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Abstract 

Radiology is experiencing an increased interest in machine learning with its ability to use a large 

amount of available data. However, it remains unclear how and to what extent machine learning will 

affect radiology businesses. Conducting a systematic literature review and expert interviews, we com-

pile the opportunities and challenges of machine learning along the radiology value chain to discuss 

their implications for the radiology business. Machine learning can improve diagnostic quality by re-

ducing human errors, accurately analysing large amounts of data, quantifying reports, and integrat-

ing data. Hence, it strengthens radiology businesses seeking product or service leadership. Machine 

learning fosters efficiency by automating accompanying activities such as generating study protocols 

or reports, avoiding duplicate work due to low image quality, and supporting radiologists. These effi-

ciency improvements advance the operational excellence strategy. By providing personnel and proac-

tive medical solutions beyond the radiology silo, machine learning supports a customer intimacy 

strategy. However, the opportunities face challenges that are technical (i.e., lack of data, weak label-

ling, and generalisation), legal (i.e., regulatory approval and privacy laws), and persuasive (i.e., radi-

ologists’ resistance and patients’ distrust). Our findings shed light on the strategic positioning of ra-

diology businesses, contributing to academic discourse and practical decision-making. 

Keywords: Artificial Intelligence, Machine Learning, Radiology, Health IT, Business Models. 

1 Introduction 

In recent years, artificial intelligence (AI) has entered business in various forms. According to the 

Gartner Hype Cycle for Emerging Technologies, AI is one of the three emerging technology trends 

that could potentially impact any industry (Panetta, 2018). In particular, machine learning, a branch of 

AI, has been deployed in various applications to learn underlying patterns and relationships in large 

data sets (Paliwal and Kumar, 2009). One application field of machine learning approaches in the 

health sector is radiology. Radiology has been one of the early adopters of health IT and has greatly 

benefited from various advances in imaging technology such as computed tomography (CT), magnetic 

resonance imaging (MRI), and positron emission tomography (PET). Consequently, the large amount 

of available image data enables applying machine learning in image interpretation, for example ex-

tracting valuable information for diagnosis and therapeutic decisions. Machine learning approaches 
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with their ability to utilise large amounts of data and the abundance of data in radiology even leads to 

the controversy as to whether a machine can ultimately replace radiologists (Silverman, 2017). Aca-

demic literature addresses (specific) applications of machine learning in radiology (e.g., Litjens et al., 

2017; Lakhani et al., 2018; Mazurowski et al., 2018; Wang and Summers, 2012), machine learning 

models for the detection or treatment of (specific) diseases (e.g., Dhungel et al., 2015; Armato et al., 

2001), and concentrates on a selection of opportunities or challenges (e.g., Balthazar et al., 2018; 

Bruijne, 2016). However, it is still unclear how and to what extent machine learning will affect the 

radiology business. 

Addressing the research gap identified above, we aim at identifying the challenges and opportunities 

of machine learning in radiology to discuss their impact on radiology business. Specifically, we ad-

dress the following research question: How does machine learning affect the value propositions of ra-

diology businesses and which challenges and opportunities exist? To answer our research question, we 

rely on the radiology business models of Enzmann and Schomer (2013), a value discipline approach 

based on Treacy and Wiersema (1997). According to this concept, a radiology business model com-

bines the value propositions: operational excellence, product and service leadership, and customer in-

timacy to a certain extent. Pursuing operational excellence, a company offers a product at the lowest 

price possible while maintaining an acceptable level of quality. For example, a radiology practice uses 

economies of scale to achieve low costs per scan or report. Businesses that pursue product and service 

leadership offer innovative or high-performance products that yield high margins. A radiology practice 

may maintain a leadership role in diagnostic services, because of the development of imaging technol-

ogies. Companies following the customer intimacy strategy focus on providing a solution to an indi-

vidual customer rather than an entire market segment. Confronted with these value propositions, radi-

ology businesses tend to concentrate on one value proposition at the expense of the others (Enzmann 

and Schomer, 2013). We rely on a structured and holistic framework to analyse the opportunities and 

challenges associated with the application of machine learning in radiology, since the application of 

machine learning in radiology is not limited to image interpretation (Lakhani et al., 2018) and because 

of the fact that the value chain influences the choice of the business model (Enzmann, 2012). In this 

respect, we follow the concept of the radiology value chain proposed by Enzmann (2012). Therefore, 

we conducted a systematic literature review and complement and validate our findings through expert 

interviews. This proceeding allows us to contribute to the literature by compiling the opportunities and 

challenges of machine learning along the radiology value chain. This structuring not only serves as a 

basis for academic discourse but also supports decision-makers in radiology. We further contribute to 

the body of knowledge by discussing implications for the radiology business models introduced by 

Enzmann and Schomer (2013). 

We structure the remainder of this paper as follows: In the second section, we contextualise the de-

ployment of machine learning along the radiology value chain providing both potential and already 

established use cases. The third section includes a description of the research approach. In the fourth 

section, we introduce the opportunities and challenges of machine learning in radiology resulting from 

the literature review and expert interviews. We discuss our findings and their implications for radiolo-

gy businesses in the fifth section. In the sixth section, we conclude by summarizing the findings of our 

work and discussing its limitations and future research opportunities. 

2 Background 

The key activities of the radiology value chain according to Enzmann (2012) include acquiring imag-

es, reading images, generating reports, and providing medical decisions, which we elaborate on in 

more detail in the following. Furthermore, we present potential machine learning approaches for each 

step. Figure 1 depicts the activities of the radiology value chain according to Enzmann (2012). 

