 

with perfect information. The EIB knows the future spot prices at planning moment and builds the en-

ergy-aware schedule on them. The EIB thus neither faces risk premia nor price uncertainty. Hence, 

information accuracy does not influence the results in this scenario, only decision flexibility.  

4 Problem instantiation 

4.1 Exemplary data set 

As stated in section 2, we only run a relevant proportion of the simulation scenarios in this RiP paper. 

We legitimate that the length of the planning horizons affect the electricity costs but to not intend to 

examine the trade-off in-depth, yet. Examples shall give first evidence with regard to the trade-off in 

specific and our RQ-RiP in general. Hence, in this RiP paper, we fix some parameters, as displayed in 

table 1: the production processes have a processing time of 45 minutes and represent a prototypical 

electricity consumption profile. The mimicked EIB’s planning horizons are utilised by 75 %. This is the 

percentage of time, at which the EIB executes processes within every planning horizon. Consequently, 

in 25% of the time, the EIB executes no processes.  

 

 Unit Exemplary Data 

Processing time [min] 45 

Electricity consumption profile [MWh] 1.15, 1.96, 1.72 

Utilisation [%] 75 

Length of planning horizons [h] 1, 2, 3, 4, 5, 6, 7, 8, 12, 24 

Simulation timeframe [yr] 1 

Time grid of the simulation [min] 15 

Number of simulation runs [1] 32 

Table 1. Exemplary data set of the simulation 

As for price data, we utilise historic electricity prices from the European Power Exchange (EPEX Spot) 

of the year 2016. Precisely, the data comprises the German continuous intraday market for quarter hours 

and the intraday auction. These products cover delivery periods of quarter hours. We adopt the time grid 

of our simulation model to these. Each time period in the simulation thus encompasses 15 minutes. From 

the price data, we derive a price curve for each delivery period. The intraday auction of this delivery 

period provides an initial price. This price changes whenever a trade occurred at the continuous intraday 

market for the same delivery period. We only capture the electricity prices at potential planning mo-

ments, which occur every 15 minutes. This provides the simulation model with a consistent time grid. 

The resulting price curve states the observable price at the electricity market for the particular delivery 

period. In the simulation, these prices are used as a predictor for future spot prices and as price for the 

immediate procurement. Eventually, the intraday and the specified production data allow testing all 

planning horizons with the lengths of all full hours between one and eight. Moreover, it is possible to 

                                                      

2 We want to stress that research about whether risk premia exist in electricity markets is inconsistent (Benth et al., 2013). 

However, the results in this paper (cf. section 4.2) indicate that there is a risk premium in the intraday market. We leave an in-

depth-analysis on this topic to future research. 
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test 12 hours and 24 hours. The intraday data allows 32 possible simulation starts (every 15 minutes 

between 4:00 pm and 11:45 pm). We run the simulation for all these starts to prevent biased results due 

to the daily intraday price pattern. 

4.2 Results and discussion of the problem instantiation 

Referring back to our research question in this RiP paper, we study whether the length of the planning 

horizons affects electricity costs. As we view the trade-off as a cause of this impact, we now put attention 

to the attribution of costs with regard to decision flexibility and information accuracy.  In order to do so, 

we first discuss costs attributed to decision flexibility, second costs attributed to information accuracy, 

and finally the electricity costs. 

Decision flexibility: Figure 3a displays the medians of the electricity costs of the 32 simulation runs of 

the benchmark. We interpret the benchmark as costs attributed to the lack of decision flexibility since 

information accuracy does not increase the total electricity costs in those scenarios. Figure 3 illustrates 

that the length of the planning horizons does affect decision flexibility or the electricity costs. In the 

problem instantiation, the costs attributed to decision flexibility decline monotonously with longer plan-

ning horizons as hypothesised. The cost curve is convex, which indicates that the costs attributed to the 

lack of decision flexibility might reach the perceived lower limit.  