Image 
Acquisition

Image 
Processing

Image 
Analysis

Reading 
Images

Report
Medicial 
Decision  

Figure 1. Radiology’s value chain according to Enzmann (2012, p.246). 
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2.1 Image acquisition, processing, and analysis 

Based on a request for a specific examination, the radiologist creates a study protocol before perform-

ing the actual examination. In this activity, a machine learning model may reduce human effort by 

predicting the correct MRI protocols, estimating the need for contrast agents, and determining the pri-

ority of the case (Brown and Marotta, 2018). After creating the study protocol, image acquisition aims 

at maintaining satisfactory image quality, which is indispensable for the subsequent activities. Thus, 

quality assessment helps to evaluate whether an image is suitable for diagnosis and consequently to 

avoid unnecessary work. In recent years, there have been a few attempts to automate this step (e.g., 

Abdi et al., 2017). For instance, monitoring image quality during the examination allows technologists 

to react in time, enabling them to make the necessary adjustments during the examination (Esses et al., 

2018). 

After acquiring the image, image processing (i.e., reconstruction, denoising, registration, and 

segmentation) takes place. Reconstruction refers to generating images from the acquired data (Levitan 

and Herman, 1987). In this context, machine learning can, for example, augment the reconstruction 

process to create images from weaker scanners (e.g., Bahrami et al., 2017) or reconstruct ‘normal-

dose’ CT images from ‘low-dose’ images reducing the risk of radiation without causing a decline in 

image quality (e.g., Kang et al., 2017). Furthermore, denoising enables reducing image noise that 

causes inaccuracies in clinical images and consequently facilitating the detection of important findings 

such as the location of a lesion (Vaishali et al., 2015). For instance, Jiang et al. (2017) describe a deep 

learning framework that reduces the noise of MRI images and outperforms state of the art methods. 

Next, registration refers to aligning two different images (e.g., from pre- and post-surgery) in a 

common reference place (Bauer et al., 2013). In particular, unsupervised methods which do not need 

labelled training data lead to an improved registration performance (Liao et al., 2017b). While 

dividing an image into specific parts (i.e., segmentation) is important for diagnosis, surgery and 

treatment planning, manually outlining structures is time-consuming and prone to human error (Akkus 

et al., 2017). Machine learning algorithms automate this process and show high levels of accuracy 

(Mazurowski et al., 2018). 

Subsequent to image processing, image analysis extracts additional information from the data. The 

extraction of quantitative features (e.g., size, volume) indicates, for example, the observable character-

istics of a tumour’s genetic makeup and its direct environment (Gillies et al., 2016). Moreover, cardiac 

imaging can reveal various cardiac pathologies such as coronary heart disease. Additional quantitative 

information can help to identify the specific disease (Babu-Narayan et al., 2016). Machine learning 

models have shown to be an effective method to provide quantitative information across different mo-

dalities such as CT, MRI, and echocardiography (Slomka et al., 2017). This includes estimating left 

ventricle volumes on MRI images in order to assess the ejection function of the heart (Liao et al., 

2017a). Applications may use convolutional neural networks (CNN) to calculate coronary artery cal-

cium scores, which serve as a predictor of cardiovascular events such as heart attacks (Wolterink et al., 

2016). 

2.2 Reading images 

After acquiring the images, the radiologist opens them by using a picture archiving and communica-

tion system (PACS), searches for any abnormalities using, amongst others, computer-aided detection 

(CADe), and characterises the region (Enzmann, 2012). CADe systems use, for example, machine 

learning models to detect lung nodules on thoracic CT images (Armato et al., 2001) or breast cancer 

on mammography (Becker et al., 2017). When the radiologist finds a suspicious region on a medical 

image, it may still be challenging for the radiologist to characterise and classify it correctly. For exam-

ple, in the case of nodule characterisation, there is no single feature to distinguish between malignant 

and benign nodules perfectly. Supporting the characterisation task, computer-aided diagnosis (CADx) 

systems help to determine the disease type, severity, stage, and progression (Chockley and Emanuel, 

2016). For instance, Chen et al. (2010) describe a CADx system to classify lung nodules using an Arti-

ficial Neural Network, which performs only slightly worse than a senior radiologist. Wang et al. 
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(2016) indicate that deep learning models have higher discriminative power than traditional machine 

learning algorithms in classifying microcalcifications on mammograms. After detecting and character-

izing a finding, the radiologist needs to interpret the finding to establish the diagnosis. Content-based 

image retrieval (CBIR) can support the radiologist in his/her interpretative task by providing similar 

images in databases (Akgül et al., 2011; Müller et al., 2004). Hence, machine learning models can 

support the CBIR in feature extraction and similarity matching. For example, CBIR systems using 

support vector machines retrieve mammograms with similar breast tissue density (Oliveira et al., 

2011). 

The integration phase combines image and non-image data such as histopathologic data, clinical find-

ings, or demographic data, as isolated image data is often not sufficient to make an adequate diagnosis 

(Enzmann, 2012). Radiomics, a concept closely related to integration, describes the conversion of im-

ages into higher-dimensional data and its analysis to obtain predictive or prognostic information to 

infer about the underlying genomic and proteomics patterns (Lambin et al., 2012). Using a classifier 

model, radiomics involves acquiring the image, detecting and segmenting regions of interests, extract-

ing features, and predicting outcomes (Gillies et al., 2016). For example, Kumar et al. (2015) extract 

500 image-based radiomic sequences of lung CT images using a CNN architecture and a decision tree 

to distinguish between malignant and benign lesions of lung cancer patients. Another study uses a 

CNN to extract image-based features and predict the mutation status of isocitrate dehydrogenase 1 (Li 

et al., 2017). Predicting the mutation status is helpful, as it may serve as an indicator of the tumours’ 

response to chemotherapy (Cohen et al., 2013). 