Information accuracy: Figure 3b displays the medians of the differences between the electricity costs 

for the immediate/future procurement and for the benchmark. We interpret this difference as the costs 

attributed to information accuracy since in the benchmark the EIB has perfect information. The grey 

curve depicts the difference between the costs attributed to information accuracy (future procurement) 

and the benchmark. It inclines monotonously with longer planning horizons. The maximum rests at 24 

hours. This is because greater uncertainty increases the likelihood of suboptimal scheduling. However, 

the curve is not concave between six and eight as well as eight and 24 hours. Thus, we cannot yet validate 

that information accuracy will reach an upper limit. The black curve depicts the difference between the 

costs attributed to information accuracy (immediate procurement) and the benchmark. When the prices 

at the planning moments are fixed, the schedules are more costly than in the benchmark. We interpret 

this as a risk premium. The risk premia rise for longer planning horizons. This conforms to more uncer-

tainty for larger timeframes and more uncertainty again should lead - ceteris paribus - to higher risk 

premia. However, the incline is not monotonous. This might be an indication that electricity sellers do 

not only price risk premia in terms of time.  

 

Figure 3. Costs attributed to the lack of decision flexibility (a) and costs attributed to the lack of 

information accuracy for different length of planning horizons (b) 

Electricity costs: Figure 4 displays the medians of the electricity costs from the 32 simulation runs for 

both types of procurement. In view of RQ-RiP, the planning horizon affects the electricity costs for 

either type of procurement. The curves both monotonously decline and reach their minimum at the 

length of the planning horizons with 24 hours – i.e. the maximum is a boundary value. Within the 24 
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hours, this corresponds to the stylised version of the trade-off, in which the impact of decision flexibility 

outweighs the impact of information accuracy (cf. figure 1c). However, the curves for costs attributed 

to information accuracy are not concave. Therefore, we cannot state if the curves would rise again for 

longer planning horizons. This prevents assigning the problem instantiation to a stylised version of the 

trade-off depicted in figure 1.  

 

Figure 4. Electricity costs for different lengths of planning horizons 

5 Conclusion, limitations, and outlook 

In this paper, we identify two factors, which an EIB should consider when striving to realise the eco-

nomic potential of energy-aware scheduling: decision flexibility and information accuracy. The length 

of the planning horizons functions as a lever to improve either decision flexibility or information accu-

racy. We hypothesise that these two factors are conflicting. Shorter planning horizons result in greater 

information accuracy and fewer related costs. Shorter planning horizons, however, result in less decision 

flexibility and higher related costs. We test this proposition by building a deterministic simulation, 

which mimics energy-aware scheduling for different lengths of planning horizons. We run the simula-

tion on real-world data from the German intraday markets. We find clear evidence for our hypothesis 

that the planning horizon affects the electricity costs. In particular, we attribute costs to both the lack of 

information accuracy and lack of decision flexibility for all studied lengths of the planning horizons. 

We validated that the costs due to the lack of information accuracy increase on average with longer 

planning horizons. However, costs attributed to the lack of decision flexibility, in turn, decrease with 

longer planning horizons. Our results give some evidence that there is a trade-off between decision 

flexibility and information accuracy.  

In view of RQ-O, we are going to analyse how the trade-off behaves when changing electricity con-

sumption profiles and the utilisation of the production site. By doing so, we aim at generalising insights 

with regard to how the length of planning horizons affects the electricity costs. From a longer-term 

perspective, it will be relevant for research to examine at least the following three aspects in more detail 

in future: first, it is important to study longer timeframes and thus other forms of electricity procurement 

(day-ahead markets, forwards etc.). Second, as EIBs make use of diverse planning procedures such as 

planning in a rolling horizon environment like Sridharan and Berry (1990) or Xie et al. (2004). Research 

should test, if our hypothesis remains observable in such settings as well. Third and finally, shifting 

consumption to times of lower prices positively influences the environmental performance of an EIB. 

As researchers in the domain of Green IS, we feel obliged to extend our research by explaining how 

planning horizons affect the EIB’s (indirect) greenhouse gas emissions. With its methods from OR and 

decision sciences as well the more design-oriented research from decision support systems, the IS dis-

cipline is well positioned to contribute to the sustainability of EIBs which are crucial to energy transi-

tions worldwide.  
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