2.3 Report and medical decision 

Furthermore, machine learning may support automating report generation, analysing unstructured re-

ports and facilitating the conversion of findings into clinical codes. Natural language processing (NLP) 

allows partially or fully automating report generation. For example, Jing et al. (2017) propose a deep 

learning framework analysing over 7,000 chest x-rays with their corresponding reports and then gen-

erating text descriptions for abnormal regions found on the test set images. However, the unstructured, 

free-text format impedes automated information extraction. In a recent study, Shin et al. (2017) use a 

deep learning model to analyse the radiology reports of intensive care unit patients. The model catego-

rises the reports in normal and abnormal studies and indicates the presence of acute findings (e.g., 

acute intracranial bleed). Thus, prioritizing the most severe cases enables faster treatment. Trained 

professionals convert the findings to clinical codes such as the International Statistical Classification 

of Diseases (ICD) Code (Shi et al., 2017). Studies deploying deep learning algorithms demonstrate 

that not relying on explicitly designed features enables the automation of ICD coding (e.g., Xie and 

Xing, 2018). 

As an additional contribution to the report, the predictive power of machine learning could help to es-

timate a patient’s outcome by adjusting treatment and consequently the effectiveness of patient care. 

For example, Yoo et al. (2016) apply deep learning on MRI images to predict the future disease activi-

ty of patients with symptoms of multiple sclerosis. The proposed CNN architecture identifies relevant 

features to predict patients with a higher risk of disease-related attacks who therefore might benefit 

from a more aggressive treatment in the early disease stages. In another example, machine learning 

models predict the degree of post-stroke cognitive damage as well as the probable course of recovery 

over time by using demographic, behavioural, and imaging data (Hope et al., 2013). 

3 Research Process and Method 

To give a comprehensive overview of the relevant challenges and opportunities of machine learning in 

radiology, we first conduct a systematic literature review and second, complement and validate our 

findings with expert interviews. Systematic literature reviews are a fundamental technique in scientific 

research to efficiently aggregate existing information and answer a specific research question (Ressing 

et al., 2009). Since some scholars have introduced machine learning use cases in a prototype state or as 

a theoretical construct, it remains ambiguous how and to what extent machine learning will actually 
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influence the radiology business. For this very reason, we validate and add the opportunities and 

challenges identified in the literature review from a practical perspective with expert interviews. 

Expert interviews – as a qualitative-empirical research approach – deem to gain a deeper 

understanding, generate new insights, and gather specific information (Bettis et al., 2015). 

Our systematic literature review, based on a database search, aims at providing an overview of the 

challenges and opportunities of machine learning in radiology, discussed in scientific literature. Re-

ducing the likelihood of missing relevant contributions, we opt for a broader search string consisting 

of the following three terms: Radiology, artificial intelligence, and machine learning. We incorporated 

the term radiology because it portrays our application field. In addition, we incorporated the term ma-

chine learning referring to the specific technology under investigation. The regular use of the term arti-

ficial intelligence in business, computer science, and medical research motivated us to include this 

term in our search terms as well. The frequent use is due, among other things, to the fact that artificial 

intelligence is used as an umbrella term for a number of areas and techniques (Balthazar et al., 2018). 

Our research addresses a variety of research streams and sub-streams such as healthcare (in particular 

health IT and radiology information systems), medicine, informatics, data analytics and many more. 

To identify all relevant contributions, we used three meta-databases (HSG metasearch, UB Catalogue, 

Primus). The initial search led to 3,072 results. Based on our inclusion criteria (date of publication: 

2012 to 2018, academic peer-reviewed journals, English language) 1,188 publications remained. We 

proceeded with the title screening and excluded 920 publications based on subject focus. Afterwards, 

we screened the abstract of the remaining 268 manuscripts and excluded 239 non-relevant publications 

and duplicates. Hence, we obtained 29 relevant papers, which we included in our meta-analysis to an-

swer which challenges and opportunities concerning machine learning in radiology exist. 

Concerning interview preparation and execution, we proceeded as follows: First, we clarified whom 

we consider as experts in our research field. An expert needs to have privileged access to information 

about a specific topic or possesses extensive knowledge about a subject, gained from professional ac-

tivities (Bogner et al., 2009). Thus, we define specific criteria (e.g., profession and personal involve-

ment with the research subject) for the selection process (Bhattacherjee, 2012). In total, we identified 

17 European experts from which six experts accepted our invitation to participate in our study. Three 

experts declined to participate without giving reasons for their denial and eight experts did not respond 

to our invitation. In Table 1, we provide an overview of the experts and their background. 

 

  Expert A Expert B Expert C Expert D Expert E Expert F 

Industry 
Medical 

Technology 
IT IT IT Consulting 

Academia  

Research 

Position 
Chief Medical 

Officer 

Chief 

Technology 

Officer 

Machine 

Intelligence 

Engineer 

Clinical 

Director 

Managing  

Director 

Section Chief 

of Thoracic 

Imaging 

Type Telephone Personal Personal Telephone Telephone Telephone 

Back-

ground 

Radiologist 

(M.D. and 

Professor) 

AI Start-up 

Founder; PhD 

Comp. Sc. 

PhD in 

Computer  

Science 

Radiologist 

(M.D.) 

Healthcare IT, 

Medical 

Imaging 

Radiologist 

(M.D. and 

Professor) 

Table 1. Overview of experts. 

To conduct our interviews, we designed an interview guideline (Flick, 2014) consisting of three main 

sections: (1) introduction and state-of-the art of machine learning in radiology, (2) challenges of ma-

chine learning in radiology, and (3) opportunities of machine learning in radiology. To give the ex-

perts preparation time, we sent out the interview guideline to each expert in advance. For a thorough 

and rigorous data analysis, we have recorded and transcribed the interviews with the interviewees’ 

consent. After having transcribed our 225 interview minutes, we evaluated them following Mayring's 

qualitative content analysis, which consists of paraphrasing, generalizing and arranging in categories 

of specific passages (Mayring, 2014). According to Mayring (2014), categories are defined using ei-

ther a deductive or an inductive approach. Since we aim at evaluating categories, which are based on 



Hofmann et al. /Machine Learning in Radiology 

Twenty-Seventh European Conference on Information Systems (ECIS2019), Stockholm-Uppsala, Sweden. 6 

 

our literature review findings, we opt for a deductive method. In the subsequent section, we present 

the findings of our complementary approaches. 

4 Findings 

In the following sections, we present both the opportunities (Section 4.1) and challenges (Section 4.2) 

of machine learning along the radiology value chain. 

4.1 Opportunities 

Machine learning yields many opportunities along the radiology value chain. We characterise benefits 

in effectivity and efficiency improvements based on the findings of the literature review and expert 

interviews. The opportunities are illustrated in Figure 2. 

Opportunities 

Effectivity 
Improvements 

Reducing Human 
Errors 

Large-Scale 
Analytics 

Quantifying 
Reports

Data 
Integration 

Efficiency 
Improvements 

Cost 
Reduction 

Time 
Reduction 

 

Figure 2. Overview of the opportunities of machine learning in radiology. 

4.1.1 Effectivity improvements 

The raison d’être of radiology is to answer medical questions, raised by a referring physician or the 

patients themselves (Enzmann, 2012). The need to reduce medical errors to save lives and costs is self-

evident. A good place to start is improving the initial disease diagnosis, as it is the foundation for fu-

ture treatment decisions. Diagnostic errors are considered to be as frequent as 3% to 5% of all daily 

diagnoses. In specific cases such as in screening mammography, there are even higher error rates that 

can be up to 31% (Nelson et al., 2016; Brady, 2017). Human errors such as cognitive biases, lack of 

knowledge, and faulty reasoning contribute to diagnostic error (Brady, 2017). Machine learning mod-

els are prone to bias from the input data, but they are robust to human bias and cognitive shortcomings 

such as fatigue (Obermeyer and Emanuel, 2016). Gichoya et al. (2018) list common biases in radiolo-

gy and illustrate how machine learning can counteract them. For example, to overcome the satisfaction 

of search bias, which describes the tendency to stop checking for more abnormalities after an initial 

abnormal finding, machine learning models can provide smart checklists and flag potential blind spots 

of the radiologist. The experts also consider reduced human errors to be one of the most promising 

advantages; “It’s a recognised fact that radiologists and physicians in general make mistakes both in 

terms of getting the diagnosis wrong but also in terms of missing things while doing the diagnosis. AI 

can definitely play a role there […]” (Interview E). A constant, high-quality diagnosis that is unaf-

fected by human conditions such as stress, lack of concentration, or fatigue will lay a more objective 

fundament for future treatment decisions (Interview C). Machine learning is able to extract infor-

mation, visible and invisible to the human eye, from images and to constantly process large-scale da-

tasets more accurately than humans (Obermeyer and Emanuel, 2016). Deep learning models have al-

ready surpassed human performance in everyday image object detection and demonstrate high levels 

of accuracy in analysing medical images (Ribli et al., 2018). 

Including quantitative data to the report will facilitate the trend toward evidence-based medicine. Evi-

dence-based medicine uses the most current and accurate evidence as the basis for decision-making for 

patient care (Masic et al., 2008). Machine learning models can extract quantitative data such as the 

heart chamber volume or the thickness of the myocardium with higher accuracy and in a fraction of 

time than performed by a human (Carneiro et al., 2017). Quantifying the report provides objective 
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support for the radiologist’s diagnosis and allows tracking patients over time, thus increasing the value 

of the report (Interview E). It also facilitates data analysis in clinical trials, since cohort features be-

come more comparable (Brink et al., 2017). 

Machine learning enables integrating information from various data sources into the report. Data ex-

tracted directly from electronic health records, imaging and knowledge databases can be correlated 

with downstream patient outcomes, so that the report not only contains the status quo but also includes 

prognoses (Obermeyer and Emanuel, 2016). Predictions about survival times or treatment responses 

could improve treatment decisions and thereby the value of the radiological answer (Yasaka et al., 

2018). The concept of radiomics promises to improve prognoses even further by combining image 

data with omics-data. Radiomics allows, for example, predicting the survival time of brain cancer pa-

tients and treatment responses of kidney tumours (Kickingereder et al., 2016; Goh et al., 2011). Three 

experts confirm that integrating omics-data and non-imaging data would have a positive impact on the 

diagnosis (Interview A; Interview E; Interview F). One expert notes that he/she does not see an imme-

diate future for radiomics, as too little data has been collected in this area and humans themselves have 

not yet fully decoded the human genome (Interview E). However, deep learning does not require 

hand-crafted features and can thus reduce human bias (Afshar et al., 2018). Moreover, by revealing 

correlations, radiomics provides additional information for diagnostic decisions such as the choice of 

biopsy sites (Gillies et al., 2016). Besides, the progress in understanding genomes or proteins and the 

reduction of bias in the training of machine learning models complement each other. 

4.1.2 Efficiency improvements 

Machine learning applications can support the activities along the radiology value chain and improve 

the efficiency of the entire chain by lowering costs and saving time. Cost and time reductions are in-

terdependent, but a change in costs does not necessarily entail a change in time and vice versa. 

Radiology businesses typically position themselves as low-cost service providers as the entire health 

care system aims to minimise costs (Enzmann and Schomer, 2013). Machine learning can support cost 

reduction, amongst others, by improving scanner utilisation, reducing double examinations and lower-

ing CT radiation doses. The utilisation rate of the scanners is a major driver of the total examination 

costs due to the high investment and associated labour costs. One way to improve the utilisation of a 

scanner is a reduction in scanning time. For example, machine learning algorithms that reconstruct 

sparse data into complete images enable performing MRI scans twice as fast (Lakhani et al., 2018). 

Two of the experts confirm that reducing MRI scan times is one of the most beneficial applications of 

machine learning (Interview D; Interview F). Another approach to improve the utilisation rate is to 

estimate the length per time slot and then arrange MRI scans accordingly by incorporating various in-

put factors such as demographic data or study protocol (Muelly et al., 2017). Optimizing the arrange-

ment of exam slots could prevent scanner downtime significantly. Both approaches, shortening scan 

time and optimizing slot arrangement, increase the utilisation and result in lower costs per exam (Mas-

sat, 2018). 

Avoiding unnecessary double examinations due to insufficient image quality also enables cost saving. 

Machine learning-based image reconstruction and denoising techniques have shown to improve image 

quality significantly and require less time than traditional methods (Yasaka et al., 2018; Gondara, 

2016). Interviewee D and F emphasise this argument. Furthermore, the radiologist could monitor im-

age quality during the examination with the help of deep learning models to inform technologists in 

time about possible quality losses, enabling them to make the necessary adjustments during the exam 

and therefore avoiding double examination (Esses et al., 2018). Lowering radiation doses in CT scans 

while maintaining or even improving the image quality is another opportunity (Yasaka et al., 2018; 

Lakhani et al., 2018; Massat, 2018). Machine learning models can recreate high-quality images from 

‘low-dose’ scans, consequently reducing the amount of contrast media needed and limiting potentially 

harmful effects of radiation and improving cost-effectiveness. Three experts also confirm this oppor-

tunity (Interview A; Interview D; Interview F). 
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The perhaps biggest impact of machine learning applications on the value chain is task automation that 

results in significant time savings (Brink et al., 2017). Bearing in mind that the average radiologist has 

to interpret an image every three to four seconds to cope with the workloads, the need to facilitate im-

age analysis becomes clear (McDonald et al., 2015). Radiologists using machine learning for the de-

tection and interpretation tasks will not only be able to deal with the increasing workloads but also 

achieve higher diagnostic accuracies than radiologists without machine learning support (Gichoya et 

al., 2018). The use cases presented in the background section illustrate that machine learning can sup-

port almost every activity which can lead to full or semi-automation of various tasks. During image 

acquisition, machine learning models can automatically determine the correct study protocols and re-

duce scan time (Lakhani et al., 2018). Furthermore, image analysis tasks such as detection, segmenta-

tion, and classification can also be fully automated to decrease the time required by the radiologist 

(Shiraishi et al., 2011; Massat, 2018). For example, one approach for screening scenarios involving a 

large number of normal studies would be to eliminate cases that are definitely negative (Mayo and 

Leung, 2018; Mazurowski et al., 2018). Two of the experts regard this approach as very promising 

because even ruling out only a small percentage of all normal studies could result in significant time 

and labour savings (Interview B; Interview C). Nonetheless, Interviewee A states that image interpre-

tation may not be fully automatic shortly, but current applications that pre-select the most relevant im-

ages of a scan already help to process the large amounts of data. CBIR, patient triaging (i.e., automatic 

case prioritisation), automatic reporting, and other applications that automate parts of the diagnostic 

workflow have already entered the market or are imminent (Massat, 2018). All six experts agree that 

machine learning will inevitably make the workflow more efficient by task automating. “The acceler-

ation of the examination is essential. I expect the radiologist to be supported in his/her diagnostic pro-

cess, whether this is the diagnosis itself or steps in that direction, I think there is still a lot to be 

gained” (Interview F). Automation results in higher productivity by an increased patient throughput. 

4.2 Challenges 

Although machine learning approaches can support many activities along the radiology value chain, 

they face a variety of challenges. Based on the findings of the literature review and expert interviews, 

we classify these into technical, legal, and persuasion challenges as illustrated in Figure 3. 

Challenges

Technical 
Challenges 

Lack of Data 
Weak 

Labelling 
Generalisation

Problem 
Workflow 

Integration

Legal 
Challenges 

Regulatory 
Approval 

Privacy 
Laws 

Persuasion 
Challenges 

Radiologists’ 
resistance

Patients’ 
Distrust 

 

Figure 3. Overview of the challenges of machine learning in radiology. 

4.2.1 Technical challenges 

Academic literature frequently refers to technical challenges. We categorise them as Lack of Data, 

Weak Labelling, Generalisation Problems, and Workflow Integration. Other technical challenges that 

few publications only briefly mention include lack of necessary IT infrastructure (Massat, 2018), lack 

of computing power (Thrall et al., 2018), and failing to reach clinically acceptable accuracy levels 

(Weese and Lorenz, 2016). 

Among the technical challenges, the lack of data is the most frequently cited challenge. Four of the 

interviewees also highlight this challenge. “Getting all this data […], so that models work well on 

medical images is the most important challenge” (Interview C). Since the performance of machine 

learning models typically improves with an increased dataset, there is a strong demand for large-scale, 

well-annotated datasets (Akkus et al. 2017). The limited availability of such datasets affects the relia-

bility of machine learning models (Carneiro et al., 2017). For example, training deep learning models 
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that often consist of more than 106 parameters becomes difficult if the medical data set only contains a 

few thousand samples (Suzuki, 2017). One expert mentions that even if a data set consists of high-

quality image samples, the set fails to provide pathological results, which are crucial for the perfor-

mance of the algorithm (Interview A). The lack of annotated datasets stems from the fact that before 

the rise of machine learning, there was no need to annotate the data in a particular fashion. “Because 

radiologists don’t annotate data to feed algorithms, we label data for clinical benefit. We don't sit 

there drawing around lesions for every slide of the image. […]” (Interview D). Nevertheless, the 

amount of unstructured and unannotated data steadily increases, although the creation of structured, 

annotated databases has just begun (Blum and Zins, 2017). Besides the sheer volume of data, two ex-

perts emphasise the importance of extremely infrequent cases in the dataset. “It’s really difficult to 

train an algorithm on things that only occur one time and are not present in your training data” (In-

terview C). Interviewee B emphasises that failing to classify these edge cases correctly during clinical 

routine could have adverse effects. Another data-related problem revolves around image quality. In-

sufficient image quality (e.g., image artefacts, different resolutions, image noise) in combination with 

varying image protocols cause variations in data (Tang et al., 2018). These variations, in turn, affect 

the training process since the more heterogeneous the data, the more difficult it is to analyse underly-

ing patterns. 

Another frequently cited challenge is weak labelling. For supervised learning, the performance strong-

ly depends on the quality of the labels. “The quality of the data is essential. ‘Garbage in – garbage 

out’. An algorithm can only be as good as the data you feed it with” (Interview A). There are two 

main labelling challenges: the definition of ground truth (e.g., biopsy or clinical outcome) and the cor-

rect labelling process itself (Tang et al., 2018). Defining the ground truth for the labels is difficult in 

specific cases because medicine itself allows different interpretations. While a tissue biopsy can attain 

reliable ground truth in classification tasks (e.g., cancer vs. no cancer), expert variability heavily influ-

ences the ground truth for segmentation tasks (Cabitza et al., 2017; Akkus et al., 2017). Expert D notes 

that: “[…] medicine is not an exact science. Medicine doesn't have hard results; there are rules of 

thumbs. So, it's quite hard to get what is known as the ground truth” (Interview D). Even if medical 

experts are available for labelling, human error affects the quality of annotations. One expert stresses 

the missing standardisation of labelling, which further contributes to the problem (Interview B). 

The generalisation problem refers to machine learning models that perform well in isolated test set-

tings but fail to generalise their results once integrated into clinical practice (Lakhani et al., 2018). 

Machine learning models work under the premise that the data engineer randomly samples both train-

ing and test sets from the same distribution. However, aspects such as different imaging protocols or 

varying patient populations violate this assumption and affect the performance of the machine learning 

model (Bruijne, 2016). Once deployed in a clinical setting, the machine learning model needs to deal 

with heterogeneous data, resulting from demographic or ethnic factors differences as well as varying 

disease prevalence and organ sizes (Thrall et al., 2018). Tang et al. (2018) demonstrate that machine 

learning may show high performances in a US lung screening trial but perform considerably worse at 

Oxford University Hospitals. In order to achieve a widespread distribution in radiology, machine 

learning needs to overcome the generalisation problem (Burt et al., 2018). To overcome the generali-

sation hurdle, it is important to use heterogeneous data for training the machine learning model (Kim 

et al., 2019). Therefore, a multicentre approach or an active learning approach can support generating 

a heterogeneous data set. 

A seamless workflow integration of the application in the existing PACS and the saving of the results 

to Digital Imaging and Communications in Medicine (DICOM) standard are necessary for clinical 

practice. Current machine learning products sometimes fail to utilise the existing interfaces and pre-

sent themselves as isolated rather than integrated solutions (Tang et al., 2018). Additionally, machine 

learning models typically address a single case and are not transferable to perform other tasks. Thus, 

the integration and testing process would have to be repeated several times, which is not economically 

sustainable for the radiology business (Weese and Lorenz, 2016). One way to facilitate the integration 

would be to provide an algorithm marketplace that provides an interface to the existing PACS and al-

lows AI companies to offer their algorithms there (Interview E). 
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4.2.2 Legal challenges 

The development of machine learning models and their subsequent deployment in clinical routine fac-

es two main legal challenges: regulatory approval and privacy laws. The market launch of machine 

learning products for clinical practice requires regulatory approval in some form. However, gaining 

regulatory approval remains challenging, because of the so-called black box problem and the missing 

validation framework. The black box problem describes the lack of transparency in the decision-

making process of deep learning models (Yasaka et al., 2018). Due to the lack of transparency, regula-

tory bodies have great difficulty assessing the algorithms that use circumstantial factors rather than 

actual disease factors (Bruijne, 2016; Blum and Zins, 2017). Three of the experts also name the black 

box problem as one of the main barriers to receiving regulatory approval. For traditional machine 

learning this does not pose a problem, because statistical knowledge explains and visualises the de-

rived conclusion (e.g., with a decision tree) (Dwyer et al., 2018). Even though the decision making 

process gains transparency, results might still be misleading (Cabitza et al., 2017). Clinical validations 

have to test the safety of a machine learning product to gain regulatory approval. However, no existing 

framework clearly outlines the necessary approval requirements such as accuracy scores or the size of 

the testing population (Thrall et al., 2018; Lakhani et al., 2018; Pesapane et al., 2018). The Food and 

Drug Administration (FDA), for example, recommends testing generalisability with different imaging 

devices but fails to define specific performance metrics (Burt et al., 2018). One expert points out that 

regulators still need to familiarise themselves with the new technology before they can develop clear 

guidelines (Interview D). 

Health and patients’ genetic data classify as sensitive data under the Health Insurance Portability and 

Accountability Act (US) and the General Data Protection Regulation (Europe). These legal frame-

works exist to ensure patients’ privacy (Pesapane et al., 2018). Machine learning’s massive demand 

for data may interfere with the privacy and confidentiality of patient data (Balthazar et al., 2018). The 

General Data Protection Regulation, for example, provides a useful framework that regulates the use 

of data by algorithms (e.g., anonymisation). Anonymisation of health data is a necessity for training 

purposes, but it is questionable whether full anonymisation can be achieved (Tang et al., 2018). For 

example, by using brain MRI images, it is possible to reconstruct the facial anatomy of a patient (Bis-

choff-Grethe et al., 2007). Also, the sharing of data between institutions would help to overcome the 

lack of data but is legally problematic due to the risks of data breaches in the data management sys-

tems of the institutions or their partners (Gibson et al., 2018). The discussion about whether privacy 

laws present a challenge to machine learning is controversial. Two of the experts note that privacy 

laws do not constitute a significant restriction for the usage of machine learning and the new data pro-

tection laws even facilitate the set-up of machine learning projects (Interview A; Interview F). In con-

trast, two of the other experts argue that laws restrict access to data and raise the issue of obtaining 

consent for data processing (Interview C; Interview D). 

4.2.3 Persuasion challenges 

The persuasion challenges of integrating machine learning approaches in the radiology value chain 

depend on the technical and legal challenges and consist of the missing acceptance by radiologists and 

patients’ distrust. Radiology has always undergone technological change, and radiologists have bene-

fitted from better imaging modalities and improved medical software. Concerns of the radiologists 

about machine learning could hinder widespread adoption of this technology (Thrall et al., 2018). Be-

sides technical integration issues, the radiologists’ resistance to change hinders the widespread adop-

tion of machine learning. A lack of trust in technology, which is also a result of the limited technical 

understanding and the negative experiences with CADe systems, partly explains this reluctance (Mayo 

and Leung, 2018; Ganeshan et al., 2018). In order to avoid the pitfalls of CADe systems and overcome 

the intrinsic resistance, machine learning products need to provide concrete evidence of workflow im-

provements such as time reduction or higher diagnostic accuracy (Blum and Zins, 2017). Furthermore, 

the lack of transparency in decision-making places radiologists in a predicament, as they have to ex-

plain the results to the referring physician and the patient (Lakhani et al., 2018). The experts remark 
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that adoption might depend on the radiologist’s age, cultural background and the degree of automation 

of the specific use case (Interview A; Interview E; Interview F). For instance, radiologists’ fear of a 

machine replacing them is one of the main adoption barriers when deep learning first gained populari-

ty (Syeda-Mahmood, 2018). However, this fear may vanish as the proposed products focus on assist-

ing radiologists rather than fully automating their work (Interview F). Interestingly, the fear of re-

placement does not exist in developing markets such as China, which has a severe shortage of radiolo-

gists (Interview E). 

While patients tend to have a positive attitude towards precision medicine in general, they share con-

cerns about data privacy and the predictive analysis of their health information (Balthazar et al., 2018). 

Patients become the co-creators of machine learning models by providing their data voluntarily or in-

voluntarily. Thus, if machine learning approaches do not fully address the concerns of patients, patient 

interest groups could prevent data collection and the adoption of machine learning in radiology (Tang 

et al., 2018). Also, many ethical questions concerning AI, in general, have not yet been answered, 

which only further reinforces patients’ distrust (Pesapane et al., 2018). If the algorithm factors in data 

additional to health information, it could lead to unethical outcomes. For example, if costs are consid-

ered a relevant factor for treatment recommendations, patients with basic insurance might be recom-

mended a less effective but cheaper treatment option for the same disease than people with premium 

insurance (Kohli et al., 2017). Other ethical concerns are about the adoption of systematic or implicit 

bias, because ethnic or economic minorities could be underrepresented in the training of the algorithm 

(Balthazar et al., 2018; Caliskan et al., 2017). One expert also encourages the involvement of relevant 

stakeholders (e.g., ethicists and patient advocates) to gain patients’ trust (Interview F). 

5 Discussion 

The results of the literature review and the expert interviews provide a structured presentation of the 

various challenges and opportunities of machine learning in radiology. However, the question remains 

as to which implications our findings have on the radiology business model. 

For radiology businesses that follow the operational excellence strategy (i.e., providing diagnostic ser-

vices at the lowest possible price), the efficiency improvements will be most relevant. Better scanner 

utilisation, standardised reporting, and workflow automation already help to achieve economies of 

scale. Machine learning may foster efficiency by, amongst others, automating accompanying activities 

such as generating study protocols or reports, avoiding duplicate work due to low image quality, and 

supporting the radiologist. For example, replacing the second read in screening programs could reduce 

the highest cost drivers (Enzmann and Schomer, 2013; Obermeyer and Emanuel, 2016). Machine 

learning applications that yield efficiency improvements support radiology businesses such as telera-

diology that focus on volume rather than value. Considering that this a common position of radiology 

businesses today and machine learning workflow tools are the first to enter the market, this will most 

likely be the short-term development of machine learning in radiology. 

Radiology businesses seeking product or service leadership benefit from effectivity improvements, 

primarily through large-scale analytics as well as quantitative information and data integration. Ma-

chine learning applications improve the effectiveness of patient care by, amongst others, superior im-

age quality, better processing of images (e.g., registration, segmentation), additional information, and 

computer-aided detection, classification, interpretation, and integration. The trend towards evidence-

based medicine creates an environment where radiology – as an information business – could strive to 

make better medical decisions by providing quantitative, actionable information (Enzmann and 

Schomer, 2013). Radiology businesses collaborating with pathology departments can develop machine 

learning-based radiomics applications to provide innovative and integrated solutions that ensure prod-

uct leadership. 

In recent years, the ‘value-based healthcare’ concept (i.e., focusing on health outcome rather than sin-

gle diagnosis or treatment) has gained popularity (Putera, 2017). Radiology businesses concentrating 

on customer intimacy are likely to flourish in a value-based health care system. Integrating imaging as 

well as non-imaging data and using machine learning algorithms to predict patients’ treatment re-
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sponses enables accurate and individual treatment planning. Non-image data can even include health-

related data from wearables such as average heart rate, sleeping behaviour, and activity levels. The 

reintegration of diagnostic and interventional radiology would be highly profitable as it encompasses 

the entire diagnostic and therapeutic value chain. In addition, sharing data between different medical 

disciplines and health information systems will blur the boundaries of radiology. Radiology businesses 

that focus on collecting standardised, high-quality, and well-annotated data may sell the datasets. 

In Figure 4, we summarise the opportunities that are most likely to affect the value propositions of the 

radiology business model of Enzmann and Schomer (2013). All models will profit from machine 

learning applications either by effectivity or efficiency improvements, whereas the latter seems to have 

the most impact recently. Besides that, the opportunities of machine learning do not exclusively favour 

individual value propositions. For example, data integration benefits product and service leadership as 

well as customer intimacy. 

 

Figure 4. The impact of machine learning on the value propositions of the business model. 

Effectivity improvements will play a major role once the radiology business overcomes the main chal-

lenges including the lack of data and the generalisation problem. Nonetheless, radiology businesses 

should consider all identified challenges as they affect every value proposition to a greater or lesser 

extent. The technical challenges pose the main hurdle and directly influence the legal and persuasion 

challenges. Our findings identify the lack of data as the bottleneck of the development and integration 

of machine learning in clinical practice. High-scale and high-quality data would improve the perfor-

mance and therefore facilitate overcoming regulatory barriers as well as gaining the trust of the radiol-

ogists. While overcoming the lack of data appears to be only a matter of time, the generalisation prob-

lem presents a major obstacle and will require further research. This will determine whether machine 

learning applications enable the deployment in a more general context or remain limited to specific 

use cases. Legal challenges such as liability and intellectual property as well as ethical concerns are 

still a major obstacle due to the black box problem and a missing validation framework. The persua-

sion challenges partly result from the two previous challenges. Once machine learning can show its 

clinical value and receives approval by the regulatory bodies, the adoption rate is very likely to in-

crease, while research and practice need to address the concerns of physicians and patients to achieve 

widespread distribution. 

6 Conclusion 

This research provides a comprehensive and systematic overview of the opportunities and challenges 

of machine learning in radiology by analysing primary and secondary data and discusses the implica-
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tions on the radiology business models using the identified opportunities and challenges. Thereby, our 

findings do not only contribute to academic discourse in the emerging research field of health IT, but 

also supports decision-makers in healthcare in general and radiology in particular. Our study illustrates 

that information systems approaches, such as machine learning, are useful instruments in the field of 

healthcare and medicine as they contain the potential to enhance the effectivity of medicine and the 

efficiency of the radiology value chain. Almost every activity of the radiology value chain presents a 

potential use case for machine learning applications. Machine learning can improve the diagnostic 

quality by reducing human errors, analysing large amounts of data accurately, integrating quantitative 

information to the report, and integrating non-image data. Besides improving diagnostic quality, these 

opportunities enable better predictions, and thus enhance the value of the medical answer and conse-

quently improve the effectiveness of patient care. In addition, the automation of the radiology work-

flow through machine learning reduces costs and time demand. However, the opportunities face tech-

nical, legal, and persuasive challenges that research, practicing radiologists, and regulators need to 

address. 

Our study further contributes to the body of knowledge by discussing the implications of the identified 

opportunities and challenges for the radiology business model. Our findings shed light on the strategic 

positioning of radiology businesses regarding the value propositions operational excellence, product 

respectively service leadership, and customer intimacy. Academic literature and experts both agree: 

Machine learning will have a major impact on the radiology business and patient care. Radiologists 

who fail to recognise the opportunities of this technology and its value contribution to patient care will 

eventually face the risk of commoditisation and marginalisation. Therefore, our findings are not lim-

ited to radiology as other image-analysing industries and other medical application areas may face the 

same impact on their businesses. 

Although rigorously following our research approach, our study has some limitations. First, our litera-

ture research is limited by the number of relevant and available publications. Most of the literature 

gives a general overview of machine learning in radiology rather than explicitly addressing the chal-

lenges and opportunities. Even though radiology has been using machine learning for a long time, 

there has only recently been an interest to evaluate the overall impact of machine learning in this field. 

Consequently, it remains ambiguous how and to what extent machine learning will have an impact in 

the future. To overcome this shortcoming, we validated our literature review findings with expert in-

terviews to gain a deeper understanding of the challenges and opportunities. Secondly, relevant schol-

ars often use small sample sizes in their – more or less isolated – experiments and are therefore far 

from regulatory approval. It is important to challenge whether trained models maintain their perfor-

mance when deployed in clinical practice. Nevertheless, the sheer quantity and variety of applications 

indicate the impact of machine learning on the value chain. The third limitation lies in the qualitative 

research itself since we cannot generalise the findings with a similar certainty as quantitative analysis 

can (Atieno, 2009). According to Bertaux (1981), the “saturation of knowledge” depicts the necessary 

number of corresponding interviews. During the interviews, the experts could not mention new chal-

lenges and opportunities, indicating that our interviews reach the point of saturation. In addition, we 

do not raise the opinions of all stakeholders so that the opinion and expertise of patient advocates, reg-

ulators, experts from other countries (e.g., US and Asia) are missing. To overcome this limitation, the 

next step in our research endeavour will be to increase the number of interview participants and in-

clude participants across all relevant areas. Besides that, future research could quantitatively survey 

the perception of machine learning in radiology and the shift between business models or, more specif-

ically, their value propositions. As far as this work is concerned, further research should provide more 

information for each of the opportunities and challenges. In particular, future research should discuss 

solutions to the identified challenges. Moreover, quantitative research to determine the economic im-

pact of machine learning in radiology could help to convince stakeholders not only of its medical ben-

efits but also of its economic effectivity. 
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